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Intro No Risk-Free With Risk-Free

Introduction (Means and Volatilities)
Consider portfolios built from N risky assets and possibly some risk-free
assets. Given a return history {r(d)}Dd=1 of the risky assets and positive
weights {wd}Dd=1 that sum to 1, define the return sample mean m and
sample variance V by

m =
D∑

d=1
wd r(d) , V =

D∑
d=1

wd
(
r(d)−m

) (
r(d)−m

)T
. (1.1)

A Markowitz portfolio with a risk-free return rrf and a risky asset
allocation f has the return mean and volatility estimators

µ̂ = rrf + mTf , σ̂ =
√

fTV f . (1.2)

Remark. The formulas for m and µ̂ are unbiased IID estimators, while
those for V and σ̂ are biased IID estimators. These biased estimators are
what arise naturally in what follows.
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Intro No Risk-Free With Risk-Free

Introduction
A Markowitz portfolio with a risk-free return rrf and a risky asset
allocation f is said to be solvent if

1 + rrf + r(d)Tf > 0 ∀d . (1.3)

Recall that rrf is given in terms of the allocations of any risk-free assets by

rrf =


0 when f ∈M ,

µrf f rf when (f, f rf) ∈M1 ,

µsif si + µclf cl when (f, f si, f cl) ∈M2 .

(1.4)

The Kelly objective for every solvent Markowitz portfolio is

γ̂ =
D∑

d=1
wd log

(
1 + rrf + r(d)Tf

)
. (1.5)
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Intro No Risk-Free With Risk-Free

Introduction

The Kelly strategy is to maximize γ̂ over a convex subset Π of all solvent
Markowitz allocations. This maximizer can be found numerically by convex
optimization methods that are typically covered in graduate courses.
Rather than seek the maximizer of γ̂ over Π, our strategy will be to
replace the estimator γ̂ with a new estimator for which finding the
maximizer is easier. The hope is that the maximizer of γ̂ and the
maximizer of the new estimator will be close.
This strategy rests upon the fact that γ̂ is itself an approximation. The
uncertainties associated with it will translate into uncertainities about its
maximizer. The hope is that the difference between the maximizer of γ̂
and that of the new estimator will be within these uncertainties.
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Intro No Risk-Free With Risk-Free

Introduction
We will derive some mean-variance estimators for γ in the form

γ̂ = G(σ̂, µ̂) , (1.6a)
where σ̂ and µ̂ are given by (1.2) and G(σ, µ) is a function that is defined
over a convex subset Σ of the σµ-plane over which

• G(σ, µ) is a strictly decreasing function of σ,
• G(σ, µ) is a strictly increasing function of µ,
• G(σ, µ) is a concave function of (σ, µ).

(1.6b)

The monotonicity properties insure that γ̂ is larger for more efficient
portfolios, which implies that if its maximizer over Π exists and has
(σ̂, µ̂) ∈ Σ then it will lie on the efficient frontier of Π. Some of these
estimators will satisfy the Jensen inequality bound

γ̂ ≤ log(1 + µ̂) . (1.7)
C. David Levermore (UMD) Kelly Objectives April 15, 2022



Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Introduction)
For simplicity we will start in the setting of solvent Markowitz portfolios
without risk-free assets. In that case the portfolio with allocation f ∈M
has the return mean and volatility estimators µ̂(f) and σ̂(f) given by

µ̂(f) = mTf , σ̂(f) =
√

fTV f . (2.8)

The set of solvent Markowitz allocations for portfolios without risk-free
assets is

Ω =
{

f ∈M : 1 + r(d)Tf > 0 ∀d
}
. (2.9)

For every f ∈ Ω the growth rate mean sample estimator is

γ̂(f) =
D∑

d=1
wd log

(
1 + r(d)Tf

)
. (2.10)

Our goal is to derive estimators for γ̂(f) that depend only on µ̂(f) and ξ̂(f).
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Quadratic Estimator)
A strategy introduced by Markowitz in his 1959 book is to estimate γ̂(f)
by using the second-order Taylor approximation of log(1 + r) for small r .
This approximation is

log(1 + r) ≈ r − 1
2 r2 . (2.11)

When it is used in (2.10) we obtain the quadratic estimator

γ̂q(f) =
D∑

d=1
wd

(
r(d)Tf − 1

2

(
r(d)Tf

)2
)

=
( D∑

d=1
wd r(d)

)T

f − 1
2 fT

( D∑
d=1

wd r(d) r(d)T
)

f

= mTf − 1
2 fT

(
mmT + V

)
f

= mTf − 1
2

(
mTf

)2
− 1

2 fTV f .

(2.12)
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Table)

Table 1. The first three Taylor polynomial approximations to log(1 + r).

r r − 1
2 r2 r − 1

2 r2 + 1
3 r3 log(1 + r)

−.5 −.62500 −.66667 −.69315
−.4 −.48000 −.50133 −.51083
−.3 −.34500 −.35400 −.35667
−.2 −.22000 −.22267 −.22314
−.1 −.10500 −.10533 −.10536
.0 .00000 .00000 .00000
.1 .09500 .09533 .09531
.2 .18000 .18267 .18232
.3 .25500 .26400 .26236
.4 .32000 .34133 .33647
.5 .37500 .41667 .40547
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Second-Order Taylor)

Table 1 shows that the second-order Taylor approximation to log(1 + r) is
within 1.5% when r ∈ (−1

5 ,
1
4), within 7.5% when r ∈ (−1

3 ,
1
2), and within

10% when r ∈ (−1
2 , 1). It is worse outside of these intervals.

Remark. This observation suggests that the quadratic estimator γ̂q(f)
given by (2.12) might only be trusted when the class of portfolio
allocations being considered lies within{

f ∈M : −1
3 ≤ r(d)Tf ≤ 1

2 ∀d
}
.

Such a restriction is usually satisfied by f ∈ Λ, but is often not satisfied by
highly leveraged portfolios. Careful investors who are highly leveraged do
not use the quadratic estimator.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Bounds)

Remark. The first-order and third-order Taylor approximations are upper
bounds because

log(1 + r) ≤ r for every r > −1 ,
log(1 + r) ≤ r − 1

2 r2 + 1
3 r3 for every r > −1 .

The second-order Taylor approximation is an upper bound for r ∈ (−1, 0)
and a lower bound for r > 0 because

log(1 + r) < r − 1
2 r2 for every r ∈ (−1, 0) ,

log(1 + r) > r − 1
2 r2 for every r > 0 .

These facts are reflected by the values given in Table 1.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Quadratic Estimator)

The quadratic estimator (2.12) is

γ̂q(f) = mTf − 1
2

(
mTf

)2
− 1

2 fTV f . (2.13a)

This has the mean-variance form (1.6a) with

Gq(σ, µ) = µ− 1
2 µ

2 − 1
2 σ

2 , (2.13b)

which has all the properties (1.6b) over the set

Σq =
{

(σ, µ) : σ ≥ 0 , µ ≤ 1
}
. (2.13c)

It does not satisfy the Jensen inequality bound (1.7).
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Parabolic Estimator)
Because it is often the case that(

mTf
)2

is much smaller than fTV f ,

it is tempting to drop the (mTf)2 term in (2.13). This leads to the
parabolic estimator

γ̂p(f) = mTf − 1
2 fTV f . (2.14a)

This has the mean-variance form (1.6a) with
Gp(σ, µ) = µ− 1

2 σ
2 , (2.14b)

which has all the properties (1.6b) over the set

Σp =
{

(σ, µ) : σ ≥ 0
}
. (2.14c)

Remark. While this estimator is commonly used, there are many times
when it is not good. It is particularly bad in a bubble. We will see that
using it can lead to overbetting at times when overbetting is very risky.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Estimator)
Another strategy is to use the second-order Taylor approximation of
log(1 + r) centered at µ̂ to estimate γ̂(f). Because µ̂ = mTf, this
approximation is

log(1 + r) ≈ log
(
1 + mTf

)
+ (r(d)−m)Tf

1 + mTf − 1
2

(
(r(d)−m)Tf

)2
(1 + mTf)2 .

When this approximation is used in (2.10) we obtain the Taylor estimator

γ̂t(f) = log
(

1 + mTf
)
− 1

2
fTV f

(1 + mTf)2 , (2.15a)

which is defined over the set

Ωt =
{

f ∈ RN : 1 + mTf > 0
}
. (2.15b)

This set contains Ω, the set of allocations for solvent Markowitz portfolios
without risk-free assets.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Estimator)

The Taylor estimator (2.15a) is

γ̂t(f) = log
(

1 + mTf
)
− 1

2
fTV f

(1 + mTf)2 . (2.16a)

This has the mean-variance form (1.6a) with

Gt(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 , (2.16b)

which has all the properties (1.6b) over the set

Σt =
{

(σ, µ) : 1 + µ > 0 , 1 + µ ≥ σ ≥ 0
}
. (2.16c)

It satisfies the Jensen inequality bound (1.7).
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Estimator)

The Taylor estimator γ̂t(f) given by (2.15a) is not concave over the set Ωt
given by (2.15a) on which it is defined. Moreover, it does not generally
have a maximum over Ωt. This makes it a poor replacement for γ̂(f) as an
objective function over the entire set Ω, which is contained within Ωt.
The Hessian of γ̂t(f) over Ωt is

∇2
f γ̂t(f) = − m mT + V

(1 + mTf)2 + 2V f mT + m fTV
(1 + mTf)3 − 3 fTV f m mT

(1 + mTf)4 .

C. David Levermore (UMD) Kelly Objectives April 15, 2022



Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Hessian)
This can be expressed as

∇2
f γ̂t(f) = −

(
1− fTV f

(1 + mTf)2

)
m mT

(1 + mTf)2

− V
(1 + mTf)2 + 2 V f mT + m fTV

(1 + mTf)3 − 4 fTV f m mT

(1 + mTf)4 .

= −
(

1− fTV f
(1 + mTf)2

)
m mT

(1 + mTf)2

−
(

I− 2 f mT

1 + mTf

)T V
(1 + mTf)2

(
I− 2 f mT

1 + mTf

)
.

(2.17)

This is clearly nonpositive definite over the set

Πt =
{

f ∈ RN :
√

fTV f ≤ 1 + mTf
}
. (2.18)
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Hessian)
Fact 1. If V is positive definite then the Hessian ∇2

f γ̂t(f) is negative
definite for some f ∈ Πt if and only if either

mTf 6= 1 or f is in the interior of Πt .

Proof. Let f ∈ Πt. From (2.17) and (2.18) we see for any y ∈ RN that

yT∇2
f γ̂t(f) y = 0

if and only if (
1− fTV f

(1 + mTf)2

) (
mTy

)2
= 0 , (2.19a)

and

yT
(

I− 2 f mT

1 + mTf

)T

V
(

I− 2 f mT

1 + mTf

)
y = 0 . (2.19b)
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Hessian)
If f satisfies mTf 6= 1 then(

I− 2 f mT

1 + mTf

)−1

= I + 2 f mT

1−mTf ,

whereby (2.19b) alone implies that y = 0.
If f is in the interior of Πt then we see from (2.18) that

1− fTV f
(1 + mTf)2 > 0 ,

whereby (2.19a) implies that mTy = 0, which then implies that (2.19b)
reduces to yTV y = 0, which implies that y = 0.
Therefore the Hessian is negative definite because

yT∇2
f γ̂t(f) y = 0 =⇒ y = 0 .
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Hessian)
Conversely, suppose that

mTf = 1 and f is not in the interior of Πt .

Because f is not in the interior of Πt, we see from (2.18) that

1− fTV f
(1 + mTf)2 = 0 ,

whereby (2.19a) is satisfied for every y ∈ RN .
Because mTf = 1, we know f 6= 0. Moreover, (2.19b) is satisfied by y = f.
Because both (2.19a) and (2.19b) are satisfied, we have shown that

fT∇2
f γ̂t(f) f = 0 and f 6= 0 ,

whereby the Hessian is not negative definite.
Both directions of Fact 1 have now been proved.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Taylor Domain)

Remark. The set Πt defined by (2.18) is convex. Indeed, if f0, f1 ∈ Πt
and we set ft = (1− t)f0 + tf1 then for every t ∈ (0, 1) then we have

fTt V ft = (1− t)2fT0 V f0 + 2t(1− t)fT0 V f1 + t2fT1 V f1

≤ (1− t)2fT0 V f0 + 2t(1− t)
√

fT0 V f0

√
fT1 V f1 + t2fT1 V f1

=
(

(1− t)
√

fT0 V f0 + t
√

fT1 V f1

)2

≤
(

(1− t)(1 + mTf0) + t (1 + mTf1)
)2

= (1 + mTft)2 .

The constraint for the set Πt can be expressed as a linear constraint
0 < 1 + mTf plus a quadratic constraint fTV f ≤ (1 + mTf)2. This
quadratic constraint can become nondefinite and thereby harder to use.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Reasonable Estimator)
We now introduce an estimator with better properties that uses the first
term from the Taylor estimator (2.15a) and the volatility term from the
quadratic estimator (2.12). This leads to the reasonable estimator

γ̂r(f) = log
(
1 + mTf

)
− 1

2 fTV f , (2.20a)

which is also defined over the set Ωr = Ωt given by (2.15b). This has the
mean-variance form (1.6a) with

Gr(σ, µ) = log(1 + µ)− 1
2 σ

2 , (2.20b)

which has all the properties (1.6b) over the set

Σr =
{

(σ, µ) : σ ≥ 0 , 1 + µ > 0
}
. (2.20c)

It satisfies the Jensen inequality bound (1.7).
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)
Another growth rate mean estimator with good properties can be obtained
by a different modification of (2.15) — namely, the sensible estimator

γ̂s(f) = log
(

1 + mTf
)
− 1

2
fTV f

1 + mTf , (2.21a)

which is also defined over the set Ωs = Ωt given by (2.15b). This has the
mean-variance form (1.6a) with

Gs(σ, µ) = log(1 + µ)− 1
2

σ2

1 + µ
, (2.21b)

which has all the properties (1.6b) over the set

Σs =
{

(σ, µ) : σ ≥ 0 , 1 + µ > 0
}
. (2.21c)

It satisfies the Jensen inequality bound (1.7).
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)

Fact 2. γ̂s(f) is strictly concave over the set Ωs.
Proof of Fact 2. We will show that γ̂s(f) is the sum of two functions,
one of which is concave and the other of which is strictly concave over Ωs.

The function log
(

1 + mTf
)

is infinitely differentiable over Ωs with

∇f log
(

1 + mTf
)

= m
1 + mTf ,

∇2
f log

(
1 + mTf

)
= − m mT

(1 + mTf)2 .

Because its Hessian is nonpositive definite, the function log
(
1 + mTf

)
is

concave over Ωs.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)

The harder part of the proof of Fact 2 is to show that

1
2

fTV f
1 + mTf is strictly convex over Ωs . (2.22)

This function is infinitely differentiable over Ωs with

∇f

(
1
2

fTV f
1 + mTf

)
= V f

1 + mTf −
1
2

(fTV f) m
(1 + mTf)2

∇2
f

(
1
2

fTV f
1 + mTf

)
= V

1 + mTf −
V f mT + m fTV

(1 + mTf)2 + (fTV f) m mT

(1 + mTf)3 .

We will show this Hessian is negative definite by using two general facts
that we will state and prove before finishing the proof of Fact 2.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)

Fact 3. Let b, x ∈ RN such that 1 + bTx > 0. Then I + x bT is invertible
with (

I + x bT)−1 = I− x bT

1 + bTx . (2.23)

Proof of Fact 3. Just check that

(
I + x bT)(I− x bT

1 + bTx

)
=
(
I + x bT)− (I + x bT)x bT

1 + bTx

= I + x bT − x bT + x bTx bT

1 + bTx

= I + x bT − 1 + bTx
1 + bTx x bT = I .

The assertions of Fact 3 then follow.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)

Fact 4. Let A ∈ RN×N be symmetric and positive definite. Let b ∈ RN .
Let X be the half-space given by

X =
{

x ∈ RN : 1 + bTx > 0
}
.

Then
φ(x) = 1

2
xTA x

1 + bTx is strictly convex over X .

Proof of Fact 4. The function φ(x) is infinitely differentiable over X with

∇x φ(x) = A x
1 + bTx −

1
2

(xTA x) b
(1 + bTx)2 ,

∇2
x φ(x) = A

1 + bTx −
A x bT + b xTA

(1 + bTx)2 + (xTA x) b bT

(1 + bTx)3 .
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)

Then, by using (2.23) of Fact 3, the Hessian can be expressed as

∇2
x φ(x) =

(
I− b xT

1 + bTx

)
A

1 + bTx

(
I− x bT

1 + bTx

)

=
(
I + x bT

)−T A
1 + bTx

(
I + x bT

)−1
.

Because A is positive definite and 1 + bTx > 0 for every x ∈ X, this shows
that ∇2

x φ(x) is positive definite for every x ∈ X. Therefore φ(x) is strictly
convex over X, thereby proving Fact 4.
Proof of Fact 2 Finish. By setting A = V and b = m in Fact 4 and
using the fact that the negative of a strictly convex function is strictly
concave, we establish (2.23), thereby finishing the proof of Fact 2.
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Intro No Risk-Free With Risk-Free

Portfolios with no Risk-Free Assets (Sensible Estimator)
Remark. By setting A = αV and b = βm in Fact 4 for any positve α
and β and using the fact that the negative of a strictly convex function is
strictly concave, the sensible estimator (2.21a) can be extended to a
family in the form

γ̂αβ(f) = log
(

1 + mTf
)
− 1

2
α fTV f

1 + βmTf .

This has the mean-variance form (1.6a) with

Gαβ(σ, µ) = log(1 + µ)− 1
2

ασ2

1 + β µ
,

which has all the properties (1.6b) over the set

Σαβ =
{

(σ, µ) : σ ≥ 0 , 1 + µ > 0 , 1 + β µ > 0
}
.

It satisfies the Jensen inequality bound (1.7).
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Intro No Risk-Free With Risk-Free

Portfolios with Risk-Free Assets

We now extend the estimators derived in the last section to solvent
Markowitz portfolios with risk-free assets. Specifically, for a portfolio with
risk-free return rrf and risky asset allocation f we will use the sample
estimator γ̂ to derive new estimators of γ in terms of the return mean and
volatility estimators given by

µ̂ = rrf + mTf , σ̂ =
√

fTV f , (3.24)

where m and V are given by

m =
D∑

d=1
wd r(d) , V =

D∑
d=1

wd
(
r(d)−m

) (
r(d)−m

)T
. (3.25)

These new return mean-variance estimators of γ will allow us to work
within the framework of Markowitz portfolio theory.
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Intro No Risk-Free With Risk-Free

Portfolios with Risk-Free Assets
The portfolio with risk-free return rrf and risky asset allocation f has the
return history {r(d)}Dd=1 with

r(d) = µ̂(f) + r̃(d)Tf ,

where r̃(d) = r(d)−m. In words, r̃(d) is the deviation of r(d) from its
sample mean m. Then we can write

log(1 + r(d)) = log(1 + µ̂) + r̃(d)Tf
1 + µ̂

−
(

r̃(d)Tf
1 + µ̂

− log
(

1 + r̃(d)Tf
1 + µ̂

))
.

(3.26)

Notice that the last term on the first line has sample mean zero while the
concavity of the function r 7→ log(1 + r) implies that r − log(1 + r) ≥ 0,
which implies that the term on the second line is nonpositive.
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Intro No Risk-Free With Risk-Free

Portfolios with Risk-Free Assets

Therefore by taking the sample mean of (3.26) we obtain

γ̂ =
D∑

d=1
wd log(1 + r(d))

= log(1 + µ̂)−
D∑

d=1
wd

(
r̃(d)Tf
1 + µ̂

− log
(

1 + r̃(d)Tf
1 + µ̂

))
.

(3.27)

The last sum will be positive whenever f 6= 0 and V is positive definite.
Remark. By dropping the last term in the foregoing calculation we get an
alternative proof of the Jensen inequality bound, which was originally
proved using the Jensen inequality. Indeed, (3.27) can be viewed as an
improvement upon that bound.
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We can estimate γ̂ using the second-order Taylor approximation of
log(1 + r) for small r . This approximation is

log(1 + r) ≈ r − 1
2 r2 . (3.28)

When this approximation is used inside the sum of (3.27) we obtain

γ̂ ≈ log(1 + µ̂)− 1
2

D∑
d=1

wd

( r̃(d)Tf
1 + µ̂

)2
.

This leads to the Taylor estimator

γ̂t = log
(
1 + µ̂

)
− 1

2
fTV f

(1 + µ̂)2 . (3.29)

While this estimator is defined over 1 + µ̂ > 0, it is strictly concave where
in addition √

fTVf ≤ 1 + µ̂ . (3.30)
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We can derive other estimators from the Taylor estimator.
The analog of the sensible estimator (2.21a) is

γ̂s = log(1 + µ̂)− 1
2

fTV f
1 + µ̂

over 1 + µ̂ > 0 . (3.31a)

The analog of the reasonable estimator (2.20a) is

γ̂r = log(1 + µ̂)− 1
2 fTV f over 1 + µ̂ > 0 . (3.31b)

The analog of the quadratic estimator (2.13a) is

γ̂q = µ̂− 1
2 µ̂

2 − 1
2 fTV f over µ̂ ≤ 1 . (3.31c)

The analog of the parabolic estimator (2.14a) is

γ̂p = µ̂− 1
2 fTV f . (3.31d)
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The derivations of these estimators each assume that |µ̂| � 1.
The sensible estimator (3.31a) derives from the Taylor estimator
(3.29) by replacing the (1 + µ̂)2 in the denominator under fTV f
with 1 + µ̂.
The reasonable estimator (3.31b) derives from the sensible estimator
(3.31a) by dropping the µ̂ term in the denominator under fTV f.
The quadratic estimator (3.31c) derives from the reasonable estimator
(3.31b) by replacing log(1 + µ̂) with its second-order Taylor
polynomial approximation µ̂− 1

2 µ̂
2. The result is an increasing

function of µ̂ when µ̂ ≤ 1.
The parabolic estimator (3.31d) derives from the quadratic estimator
(3.31c) by making the additional assumption that µ̂2 � fTV f and
dropping the µ̂2 term.

C. David Levermore (UMD) Kelly Objectives April 15, 2022



Intro No Risk-Free With Risk-Free

Portfolios with Risk-Free Assets

The parabolic, quadratic, reasonable, sensible and Taylor estimators each
have the mean-variance form (1.6a) with G(σ, µ) and Σ given by

Gp(σ, µ) = µ− 1
2 σ

2 over σ ≥ 0 ; (3.32a)

Gq(σ, µ) = µ− 1
2 µ

2 − 1
2 σ

2 over σ ≥ 0, µ ≤ 1 ; (3.32b)

Gr(σ, µ) = log(1 + µ)− 1
2 σ

2 over σ ≥ 0, 1 + µ > 0 ; (3.32c)

Gs(σ, µ) = log(1 + µ)− 1
2

σ2

1 + µ
over σ ≥ 0, 1 + µ > 0 ; (3.32d)

Gt(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 over
{

1 + µ ≥ σ ≥ 0 ,
1 + µ > 0 . (3.32e)

The properties (1.6b) hold over the given domain Σ for each estimator.
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The functions G(σ, µ) and domains Σ given by (3.32) are identical to
those that arose for the case with no risk-free assets.
The reasonable, sensible and Taylor estimators given by (3.32c), (3.32d),
and (3.32e) respectively each satisfy the Jensen inequality bound (1.7).
The quadratic and parabolic estimators given by (3.32a) and (3.32b)
respectively each satisfy analogs of the Jensen inequality bound obtained
by replacing the log(1 + µ̂) in it by an appropriate Taylor approximation.
The parabolic, quadratic, reasonable and sensible estimators given by
(3.32a), (3.32b), (3.32c) and (3.32d) respectively are each strictly concave
functions with a unique global maximizer over the allocation domain over
which it is defined.
The Taylor estimator (3.32e) is strictly concave with a unique maximizer
over the allocation domain that satisfies the additional condiition (3.30).
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