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Main Problems

Main Problem
Input data: a weighted graph G = (V,W ) with n nodes.
Issues:

1 Decide how well the two random graph models explain the data.
2 Partition the graph into two communities.
3 Construct an embedding {y1, · · · , yn} ⊂ Rd such that

Wi ,j ∼ ϕ(‖yi − yj‖) for some monotonically decreasing function ϕ.

Typical weight functions:
1 Exponential model: ϕ(t) = Ce−t2 , for some C > 0.
2 Power law: ϕ(t) = C

tp , for some C > 0 and p > 0.
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Analysis

Three studies need to be done:
1 Random graph hypothesis: Sort edges by weight: from the largest

weight to the smallest weight. Then compare sample statistics of
3-cliques, 4-cliques with their expectations under the two stochastic
models, Erdös-Rényi and SSBM.

2 Community Detection/Partition/Image Segmentation: Two classes of
algorithms: spectral methods and SDP relaxations.

3 Embeddings: Laplacian eigenmaps: The geometric graph is obtained
by solving the bottom d + 1 eigenproblems for the normalized
symmetric Laplacian ∆̃ = I − D−1/WD−1/2. Additional algorithms:
LLE and ISOMAP.
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Distribution of Cliques
Expected Values

Let Xq denote the number of q-cliques in a random graph G . Then the
expectation of Xq in Gn,p class is

E[Xq] =
(

n
q

)
pq(q−1)/2

The expectation of Xq in the class Γn,m is approximated by the above
formula for p = 2m

n(n−1) :

E[Xq] ≈
(

n
q

)( 2m
n(n − 1)

)q(q−1)/2
∼ θq

mq(q−1)/2

nq(q−2)

E[X3] ∼ θm3

n3 , E[X4] ∼ θm6

n8
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3-Cliques and 4-cliques
Thresholds

Theorem
Let m = m(n) be the number of edges in Γn,m.

1 If m� n (i.e. limn→∞
m
n =∞) then

limn→∞ Prob[G ∈ Γn,m has a 3− clique]→ 1.
2 If m� n (i.e. limn→∞

m
n = 0) then

limn→∞ Prob[G ∈ Γn,m has a 3− clique]→ 0.

Theorem
Let m = m(n) be the number of edges in Γn,m.

1 If m� n4/3 (i.e. limn→∞
m

n4/3 =∞) then
limn→∞ Prob[G ∈ Γn,m has a 4− clique]→ 1.

2 If m� n4/3 (i.e. limn→∞
m

n4/3 = 0) then
limn→∞ Prob[G ∈ Γn,m has a 4− clique]→ 0.
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3-Cliques and 4-Cliques
Behavior at the threshold

In general we obtain a ”coarse threshold”. Recall a Poisson process X with
parameter λ has p.m.f. Prob[X = k] = e−λ λk

k! .

Theorem
In Gn,p,

1 For p = c
n , X3 is asymptotically Poisson with parameter λ = c3/6.

2 For p = c
n2/3 , X4 is asymptotically Poisson with parameter λ = c6/24.

Theorem
In Γn,m,

1 For m = cn, X3 is asymptotically Poisson with parameter λ = 4c3/3.
2 For m = cn4/3, X4 is asymptotically Poisson with parameter
λ = 8c6/3.
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Eigenvalues of Laplacians
∆, L, ∆̃

What do we know about the set of eigenvalues of these matrices for a
graph G with n vertices?

1 ∆ = ∆T ≥ 0 and hence its eigenvalues are non-negative real
numbers.

2 eigs(∆̃) = eigs(L) ⊂ [0, 2].
3 0 is always an eigenvalue and its multiplicity equals the number of

connected components of G ,
dim ker(∆) = dim ker(L) = dim ker(∆̃) = #connected components.

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of ∆̃. Denote
λ(G) = max

1≤i≤n−1
|1− λi |.

Note
∑n−1

i=1 λi = trace(∆̃) = n. Hence the average eigenvalue is about 1.
λ(G) is called the absolute gap and measures the spread of eigenvalues
away from 1.
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The spectral absolute gap
λ(G)

The main result in [9]) says that for connected graphs w/h.p.:

λ1 ≥ 1− C√
Average Degree

= 1− C√
p(n − 1)

= 1− C
√ n

2m .

Theorem (For class Gn,p)
Fix δ > 0 and let p > ( 1

2 + δ)log(n)/n. Let d = p(n − 1) denote the
expected degree of a vertex. Let G̃ be the giant component of the
Erdös-Rényi graph. For every fixed ε > 0, there is a constant C = C(δ, ε),
so that

λ(G̃) ≤ C√
d

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−d1/4log(n)).

Connectivity threshold: p ∼ log(n)
n .
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Average Degree

= 1− C√
p(n − 1)

= 1− C
√ n

2m .

Theorem (For class Γn,m)
Fix δ > 0 and let m > 1

2 ( 1
2 + δ)n log(n). Let d = 2m

n denote the expected
degree of a vertex. Let G̃ be the giant component of the Erdös-Rényi
graph. For every fixed ε > 0, there is a constant C = C(δ, ε), so that

λ(G̃) ≤ C√
d

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−d1/4log(n)).
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Isometric Embeddings with Partial Data
Linear constraints

Given any set of vectors {y1, · · · , yn} and their associated matrix
Y = [y1| · · · |yn] their invariant to the action of the rigid transformations
(translations, rotations, and reflections) is the Gram matrix of the centered
system:

G = (I − 1
n 1 · 1T )Y T Y (I − 1

n 1 · 1T ) =: LY T YL , L = I − 1
n 1 · 1T .

On the other hand, the distance between points i and j can be computed
by:

d2
i ,j = ‖yi − yj‖2 = Gi ,i − Gi ,j + Gj,j − Gj,i = eT

ij Geij

where
eij = δi − δj = [0 · · · 0 1 · · · − 1 0 · · · 0]T

where 1 is on position i , −1 is on position j , and 0 everywhere else.
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Almost Isometric Embeddings with Partial Data
The SDP Problem

Reference [10] proposes to find the matrix G by solving the following
Semi-Definite Program:

min
G = GT ≥ 0

G · 1 = 0
|〈Geij , eij〉 − d̃2

i ,j | ≤ ε , (i , j) ∈ Θ

trace(G)

where d̃2
i ,j are noisy estimates di ,j and ε is the maximum noise level. The

trace promotes low rank in this optimization. However, this is basically a
feasibility problem: Decrease ε to the minimum value where a feasible
solution exists. With probability 1 that is unique.
How to do this: Use CVX with Matlab.
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Geometric Graph Embedding
Gram matrix factorization: The Algorithm
Algorithm
Input: Symmetric n × n Gram matrix G.

1 Compute the eigendecomposition of G, G = QΛQT with diagonal of
Λ sorted in a descending order;

2 Determine the number d of significant positive eigevalues;
3 Partition

Q = [Q1 Q2] , and Λ =
[

Λ1 0
0 Λ2

]
where Q1 contains the first d columns of Q, and Λ1 is the d × d
diagonal matrix of significant positive eigenvalues of G.

4 Compute:
Y = Λ1/2

1 QT
1

Output: Dimension d and d × n matrix Y of vectors Y = [y1| · · · |yn]
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Nearly Isometric Embeddings with Partial Data
Stability to Noise

[10] proves the following stability result in the case of partial
measurements. Here we denote Θr = {(i , j) , ‖yi − yj‖ ≤ r} the set of all
pairs of points at distance at most r .

Theorem
Let {y1, · · · , yn} be n nodes distributed uniformly at random in the
hypercube [−0.5, 0.5]d . Further, assume that we are given noisy
measurement of all distances in Θr for some r ≥ 10

√
d(log(n)/n)1/d and

the induced geometric graph of edges is connected. Let d̃2
i ,j = d2

i ,j + νi ,j
with |νi ,j | ≤ ε. Then with high probability, the error distance between the
estimated Ŷ = [ŷ1, | · · · |ŷn] returned by the SDP-based algorithm and the
correct coordinate matrix Y = [y1| · · · |yn] is upper bounded as

‖LŶ T Ŷ L− LY T YL‖1 ≤ C1(nrd )5 ε

r 4 .

Conversely, w.h.p., there exist adversarial measurement errors {zi ,j}(i ,j)∈Θr
such that

‖LŶ T Ŷ L− LY T YL‖1 ≥ C2min(1, εr 4 ).

Here, C1 and C2 denote universal constants that depend only on d.

Radu Balan (UMD) MATH 420: Nonlinear modeling February 11, 2025



Problem Formulation Predictions in Random Graphs SDP-based Embedding Laplacian Eigenmaps Dimension Reduction Techniques

Optimization Criterion

Assume G = (V,W ) is a undirected weighted graph with n nodes and
weight matrix W .
We interpret Wi ,j as the similarity between nodes i and j . The larger the
weight the more similar the nodes, and the closer they are in a geometric
graph embedding.
Thus we look for a dimension d > 0 and a set of points
{y1, y2, · · · , yn} ⊂ Rd so that di ,j = ‖yi − yj‖’s is small for large weight
Wi ,j . This means we want to minimize

J(y1, y2, · · · , yn) =
∑

1≤i ,j≤n
Wi ,j‖yi − yj‖2,

To avoid trivial solution Y = 0 we impose a normalization condition:

YDY T = Id .
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The Optimization Problem

Combining the criterion with the constraint:

(LE ) : minimize trace
{

Y ∆Y T
}

subject to YDY T = Id

we obtained the Laplacian Eigenmap problem.

Good news: The optimizer Y is obtaind by solving an eigenproblem.
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Laplacian Eigenmaps Embedding
Algorithm

Algorithm (Laplacian Eigenmaps)
Input: Weight matrix W , target dimension d

1 Construct the diagonal matrix D = diag(Dii )1≤i≤n, where
Dii =

∑n
k=1 Wi ,k .

2 Construct the normalized Laplacian ∆̃ = I − D−1/2WD−1/2.
3 Compute the bottom d + 1 eigenvectors e1, · · · , ed+1, ∆̃ek = λkek ,

0 = λ1 · · ·λd+1.
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Laplacian Eigenmaps Embedding
Algorithm-cont’s

Algorithm (Laplacian Eigenmaps - cont’d)
4 Construct the d × n matrix Y ,

Y =

 e2
...

ed+1

D−1/2

5 The new geometric graph is obtained by converting the columns of Y
into n d-dimensional vectors:[

y1 | · · · | yn
]

= Y

Output: Set of points {y1, y2, · · · , yn} ⊂ Rd .
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Problem Formulation
Given: It is assumed that we are given a set of points {x1, · · · , xn} ⊂ RN ,
or a weight matrix W , where Wi ,j is inverse monotonically dependent to
distances ‖xi − xj‖; the smaller the distance ‖xi − xj‖ the larger the
weight Wi ,j .
Target: We look for a dimension d > 0 and a set of points
{y1, y2, · · · , yn} ⊂ Rd so that all di ,j = ‖yi − yj‖’s are compatible with the
raw data.
Approaches:

1 Principal Component Analysis
2 Independent Component Analysis
3 Laplacian Eigenmaps
4 Local Linear Embeddings (LLE)
5 Isomaps
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Principal Component Analysis
Algorithm

Algorithm (Principal Component Analysis)
Input: Data vectors {x1, · · · , xn} ∈ RN ; dimension d.

0 If affine subspace is the goal, append ’1’ at the end of each data
vector.

1 Compute the sample covariance matrix

R =
n∑

k=1
xkxT

k

2 Solve the eigenproblems Rek = σ2
kek , 1 ≤ k ≤ N, order eigenvalues

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N and normalize the eigenvectors ‖ek‖2 = 1.
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Principal Component Analysis
Algorithm - cont’ed

Algorithm (Principal Component Analysis)
3 Construct the co-isometry

U =

 eT
1
...

eT
d

 .
4 Project the input data

y1 = Ux1 , y2 = Ux2 , · · · , yn = Uxn.

Output: Lower dimensional data vectors {y1, · · · , yn} ∈ Rd .

The orthogonal projection is given by P =
∑d

k=1 ekeT
k and the optimal

subspace is V = Ran(P).
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Dimension Reduction using Laplacian Eigenmaps
Algorithm

Algorithm (Dimension Reduction using Laplacian Eigenmaps)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters: threshold τ ,
weight coefficient α, and dimension d.

1 Compute the set of pairwise distances ‖xi − xj‖ and convert them
into a set of weights:

Wi ,j =
{

exp(−α‖xi − xj‖2) if ‖xi − xj‖ ≤ τ
0 if otherwise

2 Compute the d + 1 bottom eigenvectors of the normalized Laplacian
matrix ∆̃ = I − D−1/2WD−1/2, ∆̃ek = λkek , 1 ≤ k ≤ d + 1,
0 = λ0 ≤ · · · ≤ λd+1, where D = diag(

∑n
k=1 Wi ,k)1≤i≤n.
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Dimension Reduction using Laplacian Eigenmaps
Algorithm - cont’d

Algorithm (Dimension Reduction using Laplacian Eigenmaps-cont’d)
3 Construct the d × n matrix Y ,

Y =

 eT
2
...

eT
d+1

D−1/2

4 The new geometric graph is obtained by converting the columns of Y
into n d-dimensional vectors:[

y1 | · · · | yn
]

= Y

Output: {y1, · · · , yn} ⊂ Rd .
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Dimension Reduction using Isomaps
Algorithm

Algorithm (Dimension Reduction using Isomap)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters:
neighborhood size K and dimension d.

1 Construct the symmetric matrix S of squared pairwise distances:
1 Construct the sparse matrix T , where for each node i find the nearest

K neighbors Vi and set Ti,j = ‖xi − xj‖2, j ∈ Vi .
2 For any pair of two nodes (i , j) compute di,j as the length of the

shortest path,
∑L

p=1 Tkp−1,kp with k0 = i and kL = j , using e.g.
Dijkstra’s algorithm.

3 Set Si,j = d2
i,j .

Radu Balan (UMD) MATH 420: Nonlinear modeling February 11, 2025



Problem Formulation Predictions in Random Graphs SDP-based Embedding Laplacian Eigenmaps Dimension Reduction Techniques

Dimension Reduction using Isomaps
Algorithm - cont’d

Algorithm (Dimension Reduction using Isomap - cont’d)
2 Compute the Gram matrix G:

ρ = 1
2n 1T · S · 1 , ν = 1

n (S · 1− ρ1)

G = 1
2ν · 1

T + 1
21 · νT − 1

2S

3 Find the top d eigenvectors of G, say e1, · · · , ed so that GE = EΛ,
form the matrix Y and then collect the columns:

Y = Λ1/2

 eT
1
...

eT
d

 =
[

y1 | · · · | yn
]

Output: {y1, · · · , yn} ⊂ Rd .
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