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IID Models for Markets (Market Return Histories)

We now consider a market with N risky assets. Let {si (d)}Dd=0 be the
share price history of asset i . The associated return history is {ri (d)}Dd=1
where

ri (d) = si (d)
si (d − 1) − 1 .

Because each si (d) is positive, we see that each ri (d) is in (−1,∞). Let
r(d) be the N-vector

r(d) =

 r1(d)
...

rN(d)

 .

Then the market return history can be expressed compactly as {r(d)}Dd=1.
An IID model for the market return history {r(d)}Dd=1 draws D random
vectors {Rd}Dd=1 from a fixed probablity density q(R) over (−1,∞)N .

C. David Levermore (UMD) IID Models for Portfolios April 3, 2022



IID Markets IID Portfolios Metrics CAPM

IID Models for Markets (Mean and Variance)
In this model the mean vector µ and covariance matrix Ξ of R are given by

µ = Ex(R) =
∫

R q(R) dR ,

Ξ = Ex
(

(R− µ) (R− µ)T
)

=
∫

(R− µ) (R− µ)Tq(R) dR .
(1.1)

Notice that µ ∈ (−1,∞)N ⊂ RN and that Ξ ∈ RN×N is a symmetric,
positive definite matrix. Indeed, for every nonzero y ∈ RN we have

yTΞ y = yT
[∫

(R− µ) (R− µ)Tq(R) dR
]

y

=
∫

yT(R− µ) (R− µ)Ty q(R) dR

=
∫ (

yT(R− µ)
)2

q(R) dR > 0 .
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IID Models for Markets (Unbiased Estimators)

Unbiased estimators for µ and Ξ are given as follows.
Fact 1. Given any IID sample {Rd}Dd=1 drawn from q(R) and any positive
weights {wd}Dd=1 that sum to 1, the mean vector µ and covariance matrix
Ξ given by (1.1) have the unbiased estimators

µ̂ =
D∑

d=1
wd Rd , (1.2a)

Ξ̂ = 1
1− w̄

D∑
d=1

wd (Rd − µ̂) (Rd − µ̂)T , (1.2b)

where

w̄ =
D∑

d=1
w 2

d . (1.2c)
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IID Models for Markets (Fact 1 Proof)
Proof. The proof of Fact 1 has three steps.
Step 1. Prove that µ̂ defined by (1.2a) satisfies

Ex(µ̂) = µ . (1.3a)

Step 2. Prove that µ̂ defined by (1.2a) satisfies

Vr(µ̂) = w̄ Ξ . (1.3b)

Step 3. Prove that Ξ̂ defined by (1.2b) satisfies

Ex
(

Ξ̂
)

= Ξ . (1.3c)

Fact 1 is proved after these steps have been completed.
Remark. These steps are analogs of the steps that we took to prove the
analogous facts about IID models for single assets. As was the case earlier,
Step 2 is the key to Step 3.
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IID Models for Markets (Step 1 Proof)

Proof of Step 1. Defintion (1.2a) of µ̂, the fact that {Rd}Dd=1 is an IID
sample with mean µ, and the fact that the {wd}Dd=1 sum to 1 give

Ex(µ̂) = Ex
( D∑

d=1
wd Rd

)
=

D∑
d=1

wd Ex(Rd ) =
D∑

d=1
wd µ = µ .

This proves Step 1.
Remark. Because Ex(µ̂) = µ, we see that Vr(µ̂) is given by

Vr(µ̂) = Ex
(

(µ̂− µ) (µ̂− µ)T
)
. (1.4)

The proof of Step 2 will use this fact.
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IID Models for Markets (Step 2 Proof)
Proof of Step 2. Set R̃d = Rd − µ. Then defintion (1.2a) of µ̂, the fact
that {Rd}Dd=1 is an IID sample with mean µ, and the fact that the
{wd}Dd=1 sum to 1 give

µ̂− µ =
D∑

d=1
wd (Rd − µ) =

D∑
d=1

wd R̃d ,

whereby

(µ̂− µ) (µ̂− µ)T =
D∑

d1=1

D∑
d2=1

wd1wd1 R̃d1 R̃T
d2 .

We thereby see that

Ex
(

(µ̂− µ) (µ̂− µ)T
)

=
D∑

d1=1

D∑
d2=1

wd1wd1 Ex
(

R̃d1 R̃T
d2

)
. (1.5)
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IID Models for Markets (Step 2 Proof)

Because {R̃d}Dd=1 is an IID sample with mean 0 and variance Ξ we have

Ex
(

R̃d1 R̃T
d2

)
= δd1d2 Ξ ,

where δd1d2 is the Kronecker delta. Then (1.4), (1.5) and definition (1.2c)
of w̄ , yield

Vr(µ̂) = Ex
(

(µ̂− µ) (µ̂− µ)T
)

=
D∑

d1=1

D∑
d2=1

wd1wd1 δd1d2 Ξ =
D∑

d=1
w 2

d Ξ = w̄ Ξ .
(1.6)

This proves Step 2.
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IID Models for Markets (Step 3 Proof)

Proof of Step 3. We begin with the identity

D∑
d=1

wd (Rd − µ̂) (Rd − µ̂)T =
D∑

d=1
wd R̃d R̃T

d

−
D∑

d=1
wd (µ̂− µ) (µ̂− µ)T .

(1.7)

Because {R̃d}Dd=1 is an IID sample with mean 0 and variance Ξ and
because the {wd}Dd=1 sum to 1, we have

Ex
( D∑

d=1
wd R̃d R̃T

d

)
=

D∑
d=1

wd Ex
(

R̃d R̃T
d

)
=

D∑
d=1

wd Ξ = Ξ . (1.8)
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IID Models for Markets (Step 3 Proof)
By using (1.6) from Step 2 and the fact that the {wd}Dd=1 sum to 1, we
obtain

Ex
( D∑

d=1
wd (µ̂− µ) (µ̂− µ)T

)
=

D∑
d=1

wd Ex
(

(µ̂− µ) (µ̂− µ)T
)

=
D∑

d=1
wd w̄ Ξ = w̄ Ξ .

(1.9)

We see from (1.7) (1.8) and (1.9) that

Ex
( D∑

d=1
wd (Rd − µ̂) (Rd − µ̂)T

)
= Ξ− w̄ Ξ = (1− w̄) Ξ .

It follows that Ξ̂ defined by (1.2b) satisfies (1.3c). This proves Step 3 and
thereby completes the proof of Fact 1.
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IID Models for Markets (Calibration)

In order to use an IID model for the market, we must gather statistical
information about the return probability density q(R). Fact 1 says that
given any IID sample {Rd}Dd=1 drawn from q(R) and any positive weights
{wd}Dd=1 that sum to 1, the mean vector µ and covariance matrix Ξ given
by (1.1) have the unbiased estimators (1.2) that are

µ̂ =
D∑

d=1
wd Rd , Ξ̂ = 1

1− w̄

D∑
d=1

wd (Rd − µ̂) (Rd − µ̂)T .

If we assume that such a sample is given by the return history {r(d)}Dd=1
then these estimators are given in terms of the vector m and matrix V by

µ̂ = m , Ξ̂ = 1
1− w̄ V . (1.10)
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IID Models for Markets (Assessing IID)

An IID model is reasonable when the points {(d , r(d))}Dd=1 are distributed
uniformly in d . Graphical assessments when N is small are not hard to
imagine. For example, a graphical assessment based on pairs of assets can
be carried out by plotting the points {(d , ri (d), rj(d))}Dd=1 in R3 with an
interactive 3D graphics package. However, things become harder to
visualize when N is not small.
You might think that a necessary condition for the entire market to have
an IID model is that each asset has an IID model. This can be assessed for
each asset by either the graphical or quantitative methods from the
previous chapter. Such assessments often show that funds behave more
like IID models than individual stocks or bonds. This means that portfolio
balancing strategies based on IID models might work better for portfolios
composed largely of funds. This is one reason why some investors prefer
investing in funds over investing in individual stocks and bonds.
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IID Models for Markets (Diverse Portfolios)

A better lesson to be drawn from the observation in the previous
paragraph is that every sufficiently diverse portfolio of assets in a market
will behave more like an IID model than many of the individual assets in
that market. In other words, IID models for a market can be used to
develop portfolio balancing strategies when the portfolios considered are
sufficiently diverse, even when the behavior of individual assets in that
market may not be described well by the model. This is another reason to
prefer holding diverse, broad-based portfolios.
More importantly, this suggests that it is better to apply graphical or
quantitative assessments to representative portfolios rather than to each
individual asset in the market. In order to do this we must first show how
an IID model for market return histories leads to an IID model for the
return history of every Markowitz portfolio.
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IID Models for Portfolios (Introduction)
Now suppose that we are using an IID model with return probability
density q(R) for a market of N risky assets with return history {r(d)}Dd−1.
Here we show that there is a related IID model for the return history
{r(d)}Dd=1 of any Markowitz portfolio. Recall the following.

For any allocation f ∈M we have

r(d) = r(d)Tf . (2.11a)

For any allocation (f, frf) ∈M1 we have

r(d) = µrf frf + r(d)Tf . (2.11b)

For any allocation (f, fsi, fcl) ∈M2 we have

r(d) = µsifsi + µclfcl + r(d)Tf . (2.11c)
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IID Models for Portfolios (Return Histories)

All of the expressions in (2.11) can be put into the general form

r(d) = rrf + r(d)Tf , (2.12)

where rrf is the risk-free return of the portfolio given by

rrf =


0 when f ∈M ,

µrf frf when (f, frf) ∈M1 ,

µsifsi + µclfcl when (f, fsi, fcl) ∈M2 .

Therefore any Markowitz portfolio with risk-free return rrf and risky asset
allocation f has its return history {r(d)}Dd=1 given in terms of the market
return history {r(d)}Dd=1 by (2.12).
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IID Models for Portfolios (Return Probability Density)
Because the market return history {r(d)}Dd=1 is IID modeled by {Rd}Dd=1
drawn from the probability density q(R), we see from (2.12) that the
return history {r(d)}Dd=1 of any Markowitz portfolio with a risk-free return
rrf and a risky asset allocation f is IID modeled by {Rd}Dd=1 given by

Rd = rrf + RT
d f , (2.13a)

drawn from the return probability density q(rrf ,f)
(R) given by

q(rrf ,f)
(R) =

∫
δ
(
R − rrf − RTf

)
q(R) dR . (2.13b)

Here δ( · ) denotes the Dirac delta distribution, which can be defined by
the property that for every sufficiently nice function ψ(R)∫

ψ(R) δ
(
R − rrf − RTf

)
dR = ψ

(
rrf + RTf

)
. (2.14)
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IID Models for Portfolios (Expected Values)

Hence, by combining formula (2.13b) for q(rrf ,f)
(R) with the defining

property (2.14) of the Dirac delta distribution, we see that for every
sufficiently nice function ψ(R) we have the formula

Ex
(
ψ(R)

)
=
∫
ψ(R) q(rrf ,f)

(R) dR

=
∫
ψ(R)

[∫
δ
(
R − rrf − RTf

)
q(R) dR

]
dR

=
∫ [∫

ψ(R) δ
(
R − rrf − RTf

)
dR
]

q(R) dR

=
∫
ψ
(
rrf + RTf

)
q(R) dR .

(2.15)

Here ψ(R) will be “sufficiently nice” if it is continous and the integral in
the last line makes sense and has a finite value.
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IID Models for Portfolios (q(rrf ,f)(R))

Those unfamiliar with the Dirac delta distribution can view q(rrf ,f)
(R) as

being defined by (2.15). It says for every sufficiently nice ψ(R) we have∫
ψ(R) q(rrf ,f)

(R) dR =
∫
ψ
(
rrf + RTf

)
q(R) dR .

This shows that because q(R) is a probability density, q(rrf ,f)
(R) is too.

Because q(R) ≥ 0, this shows that∫
ψ(R) q(rrf ,f)

(R) dR ≥ 0 for every ψ(R) ≥ 0 .

But this implies that q(rrf ,f)
(R) ≥ 0.

Because q(R) integrates to 1, by setting ψ(R) = 1 this shows that∫
q(rrf ,f)

(R) dR =
∫

q(R) dR = 1 .

Because q(rrf ,f)
(R) ≥ 0 and integrates to 1, it is a probability density.
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IID Models for Portfolios (Return Means)

By taking ψ(R) = R in (2.15), we can compute the return mean µ as

µ = Ex(R) =
∫ (

rrf + RTf
)

q(R) dR

= rrf

∫
q(R) dR +

(∫
R q(R) dR

)T
f

= rrf + µTf ,

(2.16)

where in the last step we have used that facts that∫
q(R) dR = 1 ,

∫
R q(R) dR = µ .

The first fact follows because q(R) is a probability density while the
second fact comes from (1.1).
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IID Models for Portfolios (Return Variance)
By taking ψ(R) = (R − µ)2 in (2.15) and using formula (2.16) for µ, we
can then compute the return variance ξ as

ξ = Ex
(

(R − µ)2
)

=
∫ (

rrf + RTf − µ
)2

q(R) dR

=
∫ (

RTf − µTf
)2

q(R) dR

=
∫

fT(R− µ) (R− µ)Tf q(R) dR

= fT
(∫

(R− µ) (R− µ)Tq(R) dR
)

f

= fTΞ f ,

(2.17)

where in the last step we have used the fact from (1.1) that∫
(R− µ) (R− µ)Tq(R) dR = Ξ .
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IID Models for Portfolios (Estimators)
If the return history {r(d)}Dd=1 is modeled by IID samples drawn from a
probability density q(R) then the associated return mean µ and return
variance Ξ have the unbiased estimators (1.10) given by

µ̂ = m , Ξ̂ = 1
1− w̄ V . (2.18)

The Markowitz portfolio with a risk-free return rrf and a risky asset
allocation f has the return history {r(d)}Dd=1 where

r(d) = rrf + r(d)Tf .
This history is modeled by IID samples drawn from the probability density
q(rrf ,f)

(R). Formulas (2.16), (2.17) and (2.18) show that the return mean
µ and return variance ξ of this portfolio have the unbiased estimators

µ̂ = rrf + mTf , ξ̂ = 1
1− w̄ fTVf . (2.19)
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IID Portfolio Metrics (Introduction)

Previously we have applied several IID related metrics to individual assets.
For the i th asset we have the mean and variance estimator metrics for
assessing our certainty in the calibration of the IID model

ωµ̂i , ωξ̂i , (3.20a)

the mean, variance, Kolmogorov-Smirnov and Kuiper comparison metrics
for assessing indentical distribution

ωm
i , ωv

i , ωKS
i , ωKu

i , (3.20b)

and the autoregression and autocovariance metrics for assessing
indepedence

ωar
i , ωac

i . (3.20c)

C. David Levermore (UMD) IID Models for Portfolios April 3, 2022



IID Markets IID Portfolios Metrics CAPM

IID Portfolio Metrics (Two Individual Assets)

Not all individual assets yield useful metrics. Some that do are:
funds that track a large capitalization equity index like the S&P 500
or the Russell 1000,
funds that track a broad-based bond index.

Typically a portfolio will have just one of each of these types of funds.
Each of these have 8 metrics given by (3.20), giving the 16 metrics:

ωµ̂EI , ωξ̂EI , ωm
EI , ωv

EI , ωKS
EI , ωKu

EI , ωar
EI , ωac

EI ,

ωµ̂BI , ωξ̂BI , ωm
BI , ωv

BI , ωKS
BI , ωKu

BI , ωar
BI , ωac

BI .

Because an IID model for markets yields and IID model for each
Markowitz portfolio, these metrics can now be applied to portfolios.
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IID Portfolio Metrics (Three Portfolios)

Portfolios that are natural candidates for the application of these metrics
are the safe tangent portfolio, the credit tangent portfolio, and the
efficient long tangent portfolio.

The safe tangent portfolio exists whenever µsi 6= µmv. In that case
simply set rst(d) = r(d)Tfst and apply each metric to the return
history {rst(d)}Dd=1. If µsi = µmv then simply set all the metrics to 1.
The credit tangent portfolio exists whenever µcl 6= µmv. In that case
simply set rcl(d) = r(d)Tfst and apply each metric to the return
history {rcl(d)}Dd=1. If µcl = µmv then simply set all the metrics to 1.
The efficient long tangent portfolio exists whenever µsi < µmx. In that
case simply set relt(d) = r(d)Tfelt and apply each metric to the return
history {relt(d)}Dd=1. If µsi ≥ µmx then simply set all the metrics to 1.
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IID Portfolio Metrics (Summary)

This gives six calibration metrics

ωµ̂st , ωµ̂ct , ωµ̂elt , ωξ̂st , ωξ̂ct , ωξ̂elt , (3.21a)

twelve indentical distribution metrics

ωm
st , ωm

ct , ωm
elt , ωv

st , ωv
ct , ωv

elt ,

ωKS
st , ωKS

ct , ωKS
elt , ωKu

st , ωKu
ct , ωKu

elt ,
(3.21b)

and six independence metrics

ωar
st , ωar

ct , ωar
elt , ωac

st , ωac
ct , ωac

elt . (3.21c)

These metrics are usually more useful that those for most individual assets
because the portfolios used are the building blocks of efficient frontiers.
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Application to CAPM (Introduction)

The Capital Asset Pricing Model (CAPM) was introduced in Section 3.4.
There we took two steps.
Step 1. In the setting of Markowitz portfolios with a one-rate model of
risk-free assets, we added some very strong assumptions that allowed us to
identify the tangent portfolio with the market capitalization portfolio. This
step is the heart of CAPM.
Step 2. We developed some relations between the return means and
volatilities of individual assets with those of the tangent portfolio. These
did not require the very strong assumptions of the first step. We then saw
what they said given the conclusion of Step 1.
We are now ready for our last step in its development.
Step 3. We use the IID model for markets to relate the returns of
individual assets to those of the market capitalization portfolio.
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Application to CAPM (Assumptions)

We start by recalling the five assumptions upon which CAPM is built.
Here we restate them in the setting of an IID model for the market.

1 The market consists of N risky assets and risk-free assets with a
common return rate µrf .

2 There are K investors, each of which holds a solvent Markowitz
portfolio governed by the one-rate model for risk-free assets.

3 The market capitalization of each asset is equal to the sum of its
value of that asset held in each portfolio.

4 The density q(R) of daily return vectors is known and is stationary.
Let µ and Ξ be its known mean vector and covariance matrix. Then
µrf , µ and Ξ are the same for all investors and are constant in time.

5 Each investor holds a portfolio on the efficient Tobin frontier.
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Application to CAPM (Conclusions so Far)
Next we recall the conclusions from Step 1 and Step 2.

The tangent portfolio exists and is efficient (µrf < µmv).
The tangent allocation ftg is the market capitalization allocation fM,
and is thereby long.
The market capitalization allocation fM does not depend on time.
The return mean µi of the i th asset satisfies

µi − µrf = βi (µM − µrf) , (4.22a)
where

µM = µTfM , βi = 1
σ 2

M
eT

i Ξ fM , σ 2
M = fTMΞ fM . (4.22b)

The variance σ 2
i of the i th asset has the decomposition

σ 2
i = β 2

i σ
2

M + η 2
i , (4.22c)

where βi σM is the systemic risk and ηi is the diversifiable risk.
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Application to CAPM (Step 3 Conclusion)
The conclusion of Step 3 will be that the random variable R ∈ (−1,∞)N

has the decomposition
R = µ + β (RM − µM) + Z , (4.23a)

where
RM = RTfM , β = 1

σ 2
M

Ξ fM , (4.23b)

with µM and σM given by (4.22b),
µ− µrf1 = β (µM − µrf) , (4.23c)

and where the random variable Z ∈ RN satisfies
Ex(Z) = 0 , Ex(Z (RM − µM)) = 0 , (4.23d)

Ξ = σ 2
M β βT + Ex

(
Z ZT

)
, (4.23e)

and Ex
(
|Z|2

)
is the minimum over all similar decompositions.

C. David Levermore (UMD) IID Models for Portfolios April 3, 2022



IID Markets IID Portfolios Metrics CAPM

Application to CAPM (Relation to Earlier Results)
Because µi and βi appearing in equation (4.22a) are related to µ and β
appearing in equation (4.23c) by

µi = eT
i µ , βi = eT

i β ,

we see that equation (4.22a) is equation (4.23c) multiplied on the left by
eT

i . Therefore equation (4.23c) is just a restatement of equation (4.22a).
Because σi and ηi appearing in decomposition (4.22c) are related to Ξ and
Ex
(

Z ZT
)

appearing in decomposition (4.23e) by

σ 2
i = eT

i Ξ ei , η 2
i = eT

i Ex
(

Z ZT
)

ei ,

we see that decomposition (4.22c) is decomposition (4.23e) multiplied on
the left by eT

i and on the right by ei . Therefore the diagonal entries of
decomposition (4.23e) are restatements of the decompositions (4.22c), but
its off-diagonal entries make it a stronger statement about covariances.
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Application to CAPM (Outline of Development)

Recall that the conclusions of Step 2 are (4.22). These followed from
some general facts about tangent portfolios and the conclusion of Step 1
that the tangent portfolio has the market capitalization allocation fM.
In a similar way the conclusions of Step 3 given by (4.23) will follow from:

some general facts about any reference portfolio,
some general facts when the reference portfolio is a tangent portfolio,
the conclusion of Step 1 that the tangent portfolio has the market
capitalization allocation fM.
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Application to CAPM (Least Squares Problem)
Let fR ∈M be the allocation of any reference portfolio. For every random
variable R ∈ (−1,∞)N we want to find α ∈ RN and β ∈ RN such that
the decomposition

R = α + β RR + Z , (4.24a)
makes Ex

(
|Z|2

)
as small as possible, where

RR = RTfR . (4.24b)

This is a least squares problem.
It simplifies the calculation to replace α with α̃ defined by the relation

α = α̃ + µ− β µR , (4.25a)

where
µR = µTfR . (4.25b)
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Application to CAPM (|Z|2)

Therefore we want to find α̃ ∈ RN and β ∈ RN that minimizes Ex
(
|Z|2

)
where

R = α̃ + µ + β (RR − µR) + Z . (4.26a)

Because
Z = (R− µ)− α̃− β (RR − µR) , (4.26b)

we see that

|Z|2 = |R− µ|2 + |α̃|2 + |β|2 (RR − µR)2

− 2α̃T(R− µ)− 2βT(R− µ) (RR − µR)
+ 2α̃Tβ (RR − µR) .

(4.27)
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Application to CAPM (Ex
(
|Z|2

)
)

Because µ and Ξ were defined by

Ex(R) = µ , Ex
(

(R− µ) (R− µ)T
)

= Ξ , (4.28)

while RR and µR are given by (4.24b) and (4.25b), we see that
Ex(R− µ) = 0 , Ex(RR − µR) = 0 ,

Ex
(
|R− µ|2

)
= tr(Ξ) , Ex((R− µ) (RR − µR)) = Ξ fR ,

Ex
(

(RR − µR)2
)

= fTRΞ fR .

(4.29)

We thereby see from (4.27) that

Ex
(
|Z|2

)
= tr(Ξ) + |α̃|2 + |β|2σ 2

R − 2βTΞ fR , (4.30a)

where σR > 0 is determined from
σ 2

R = fTRΞ fR . (4.30b)
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Application to CAPM (Minimizer)
The minimizer of Ex

(
|Z|2

)
given by (4.27) is

α̃ = 0 , β = 1
σ 2

R
Ξ fR .

It then follows from (4.26b) and (4.29) that the random variable Z
satisfies

Ex(Z) = 0 , Ex(Z (RR − µR)) = 0 . (4.31a)
Moreover from (4.26a) we see that

(R− µ) (R− µ)T = (RR − µR)2 β βT + Z ZT

+ (RR − µR)
(
β ZT + Z βT

)
.

We thereby see from (4.28), (4.29), (4.30b), and (4.31a) that

Ξ = σ 2
R β βT + Ex

(
Z ZT

)
. (4.31b)
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Application to CAPM (Reference is Tangent)
When the reference portfolio is the tangent portfolio then fR = ftg and by
(4.26a) the random variable R ∈ (−1,∞)N has the decomposition

R = µ + β
(
Rtg − µtg

)
+ Z , (4.32a)

where
Rtg = RTftg , β = 1

σ 2
tg

Ξ ftg , (4.32b)

while by the general conclusion of Step 2 we have

µ− µrf1 = β
(
µtg − µrf

)
, (4.32c)

and by (4.31) the random variable Z ∈ RN satisfies

Ex(Z) = 0 , Ex
(

Z
(
Rtg − µtg

))
= 0 , (4.32d)

Ξ = σ 2
tg β βT + Ex

(
Z ZT

)
. (4.32e)
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Application to CAPM (Tangent is Market Capitalization)
Finally, recall the conclusions from Step 1 of our CAPM development.

The tangent portfolio exists and is efficient (µrf < µmv).
The tangent allocation ftg is the market capitalization allocation fM,
and is thereby long.
The market capitalization allocation fM does not depend on time.

Therefore the conclusions (4.23) of Step 3 of our CAPM development
follow from (4.32) by setting ftg = fM.
Remark. The main critique of CAPM that was given in Section 3.4 was
that because it assumes perfect knowledge by all investors that does not
require any data collection, it is an overly simple, purely probabilistic
model that leads to predictions that are not supported by observations.
However, because its predictions were approximately right often enough, it
had a huge impact on the finance industry and led to the development of
more flexible models that are still used today.
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