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Methods PCA ICA

Approaches
The Principal Component Analysis (PCA) is data processing method that
belongs to the class of dimension reduction and data embedding
techniques.
Fundamentally it is a least-squares fitting algorithm with respect to a set
of basis vectors that are determined based on data. As such it is naturally
connected to the least-squares fitting problems we studied so far and
hence can be presented now.
A list of popular dimension reduction and data embedding approaches
includes:

1 Principal Component Analysis
2 Independent Component Analysis
3 Laplacian Eigenmaps
4 Local Linear Embeddings (LLE)
5 Isomaps
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Methods PCA ICA

Approaches

In all these case, the input data is given by a collection of points (vectors)
{x1, x2, · · · , xn} ⊂ RN in the N-dimensional vector space RN .
If these points belong to a lower dimensional manifold, the problem is
known under the name of manifold learning. If this manifold is linear (or,
affine), then Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) are the typical methods.
However, if the manifold is not linear, then nonlinear methods are needed.
In this respect, Laplacian Eigenmaps, LLE and ISOMAP can be thought of
as nonlinear PCA methods. They are also known as nonlinear embeddings.
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Methods PCA ICA

Principal Component Analysis
The Problem

Data: We are given a set {x1, x2, · · · , xn} ⊂ RN of n points in RN .
Goals: We want to find a linear (or affine) subspace V of dimension d that best
approximates this set. Specifically, if P = PV denotes the orthogonal projection
onto V , then the goal is to minimize

J(V ) =
n∑

k=1
‖xk − PV xk‖2

2.

Once we find this subspace (linear or otherwise), we want to compute either the
approximation PV x or its embedding, i.e., a vector y ∈ Rd that encodes PV x .
If V is a linear space (i.e. passes through the origin) then P is a N × N matrix
(linear operator) orthogonal projection that satisfies P = PT , P2 = P, and
Ran(P) = V .
If V is an affine space (i.e. a linear space shifted by a constant vector), then the
“projection” onto the affine space is T (x) = Px + b where b is a constant vector
(the ”shift”).
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Methods PCA ICA

Principal Component Analysis
Approaches

In the following we discuss four algorithms that perform PCA. The first
two algorithms minimize the objective function

J(V ) =
n∑

k=1
‖xk − PV xk‖22.

The other two algorithms address the problem of affine approximation (as
opposed to linear approximation), i.e., approximations of the form
T (x) = Px + b.
Algorithm 4 is a variation of the Algorithm 3, just as the Algorithm 2 is a
variation of the Algorithm 1.
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Principal Component Analysis
Algorithm 1

Algorithm (Principal Component Analysis - Alg1: Using Eigenpairs)
Input: Data vectors {x1, · · · , xn} ∈ RN ; dimension d.

1 Compute the matrix

R =
n∑

k=1
xkxT

k

2 Solve the eigenproblems Rek = σ2
kek , 1 ≤ k ≤ N, order eigenvalues

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N and normalize the eigenvectors ‖ek‖2 = 1.
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Methods PCA ICA

Principal Component Analysis
Algorithm 1 - cont’ed

Algorithm (Principal Component Analysis - Alg1: Using Eigenpairs)
3 Construct the co-isometry and isometry

U =

 eT
1
...

eT
d

 , UT =
[

e1 | e2 | · · · | ed
]
.

4 Project the input data points (or any additional/specific point)

y1 = Ux1 , y2 = Ux2 , · · · , yn = Uxn,

x̂1 = UT y1 = UT Ux1 , x̂2 = UT y2 = UT Ux2 , · · · , x̂n = UT yn = UT Uxn.

Output: Lower dimensional data vectors (embeddings) {y1, · · · , yn} ⊂ Rd and
approximation vectors {x̂1, x̂2, · · · , x̂n} ⊂ RN . Furthermore, the optimal value of
the objective function is minJ(V ) =

∑N
k=d+1 σ

2
k .
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Principal Component Analysis
Algorithm 2

Algorithm (Principal Component Analysis - Alg2: Using SVD)
Input: Data vectors {x1, · · · , xn} ∈ RN ; dimension d.

1 Construct the data matrix X ∈ RN×n

X =
[

x1 | x2 | · · · | xn
]

2 Compute the Singular Value Decomposition (SVD) of X ,
[E ,D,F ] = svd(X ) so that

X = EDF T , EE T = IN , FF T = In , D = diag(σ1, · · · , σp)

E ∈ RN×N , F ∈ Rn×n are orthogonal matrices, p = min(n,N),
D ∈ RN×n contains singular values σ1, · · · , σp on the main diagonal
and zero elsewhere.
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Principal Component Analysis
Algorithm 2 - cont’ed

Algorithm (Principal Component Analysis - Alg2: Using SVD)
3 If need be, permute the columns of E , F and diagonal elements of D

so that the singular values are sorted monoton decreasing:
σ1 ≥ · · · ≥ σp.

4 Denote by e1, · · · , eN the columns of E . Construct the co-isometry
and isometry

U =

 eT
1
...

eT
d

 , UT =
[

e1 | e2 | · · · | ed
]
.
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Principal Component Analysis
Algorithm 2 - cont’ed

Algorithm (Principal Component Analysis - Alg2: Using SVD)
5 Project the input data points (or any additional/specific point)

y1 = Ux1 , y2 = Ux2 , · · · , yn = Uxn,

x̂1 = UT y1 = UT Ux1 , x̂2 = UT y2 = UT Ux2 , · · · , x̂n = UT yn = UT Uxn.

Output: Lower dimensional data vectors (embeddings) {y1, · · · , yn} ⊂ Rd

and approximation vectors {x̂1, x̂2, · · · , x̂n} ⊂ RN . Furthermore, the
optimal value of the objective function is
minV :dim(V )=d J(V ) =

∑N
k=d+1 σ

2
k .
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Principal Component Analysis
Remarks

1. Notice the two algorithms produce the same output. Indeed, this is due to the
fact that R = XX T and therefore R = EDDT E T where Λ = DDT is the diagonal
matrix with all N eigenvalues of R, λk = σ2

k , k ∈ [N].
2. The algorithms 1 and 2 produce information about the orthogonal projection
P, subspace V and an implicit hierarchy of approximations.
The orthogonal projection is given by P =

∑d
k=1 ekeT

k and the optimal subspace
is V = Ran(P).
3. Residual: These theorems provide exact estimates of the residual. This
estimate provides with the ratio of explained variance as:

ρ =
∑d

k=1 σ
2
k∑N

k=1 σ
2
k

= 1−
∑N

k=d+1 σ
2
k∑N

k=1 σ
2
k

One can utilize this ratio as a criterion for choosing d . For instance the smallest
d so that ρ ≥ 0.9 = 90%.
4. The stochastic equivalent to this algorithm: The Karhunen-Loève Theorem

(see wikipedia: https://en.wikipedia.org/wiki/Kosambi-Karhunen-Loeve theorem).
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Principal Component Analysis
Derivation

Here is the derivation in the case of approximation by linear spaces. As we have
seen in the lectures on least-squares approximation by linear models, the
approximation vectors are given by yk = Pxk for the orthogonal projection P onto
subspace V , yet to-be-determined. Expand the criterion J(V ):

J(V ) =
n∑

k=1
‖xk‖2 −

n∑
k=1
〈Pxk , xk〉 =

n∑
k=1
‖xk‖2 − trace(PR)

where R =
∑n

k=1 xkxT
k . It follows the orthogonal projection that minimizes J(V )

maximizes also trace(PR) subject to P = PT , P2 = P and trace(P) = d .
Recall that all symmetric matrices (such as R in the Algorithm 1) diagonalize by
orthogonal matrices. That means step 2 of the algorithm is guaranteed to
produce a complete set of eigenpairs. Notice also that R is positive semidefinite,
hence all eigenvalues are non-negative. Therefore R =

∑N
k=1 σ

2
kekeT

k .
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Principal Component Analysis
Derivation - cont’ed

Now:

trace(PR) =
N∑

k=1
σ2

ktrace(PekeT
k ) =

N∑
k=1

σ2
k‖Pek‖2

2

Our problem is to maximize
∑N

k=1 σ
2
k‖Pek‖2

2 over P, subject to P an orthogonal
projection of rank d . For orthogonal projections, rank equals the dimension of its
range equals its trace. Hence trace(P) = d . Additionall, any eigenvalue of P is
either 0 or 1. These two conditions imply:

‖Pek‖2 ≤ 1 ,

N∑
k=1
‖Pek‖2

2 = trace(P) = d .

Letting wk = ‖Pek‖2
2, the optimization becomes:

maximize
0 ≤ w1, · · · ,wN ≤ 1
w1 + · · ·+ wN = d

N∑
k=1

wkσ
2
k .
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Principal Component Analysis
Derivation - cont’ed

Using a “water-filling” principle1, the optimal solution puts most of the weight on
the largest eigenvalues: that is, w1 = · · · = wd = 1 and wd+1 = · · · = wN = 0. It
follows the optimal P is given by the orthogonal projection onto the top d
eigenvectors, hence the algorithm 1.

Algorithm 2 follows once we observe that the columns of matrix E are exactly the
eigenvectors e1, · · · , eN of matrix R from Algorithm 1:

R = XX T = EDF T (EDF T )T = EDDT E T .

1The “water filling algorithm”: see
https://en.wikipedia.org/wiki/Water filling algorithm
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Principal Component Analysis
The Affine Case

Consider now the case when data {x1, · · · , xn} ⊂ RN is approximated by
an affine space, that is T (x) = Fy + b, for some F ∈ RN×d and b ∈ RN .
Here 0 < d ≤ N. The desired solution must solve the following
optimization problem:

minimize
F ∈ RN×d , b ∈ RN

n∑
k=1

min
y∈Rd

‖xk − Fy − b‖22.

As we have seen earlier, given F and b, the inner optimization has
solution: ŷ = (F T F )−1F T (xk − b) and inner norm term becomes
‖(1− P)(xk − b)‖22 where P = F (F T F )−1F T is the orthogonal projection
onto Ran(F ). This formula holds under the assumption that F is full rank,
i.e. rank(F ) = d . In general, d is chosen to be at most the smaller of
dim{x1, · · · , xn} of N, in which case F achieves its full rank.
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Principal Component Analysis
Algorithm 3: The Affine Case

Algorithm (Principal Component Analysis - Alg3: Affine case using
eigenpairs)
Input: Data vectors {x1, · · · , xn} ∈ RN ; dimension d.

0 Compute the average data vector x̄ = 1
n
∑n

k=1 xk .
1 Compute the matrix

R =
n∑

k=1
(xk − x̄)(xk − x̄)T

2 Solve the eigenproblems Rek = σ2
kek , 1 ≤ k ≤ N, order eigenvalues

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N and normalize the eigenvectors ‖ek‖2 = 1.
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Principal Component Analysis
Algorithm 3 - cont’ed

Algorithm (Principal Component Analysis - Alg3: Affine case using
eigenpairs)

3 Constructe the following:

U =

 eT
1
...

eT
d

 , UT =
[

e1 | e2 | · · · | ed
]

P = UT U , b = (I−P)x̄ .

4 Project the input data points (or any additional/specific point)

y1 = Ux1 , · · · , yn = Uxn,

x̂1 = UT y1 + b = Px1 + (I − P)x̄ , · · · , x̂n = PUT yn + b = Pxn + (I − P)x̄ .

Output: Embedding {y1, · · · , yn} ⊂ Rd and approx. {x̂1, x̂2, · · · , x̂n} ⊂ RN .
Furthermore, the optimal value of the objective function is

∑N
k=d+1 σ

2
k .
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Principal Component Analysis
Algorithm 4: The Affine Case

Algorithm (Principal Component Analysis - Alg4: Affine case using
SVD)
Input: Data vectors {x1, · · · , xn} ∈ RN ; dimension d.

0 Compute the average data vector x̄ = 1
n
∑n

k=1 xk .
1 Construct the centered data matrix X ∈ RN×n

X =
[

x1 − x̄ | x2 − x̄ | · · · | xn − x̄
]

2 Compute the Singular Value Decomposition (SVD) of X ,
[E ,D,F ] = svd(X ) so that

X = EDF T , EE T = IN , FF T = In , D = diag(σ1, · · · , σp)

E ∈ RN×N , F ∈ Rn×n are orthogonal matrices, p = min(n,N),
D ∈ RN×n contains singular values σ1, · · · , σp on the main diagonal
and zero elsewhere.
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Principal Component Analysis
Algorithm 4 - cont’ed

Algorithm (Principal Component Analysis - Alg4: Affine case using
SVD)

3 If need be, permute the columns of E , F and diagonal elements of D
so that the singular values are sorted monoton decreasing:
σ1 ≥ · · · ≥ σp.

4 Denote by e1, · · · , eN the columns of E . Construct the following

U =

 eT
1
...

eT
d

 , UT =
[

e1 | e2 | · · · | ed
]

P = UT U , b = (I − P)x̄ .
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Principal Component Analysis
Algorithm 4 - cont’ed

Algorithm (Principal Component Analysis - Alg4: Affine case using
SVD)

5 Project the input data points (or any additional/specific point)

y1 = Ux1 , · · · , yn = Uxn,

x̂1 = UT y1+b = Px1+(I−P)x̄ , · · · , x̂n = UT yn+b = Pxn+(I−P)x̄ .

Output: Lower dimensional data vectors (embeddings) {y1, · · · , yn} ⊂ Rd

and approximation vectors {x̂1, x̂2, · · · , x̂n} ⊂ RN . Furthermore, the
optimal value of the objective function is
minV :dim(V )=d J(V ) =

∑N
k=d+1 σ

2
k .
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Principal Component Analysis
Derivation of Algorithms 3 and 4 in the Affine Case

Notice that, after optimization of the inner term, the objective function,
parametrized by P and b, becomes:

J(P, b) = trace
{

(I − P)
( N∑

k=1
(xk − b)(xk − b)T

)
(I − P)

}
= ... =

= trace{(I − P)R0(I − P)} − 2n〈(I − P)b, (I − P)x̄〉+ n‖(I − P)b‖2
2

where R0 =
∑n

k=1 xkxT
k . Fixing P, the optimization over b seeks to minimize:

min
b
‖(I − P)b‖2

2 − 2〈(I − P)b, (I − P)x̄〉

Cauchy-Schwarz inequality implies 〈(I − P)b, (I − P)x̄〉 ≤ ‖(I − P)b‖‖(I − P)x̄‖,
from where the minimum is achieved for b so that, firstly (I − P)b||(I − P)x̄ , and
secondly (by optimization over norm of b) that (I − P)b = (I − P)x̄ . Choose
b = (I − P)x̄ . Finally, note (I − P)(xk − b) = (I − P)(xk − x̄) which reduces the
minimization of J(P, (I − P)x̄) to the linear case with R as in Algorithm 3.
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Independent Component Analysis
Approach

Model (Setup): x = As, where A is an unknown invertible N × N matrix, and
s ∈ RN is a random vector of independent components.
Data: We are given a set of measurement {x1, x2, · · · , xn} ⊂ RN of n points in
RN of the model xk = Ask , where each {s1, · · · , sn} is drawn from the same
distribution ps(s) of N-vectors with independent components.
Goal: We want to estimate the invertible matrix A and the (source) signals
{s1, · · · , sn}. Specifically, we want a square matrix W such that Wx has
independent components.
Principle: Perform PCA first so the decorrelated signals have unit variance. Then
find an orthogonal matrix (that is guaranteed to preserve decorrelation) that
creates statistical independence as much as possible.
Caveat: Two inherent ambiguities: (1) Permutation: If W is a solution to the
unmixing problem so is ΠW , where Π is a permutation matrix; (2) Scaling: If W
is a solution to unmixing problem, so is DW where D is a diagonal matrix.
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Independent Component Analysis
Algorithm

Algorithm (Independent Component Analysis)
Input: Data vectors {x1, · · · , xn} ∈ RN .

1 Compute the sample mean b = 1
n
∑n

k=1 xk , and sample covariance
matrix R = 1

n
∑n

k=1(xk − b)(xk − b)T .
2 Solve the eigenproblem RE = EΛ, where E is the N × N orthogonal

matrix whose columns are eigenvectors, and Λ is the diagonal matrix
of eigenvalues.

3 Compute F = R−1/2 := EΛ−1/2E T and apply it on data,
zk = F (xk − b), 1 ≤ k ≤ n.

4 Compute the orthogonal matrix Q using the JADE algorithm below.
5 Apply Q on whitened data, ŝk = Qzk , 1 ≤ k ≤ n. Compute W = QF .

Output: Matrix W and independent vectors {ŝ1, ŝ2, · · · , ŝn}.
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Independent Component Analysis – Cont.
Joint Approximate Diagonalization of Eigenmatrices (JADE)

Algorithm (Cardoso’s 4th Order Cumulants Algorithm’92)
Input: Whitened data vectors {z1, · · · , zn} ∈ RN .

1 Compute the sample 4th order symmetric cumulant tensor

Fijkl = 1
N

N∑
t=1

zt(i)zt(j)zt(k)zt(l)− δi ,jδk,l − δi ,kδj,l − δi ,lδj,k .

2 Compute N eigenmatrices Mi ,j , so that F (Mi ,j) = λi ,jMi ,j .
3 Maximize the criterion

JJADE (Q) =
∑
i ,j
|λi ,j |2‖diag(QMi ,jQT )‖22

over orthogonal matrices Q by performing successive rotations
marching through all pairs (a, b) of distinct indices in {1, · · · ,N}.

Output: Orthogonal N × N matrix Q.
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Independent Component Analysis – Cont.
Wang-Amari Natural Stochastic Gradient Algorithm of Bell-Sejnowski MaxEntropy

Algorithm (Wang-Amari’97; Bell-Sejnowski’95)
Input: Sphered data vectors {z1, · · · , zn} ∈ RN ; Cumulative distribution
functions gk of each component of s; Learning rate η.

1 Initialize W (0) = F .
2 Repeat until convergence, or until maximum number of steps reached:

1 Draw a data vector z randomly from data vectors, and compute

W (t+1) = W (t) + η(I + (1− 2g(z))zT )W (t).

2 increment t ← t + 1.
Output: Unmixing N × N matrix W = W (T ).
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Independent Component Analysis
Derivation
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