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Outline of Three Lectures

1) Introduction to Linear Statistical Models

2) Linear Euclidean Least Squares Fitting

3) Auto-Regressive Processes

4) Linear Weighted Least Squares Fitting

5) Least Squares Fitting for Univariate Polynomial Models

6) Least Squares Fitting with Orthogonalization

7) Multivariate Linear Least Squares Fitting

8) General Multivariate Linear Least Squares Fitting



3. Linear Weighted Least Squares Fitting

The Euclidean norm treats every entry of r the same way. There are many
times when that is a natural thing to do. But there are also times when it is
natural to do other things. For example, if the times tj are not uniformly dis-
tributed over the time interval under consideration then you might want to
give each tj a positive weight wj proportional to the length of a subinterval
it represents. In other words you can choose to minimize

q(ββ) = 1
2

n∑
j=1

wj rj(β1, · · · , βm)2 .

If we let W be the diagonal matrix whose jth diagonal entry is wj then this
can be expressed as

q(ββ) = 1
2r(ββ)TWr(ββ) = 1

2(y − Fββ)TW(y − Fββ)

= 1
2y

TWy − ββTFTWy + 1
2ββ

TFTWFββ .



Because F has rank m the m×m-matrix FTWF is positive definite. The
function q(ββ) is thereby strictly convex, whereby it has a unique minimizer.
We find this minimizer by setting the gradient of q(ββ) equal to zero, yielding

∂ββ q(ββ) = FTWFββ − FTWy = 0 .

Because FTWF is positive definite, it is invertible. The above equation
has the solution ββ = β̂̂β where

β̂̂β = (FTWF)−1FTWy . (1)

The fact that β̂̂β is a global minimizer can be seen from the identity

q(ββ) = 1
2y

TWy − 1
2β̂̂β

T
FTWFβ̂̂β + 1

2(ββ − β̂̂β)TFTWF(ββ − β̂̂β)

= q(β̂̂β) + 1
2(ββ − β̂̂β)TFTWF(ββ − β̂̂β) .

Because FTWF is positive definite this identity shows that q(ββ) ≥ q(β̂̂β)

for every ββ ∈ Rm and that q(ββ) = q(β̂̂β) if and only if ββ = β̂̂β.



The weighted least squares fit has a geometric interpretation with respect
to the inner product associated with the weight matrix W

(p |q)W = pTWq .

Define r̂ = y − Fβ̂̂β. Observe that

y = Fβ̂̂β + r̂ = F(FTWF)−1FTWy + r̂ .

The matrix P = F(FTWF)−1FTW has the properties

P2 = P , PTW = WP .

This means that ŷ = Py is the orthogonal projection of y associated
with the W-inner product (· | ·)W onto the subspace of Rn spanned by the
columns of F. It follows that y = ŷ+r̂ is an orthogonal decomposition with
respect to the W-inner product, which yields the orthogonality relations

ŷTWr̂ = 0 , yTWy = ŷTWŷ + r̂TWr̂ .



The weighted least squares fit also has a statistical interpretation that is
related to these orthogonality relations. If we normalize the weights so
that

∑n
j=1wj = 1, then the weighted average of any sample {zj}nj=1 is

defined by

〈z〉 =
n∑

j=1

zjwj .

This weighted average is related to the W-inner product by

〈y z〉 =
n∑

j=1

yjzjwj = yTWz = (y | z)W .

The orthogonality relations can therefore be recast as

〈ŷ r̂〉 = 0 ,
〈
y2
〉

=
〈
ŷ2
〉

+
〈
r̂2
〉

where, by convention, if z is a vector, then 〈z2〉 = 〈z z〉 =
∑n
j=1wjz

2
j .



If the constant function 1 is in the span of the basis functions for the model
then r̂ will be orthogonal to the vector that has every entry equal to 1. It
follows that

〈r̂〉 = 0 , 〈ŷ〉 = 〈y〉 = ȳ .

These formulas have the statistical interpretations that r̂ has mean zero
while ŷ and y have the same mean. In that case the orthogonality relations
are equivalent to

〈(ŷ − ȳ ) r̂ 〉 = 0 ,
〈
(y − ȳ )2

〉
=
〈
(ŷ − ȳ )2

〉
+
〈
r̂2
〉
.

These formulas have the statistical interpretations that

Covs(ŷ, r̂) = 0 , Vars(y) = Vars(ŷ) + Vars(r̂) ,

where Covs and Vars denote sample covariance and sample variance
respectively. In particular, ŷ and r̂ are uncorrelated.



This statistical interpretation of the weighted least squares fit leads to a
measure for the quality of the fit that is among the most commonly used.
Specifically, the coefficient of determination R2 is defined by

R2 =
Vars(ŷ)

Vars(y)
=

〈
(ŷ − ȳ )2

〉
〈
(y − ȳ )2

〉 = 1−

〈
r̂2
〉

〈
(y − ȳ )2

〉 = 1−
Vars(r̂)

Vars(y)
.

Because Vars(y) = Vars(ŷ) + Vars(r̂), we see that R2 is simply the
fraction of Vars(y) that is captured by the fit. In particular, we see that

0 ≤ R2 ≤ 1 .

Fits are considered to be better by this measure when R2 is closer to 1.
While R2 can be a reasonable measure of the quality of a fit when being
used to compare how well the same model fits different data, it is not good
when being used to compare how well different models fit the same data.
It is commonly used simply because it is easy to use.



4. Least Square Fitting for Univariate Polynomial Models

The family of all polynomials with degree less than m can be expressed as

f(t;β0, · · · , βm−1) =
m−1∑
i=0

βi t
i .

Notice that here the index i runs from 0 to m− 1 rather than from 1 to m.
This way it matches the degree of each term. We will fit this linear model
to data {(tj, yj)}nj=1 using weighted least squares with weights {wj}nj=1
normalized so that

n∑
j=1

wj = 1 .

Then the weighted average of any sample {zj}nj=1 is

〈z〉 =
n∑

j=1

zjwj .



Rather than use the monomials {ti}m−1
i=0 as the basis for this model, we

use the following algorithm to construct a new basis {pi(t)}m−1
i=0 such that

each pi(t) is a monic polynomial of degree i. We initialize

p0(t) = 1 , σ 2
0 =

〈
p0(t)2

〉
= 〈1〉 = 1 ,

p1(t) = t− t̄ , σ 2
1 =

〈
p1(t)2

〉
=
〈
(t− t̄ )2

〉
= σ 2 .

Then given pi−2(t), pi−1(t), σ 2
i−2, and σ 2

i−1 for some i ≥ 2 we compute

pi(t) =

t−
〈
t pi−1(t)2

〉
σ 2
i−1

 pi−1(t)−
σ 2
i−1

σ 2
i−2

pi−2(t) , σ 2
i =

〈
pi(t)

2
〉
.

We stop when i = m− 1 and set

f̂(t) =
m−1∑
i=0

β̂ipi(t) , where β̂i =
1

σ 2
i

〈pi(t)y〉 .



The polynomials pi(t) satisfy the orthogonality relations

〈pi(t) pi′(t)〉 = δii′ σ
2
i for every i, i′ = 0, · · · , m− 1 ,

where δii′ is the Kronecker delta. Then the m×m matrix FTWF is di-
agonal with diagonal entries σ 2

i while the m-vector FTWy has entries
〈pi(t)y〉. The equation FTWFββ = FTWy thereby becomes simply

σ 2
i βi = 〈pi(t) y〉 ,

which yields the expression for β̂i given on the previous slide.

If we set ŷj = f̂(tj) for every j = 1, · · · , n then another consequence of
these polynomial orthogonality relations is the fact that

〈
(y − ȳ )2

〉
=
〈
(ŷ − ȳ )2

〉
+
〈
r̂2
〉

=
m−1∑
i=1

〈pi(t) y〉2

σ 2
i

+
〈
r̂2
〉
.

This shows exactly how much
〈
r̂2
〉

will be reduced as m is increased.



Example. If we want to find the least squares fit of the data to a polynomial
of degree less than 3 then our algorithm yields

p0(t) = 1 , σ 2
0 = 1 ,

p1(t) = t− t̄ , σ 2
1 = σ2

and

p2(t) =

t−
〈
t p1(t)2

〉
σ 2

1

 p1(t)−
σ 2

1

σ 2
0
p0(t)

=

t−
〈
t (t− t̄ )2

〉
σ2

 (t− t̄ )− σ2

= (t− t̄ )2 −
τ3

σ2
(t− t̄ )− σ2 ,

where t̄, σ, and τ are given by the weighted averages

t̄ = 〈t〉 , σ2 =
〈
(t− t̄ )2

〉
, τ3 =

〈
(t− t̄ )3

〉
.



Morover, we have

σ 2
2 =

〈
p2(t)2

〉
=
〈
(t− t̄ )2p2(t)

〉
=
〈
(t− t̄ )4

〉
−
τ3

σ2

〈
(t− t̄ )3

〉
− σ2

〈
(t− t̄ )2

〉
=
〈
(t− t̄ )4

〉
−
τ6

σ2
− σ4 .

and
〈p0(t) y〉 = 〈y〉 = ȳ ,

〈p1(t) y〉 = 〈(t− t̄ ) y〉 ,

〈p2(t) y〉 =
〈
(t− t̄ )2y

〉
−
τ3

σ2
〈(t− t̄ ) y〉 − σ2ȳ .



Therefore the weighted least squares fit is

f̂(t) =
〈p0(t) y〉
σ 2

0
p0(t) +

〈p1(t) y〉
σ 2

1
p1(t) +

〈p2(t) y〉
σ 2

2
p2(t)

= ȳ +
〈(t− t̄ ) y〉

σ2
(t− t̄ )

+

〈
(t− t̄)2y

〉
−
τ3

σ2
〈(t− t̄) y〉 − σ2ȳ

σ 2
2(

(t− t̄)2 −
τ3

σ2
(t− t̄)− σ2

)
.



Remark. Notice that we never had to explicitly solve a linear algebraic sys-
tem in our solution of the above example. This should be contrast with our
solution (given in an earlier example) of the simpler problem of fitting to the
model f(t;α, β) = α+βt. In fact, you should notice that a solution of that
earlier problem is contained within the solution of the above problem. This
contrast shows there is some value in constructing an orthogonal basis for
your model. We extend this idea in the next section.



5. Least Squares Fitting with Orthogonalization

We can generalize what we did for polynomial models to any linear model.
Let {fi(x)}mi=1 be a basis for some linear model. We can then use a
variant of the Gram-Schmidt algorithm to construct a new basis {gi(x)}mi=1
that is orthogonal with respect to the inner product

(g |h) = 〈g(x)h(x)〉 .
The fact that F has rank m implies that (· | ·) is an inner product over the
range of the model. We set g1(x) = f1(x) and for i ≥ 2 compute

gi(x) = fi(x)−
i−1∑
i′=1

〈fi(x) gi′(x)〉
〈gi′(x)2〉

gi′(x) .

We stop when i = m and set

f̂(x) =
m∑
i=1

β̂igi(x) , where β̂i =
〈gi(x) y〉
〈gi(x)2〉

.



Remark. This algorithm for generating the basis {gi(x)}mi=1 seems more
complicated than the algorithm we used to generate the basis {pi(t)}m−1

i=0
for univariate polynomial models. This is because the structure of those
polynomial models simplifies the more general algorithm.

If we set ŷj = f̂(xj) for every j = 1, · · · , n then the orthogonality relations
satisfied by {gi(x)}mi=1 imply

〈
(y − ȳ )2

〉
=
〈
(ŷ − ȳ )2

〉
+
〈
r̂2
〉

=
m∑
i=1

〈gi(x) (y − ȳ )〉2

〈gi(x)2〉
+
〈
r̂2
〉
.

This shows exactly how much
〈
r̂2
〉

will be reduced as m is increased.

Remark. Reducing
〈
r̂2
〉

does not always make the fit better. Indeed,
sometimes the fit can get worse. This is the phenomenon of overfitting.



Further Questions

We have seen how to use least squares to fit linear satistical models with
m parameters to data sets containing n pairs when m << n. Among the
questions that arise are the following.

• How does one pick a basis that is well suited to the given data?

• How can one avoid overfitting?

• Do these methods extended to nonlinear statistical models?

• Can one use other notions of smallness of the residual?


