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Introduction

Consider portfolios built from N risky assets and possibly some risk-free
assets. If the risky assets are modeled by an IID process then the law of
large numbers suggests that the optimal portfolio is selected by the Kelly
criterion, which is to maximize the expected growth rate over a set of
portfolios.
We saw in the context of a simple game that this Kelly strategy was not
optimal when faced with imperfect knowledge about the game. This led to
a discussion of how fractional Kelly strategies might compensate for such
uncertainty about the game.
Here we begin to apply these ideas to Markowitz portfolios. More
specifically, here we will set aside our concerns about uncertainty and
develop the Kelly strategy as if our estimators are exact. Later we will
show how fractional Kelly strategies emerge when addressing uncertainty.
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Kelly for IID Models (Introduction)

We start by reviewing the form the Kelly strategy takes in the setting of
an IID model for the returns of risky assets. More specifically, we review
the functional form that growth rate means take for Markowitz portfolios.
It is these functions that the Kelly strategy seeks to maximize.
An IID model for the returns of the N risky assets draws a sample
{Rd}Dd=1 from a probability density q(R) over (−1,∞)N . These random
variables have mean vector µ and covariance matrix Ξ given by

µ = Ex(R) =
∫

R q(R) dR ,

Ξ = Vr(R) = Ex
(

(R− µ) (R− µ)T
)

=
∫

(R− µ) (R− µ)T q(R) dR .

(2.1)
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Kelly for IID Models (Returns)

Given the IID sample {Rd}Dd=1, a Markowitz portfolio with risky asset
allocation f has the IID return sample {Rd}Dd=1 given by

Rd = rrf + RT
d f for every d ∈ {1, 2, · · · ,D} , (2.2a)

where the risk-free return rrf is given by

rrf =


0 when f ∈M ,

µrf f rf when (f, f rf) ∈M1 ,

µsif si + µclf cl when (f, f si, f cl) ∈M2 .

(2.2b)

These random variables have mean µ and variance ξ given by

µ = Ex(R) = rrf + µTf , ξ = Vr(R) = fTΞ f . (2.3)
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Kelly for IID Models (Growth Rates)
The portfolio is said to be solvent over the IID return sample {Rd}Dd=1 if

1 + Rd > 0 for every d ∈ {1, 2, · · · ,D} . (2.4)

Every solvent portfolio has the IID growth rate sample {Xd}Dd=1 given by

Xd = log(1 + Rd ) for every d ∈ {1, 2, · · · ,D} . (2.5)

These random variables have mean γ and variance θ given by

γ = Ex(X ) = Ex
(

log(1 + R)
)

= Ex
(

log
(

1 + rrf + RTf
))

,

θ = Vr(X ) = Ex
(

(X − γ)2
)

= Ex
((

log(1 + R)− γ
)2) = Ex

((
log
(

1 + rrf + RTf
)
− γ

)2
)
.

(2.6)

These cannot be expressed exactly in terms of µ and ξ.
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Kelly for IID Models (Questions)

The Kelly strategy is to select the portfolio that maximizes the growth
rate mean γ given by (2.6) over a set Π of portfolio allocations. This
strategy raises several questions.

1 Does such a maximum exist over the set of portfolio allocations being
considered? If such a maximum exists, is there a unique maximizer?

2 How can an estimator γ̂ for γ be built from a sample {Rd}∞d=1?
3 How should the set of portfolio allocations being considered depend

upon the estimator γ̂?
4 Does the estimator γ̂ have a unique maximizer over the set of

portfolio allocations being considered?
5 How close is the maximizer of γ̂ to that of γ?
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Kelly for IID Models (Plan)

These questions will be addressed in upcoming sets of slides.
The existence and uniqueness of maximizers raised by questions 1 and
4 will be addressed by showing that the continuous objective
functions are strictly concave over the convex set Π and cannot have
a maximum outside of a compact subset of Π.
Several estimators γ̂ will be built and analyzed. Appropriate sets of
portfolio allocations will be identified for each, thereby addressing
questions 2 and 3.
Explicit maximizers for some of these estimators will be constructed
for certain sets of Markowitz portfolios, some without risk-free assets,
some with the one-rate model, and others with the two-rate model.
Comparing these will begin to address question 5.
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Sample Estimators (Means and Variances)
When an IID model is used for the returns of risky assets, we treat a
return history {r(d)}Dd=1 as if, or almost as if it was an IID sample drawn
from an unknown probability density. We then choose positive weights
{wd}Dd=1 that sum to 1 and set

m =
D∑

d=1
wd r(d) , V =

D∑
d=1

wd
(
r(d)−m

) (
r(d)−m

)T
. (3.7)

The return mean µ and return variance Ξ given by (2.1) for the underlying
probability density then have the unbiased estimators

µ̂ = m , Ξ̂ = 1
1− w̄ V where w̄ =

D∑
d=1

w 2
d . (3.8)

If we have great confidence in the validity if the IID model then we would
choose uniform weights. We might choose nonuniform weights if we think
that older data is less informative than more recent data.
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Sample Estimators (Markowitz Portfolios)

The Markowitz portfolio with the risk-free return rrf and the risky asset
allocation f has the return history {r(d)}Dd=1 given by

r(d) = rrf + r(d)Tf , (3.9)

where rrf is given in terms of the risk-free asset allocations by (2.2b).
We see from the unbiased estimators for µ and Ξ given by (3.8) that the
return mean µ and return variance ξ given by (2.3) for this portfolio have
the unbiased estimators

µ̂ = rrf + mTf , ξ̂ = 1
1− w̄ fTV f . (3.10)

C. David Levermore (UMD) Kelly Objectives April 15, 2022



Intro Kelly for IID Sample Estimators One Rate Two Rate

Sample Estimators (Growth Rate Means)

It is evident from the definition of a solvent portfolio given by (2.4) that
the Markowitz portfolio with the risk-free return rrf and the risky asset
allocation f is solvent with respect to the return histroy {r(d)}Dd=1 provided

1 + rrf + r(d)Tf > 0 for every d ∈ {1, 2, · · · ,D} . (3.11)

The growth rate mean γ given by (2.6) for such a portfolio then has the
unbiased estimator

γ̂ =
D∑

d=1
wd log

(
1 + rrf + r(d)Tf

)
. (3.12)

Clearly the solvency condition (3.11) is both necessary and sufficient for γ̂
given by (3.12) to be defined.
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Sample Estimators (Solvent Allocations)
More specifically, given the return history {r(d)}Dd=1, we see from (2.2)
and (3.11) that associated with the sets of Markowitz allocations

M =
{

f ∈ RN : 1Tf = 1
}
,

M1 =
{

(f, f rf) ∈ RN+1 : 1Tf + f rf = 1
}
, (3.13)

M2 =
{

(f, f si, f cl) ∈ RN+2 : 1Tf + f si + f cl = 1 , f si ≥ 0 , f cl ≤ 0
}
,

are the sets of solvent Markowitz allocations

Ω =
{

f ∈M : 1 + r(d)Tf > 0 ∀d
}
,

Ω1 =
{

(f, f rf) ∈M1 : 1 + µrf f rf + r(d)Tf > 0 ∀d
}
, (3.14)

Ω2 =
{

(f, f si, f cl) ∈M2 : 1 + µsif si + µclf cl + r(d)Tf > 0 ∀d
}
,
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Sample Estimators (Growth Rate Means)
We then see from (3.12) that for every f ∈ Ω we have

γ̂(f) =
D∑

d=1
wd log

(
1 + r(d)Tf

)
, (3.15a)

for every (f, f rf) ∈ Ω1 we have

γ̂(f, f rf) =
D∑

d=1
wd log

(
1 + µrf f rf + r(d)Tf

)
, (3.15b)

and for every (f, f si, f cl) ∈ Ω2 we have

γ̂(f, f si, f cl) =
D∑

d=1
wd log

(
1 + µsif si + µclf cl + r(d)Tf

)
. (3.15c)
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Sample Estimators (Convexity)

We now give some facts about the sets Ω, Ω1 and Ω2 defined by (3.14)
and the functions γ̂ defined over them by (3.15).
Fact 1. The sets Ω, Ω1 and Ω2 defined by (3.14) are open, convex
subsets of the sets M, M1 and M2 given by (3.13) respectively.
Proof. Each solvency constraint in the definitions (3.14) of Ω, Ω1 and Ω2
has the general form

1 + rrf + r(d)Tf > 0 for some d ,

which describes an open convex subset of M, M1 and M2 respectively.
Beacuse Ω, Ω1 and Ω2 are the intersections of their constraints, they are
open convex subsets of M, M1 and M2 respectively.
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Sample Estimators (Jensen Inequality Bound)

The growth rate mean estimators given by (3.15) derive from the general
form (3.12), which is

γ̂ =
D∑

d=1
wd log

(
1 + rrf + r(d)Tf

)
.

Because log(1 + r) is a concave function of r over (−1,∞), we can apply
the Jensen inequality to this general form to obtain the following.
Fact 2. The growth rate mean estimator γ̂ given by (3.12) and the return
mean estimator given by (3.10) are related by the Jensen inequality bound

γ̂ ≤ log(1 + µ̂) . (3.16)

We will prove this bound after reviewing the Jensen inequality.
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Sample Estimators (Jensen Inequality)

Jensen Inequality. Let g(z) be a convex (concave) function over an
interval [a, b]. Let the points {zd}Dd=1 lie within [a, b]. Let {wd}Dd=1 be
nonnegative weights that sum to one. Then

g(z̄) ≤ g(z)
(

g(z) ≤ g(z̄)
)
, (3.17a)

where

z̄ =
D∑

d=1
zd wd , g(z) =

D∑
d=1

g(zd ) wd . (3.17b)

Remark. There is an integral version of the Jensen inequality that we do
not give here because we do not need it.
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Sample Estimators (Jensen Proof)
Proof of the Jensen Inequality. We consider the case when g(z) is
convex and differentiable over [a, b]. Then for every z̄ ∈ [a, b] we have

g(z) ≥ g(z̄) + g ′(z̄)(z − z̄) for every z ∈ [a, b] .

This inequality simply says that the tangent line to the graph of g at z̄ lies
below the graph of g over [a, b]. Let z̄ be given by (3.17b). By then
setting z = zd in the above inequality, multiplying both sides by wd , and
summing over d we obtain

g(z) =
D∑

d=1
g(zd ) wd ≥

D∑
d=1

(
g(z̄) + g ′(z̄)(zd − z̄)

)
wd

= g(z̄)
D∑

d=1
wd + g ′(z̄)

( D∑
d=1

(
zd − z̄

)
wd

)
= g(z̄) .

This proves the Jensen inequality (3.17a).
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Sample Estimators (Fact 2 Proof)

Proof of Fact 2. Let the Markowitz portfolio with the risk-free return rrf
and the risky asset allocation f be solvent. This implies by (3.11) that the
set of points {rrf + r(d)Tf}Dd=1 lies within an interval [a, b] ⊂ (−1,∞).
Because log(1 + r) is a concave function of r over (−1,∞), definition
(3.12) of γ̂, the Jensen inequality (3.17) applied to g(z) = log(1 + z) with
zd = rrf + r(d)Tf, and definition (3.10) of µ̂ yield

γ̂ =
D∑

d=1
wd log

(
1 + rrf + r(d)Tf

)

≤ log
(

1 +
D∑

d=1
wd

(
1 + rrf + r(d)Tf

))
= log(1 + µ̂) .

This establishes the bound (3.16), whereby Fact 2 is proved.
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Sample Estimators (Continuity and Concavity)

Fact 3. The γ̂ given by (3.15) are continuous, concave functions over the
convex sets Ω, Ω1 and Ω2 respectively.
Proof. Because log(y) is continuous and concave over y > 0, we see that
the γ̂ given by (3.15) are sums of continuous, concave functions over the
convex sets Ω, Ω1 and Ω2 respectively. Therefore the γ̂ given by (3.15) are
continuous, concave functions over the convex sets Ω, Ω1 and Ω2
respectively.
Later we will show the following.
Fact 4. If V is positive definite then the γ̂ given by (3.15) are strictly
concave functions over Ω, Ω1 and Ω2 respectively.
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Sample Estimators (Allocations Π)

The set Π of portfolio allocations considered can be a convex subset of
either Ω, Ω1 or Ω2 depending on how risk-free assets are modeled.

For portfolios with no risk-free assets we consider some convex set
Π ⊂ Ω. In this case the Kelly objective γ̂ is given by (3.15a).
For portfolios with risk-free assets then for the one rate model we
consider some convex set Π ⊂ Ω1. In this case the Kelly objective γ̂ is
given by (3.15b).
For portfolios with risk-free assets then for the two rate model we
consider some convex set Π ⊂ Ω2. In this case the Kelly objective γ̂ is
given by (3.15c).
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Sample Estimators (Maximizer)
We have the following general considerations regarding the existence and
uniqueness of a maximizer for the Kelly objective γ̂ over the convex set Π.

By Fact 4 if V is positive definite then γ̂ is strictly concave over the
convex set Π, whereby if γ̂ has a maximizer over Π then it is unique.
If Π is a compact set then the Extreme-Value Theorem insures the
existence of a maximizer because γ̂ is continuous over Π by Fact 3.
For example, Π can be a set of long allocations (like Λ or Λ1), a set of
limited-leverage allocations (like Π`, Π`

1 or Π`
2 with ` small enough

that the portfolios are solvent), or some other compact, convex set.
If Π is not a compact set then some analysis needs to be done to
show that a maximizer exists.

If Π is not closed then we must check the behavior of γ̂ near boundary
points of Π that are not in Π.
If Π is not bounded then we must check the behavior of γ̂ for
unbounded sequences in Π.
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Sample Estimators (Example)

Example. For many return historys {r(d)}Dd=1 the set Ω will be bounded.
Suppose that we are in that case and that Π = Ω. The definition of Ω
given in (3.14) implies that if {fn}∞n=1 is a sequence in Ω that approaches
a boundary point of Ω then there will be at least one d for which

1 + r(d)Tfn ↘ 0 as n→∞ .

For every such d we have

log
(

1 + r(d)Tfn
)
→ −∞ as n→∞ .

It follows from (3.15a) that γ̂(fn)→ −∞ as n→∞ for this sequence.
Because γ̂(f) is continuous over the bounded set Ω and goes to −∞ as f
approaches the boundary of Ω, it follows that γ̂(f) has a maximizer in Ω.
Because γ̂(f) is strictly concave over Ω, this maximizer is unique.
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One Risk-Free Rate Model (Introduction)
Here we will prove Fact 4 for the one risk-free rate model. As a bonus, we
will also prove it for portfolios with no risk-free assets. Rather than
working in M1 given by (3.13), we will use the constraint 1Tf + f rf = 1 to
eliminate f rf and work in M+ = RN . The set of solvent allocations is

Ω+ =
{

f ∈M+ : 1 + µrf + (r(d)− µrf1)Tf > 0 ∀d
}
. (4.18)

The growth rate mean estimator (3.15b) then becomes

γ̂(f) =
D∑

d=1
wd log

(
1 + µrf + (r(d)− µrf1)Tf

)
. (4.19)

The case of portfolios with no risk-free assets is included because

Ω =
{

f ∈ Ω+ : 1Tf = 1
}
,

and γ̂(f) given by (4.19) agrees with γ̂(f) given by (3.15a) on this set.
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One Risk-Free Rate Model (Derivatives)

Because γ̂(f) given by (4.19) is

γ̂(f) =
D∑

d=1
wd log

(
1 + µrf + (r(d)− µrf1)Tf

)
,

we see that it is an infinitely differentiable function of f over Ω+ with

∇f γ̂(f) =
D∑

d=1
wd

r(d)− µrf1
1 + µrf + (r(d)− µrf1)Tf ,

∇2
f γ̂(f) = −

D∑
d=1

wd
(r(d)− µrf1) (r(d)− µrf1)T
(1 + µrf + (r(d)− µrf1)Tf)2 .

(4.20)
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One Risk-Free Rate Model (Hessian Matrix)

The Hessian matrix ∇2
f γ̂(f) has the following properties.

Fact 5. Let f ∈ Ω+ be arbitrary.
The matrix ∇2

f γ̂(f) is nonpositive definite.
The matrix ∇2

f γ̂(f) is negative definite if and only if

the vectors {r(d)− µrf1}Dd=1 span RN . (4.21)

Remark. Fact 5 implies that γ̂(f) is concave over Ω+, which was already
proven in Fact 3. Moreover, it implies that γ̂(f) is strictly concave over
Ω+ when the vectors {r(d)− µrf1}Dd=1 span RN . Because this condition
holds when V is positive definite, Fact 4 will follow from Fact 5.
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One Risk-Free Rate Model (Fact 5 Proof)
Proof of Fact 5. Let f ∈ Ω+ be arbitrary. Then for every y ∈ RN we see
from (4.20) that

yT∇2
f γ̂(f) y = −

D∑
d=1

wd
yT(r(d)− µrf1) (r(d)− µrf1)Ty

(1 + µrf + (r(d)− µrf1)Tf)2

= −
D∑

d=1
wd

(
(r(d)− µrf1)Ty

)2

(1 + µrf + (r(d)− µrf1)Tf)2 ≤ 0 .

Therefore ∇2
f γ̂(f) is nonpositive definite. Moreover, we see that

yT∇2
f γ̂(f) y = 0 ⇐⇒

(
r(d)− µrf1

)Ty = 0 ∀d .

Therefore ∇2
f γ̂(f) is negative definite if and only if(

r(d)− µrf1
)Ty = 0 ∀d =⇒ y = 0 . (4.22)

C. David Levermore (UMD) Kelly Objectives April 15, 2022



Intro Kelly for IID Sample Estimators One Rate Two Rate

One Risk-Free Rate Model (Fact 5 Proof)
To complete the proof of Fact 5 we need to show that implication (4.22)
holds if and only if the spanning condition (4.21) is met.
First, suppose that implication (4.22) does not hold. Then there exists
y ∈ RN such that

y 6= 0 and (r(d)− µrf1)Ty = 0 ∀d . (4.23)
This says that the vectors {r(d)− µrf1}Dd=1 all lie in the linear subspace
orthogonal (normal) to y. Therefore they do not span RN , so the spanning
condition (4.21) is not met.
Conversely, suppose that the spanning condition (4.21) is not met. Then
Span

{
{r(d)− µrf1}Dd=1

}
is a proper linear subspace of RN , so there exists

a nonzero y ∈ RN orthogonal to it. But this says that y satisfies (4.23), so
implication (4.22) does not hold.
The proof of Fact 5 is now complete.
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One Risk-Free Rate Model (Fact 4 Proof)

Proof of Fact 4 for the One Risk-Free Rate Model. Recall that we
assumed that the covariance matrix V is positive definite. Recall too that
this is equivalent to assuming that

the set {r(d)−m}Dd=1 spans RN .

But this condition implies that

the set {r(d)− µrf1}Dd=1 spans RN ,

so by Fact 5 it implies that ∇2
f γ̂(f) is negative definite for every f ∈ Ω+.

Therefore γ̂(f) given by (4.19) is a strictly concave function over Ω+.
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One Risk-Free Rate Model (Unique Maximizer)

Fact 6. Let V be positive definite. Let Π ⊂ Ω+ be convex. If γ̂(f) has a
maximum over Π then it has a unique maximizer in Π.
Proof. Because V is positive definite, Fact 4 implies that γ̂(f) is a strictly
concave function of f over the convex set Π. Suppose that γ̂(f) has a
maximum γ̂mx over Π, and that f0 and f1 ∈ Π are maximizers with f0 6= f1.
For every t ∈ (0, 1) define ft = (1− t) f0 + t f1. Then for every t ∈ (0, 1)
the convexity of Π implies that ft ∈ Π while the strict concavity of γ̂(f)
over Π implies that

γ̂(ft) > (1− t) γ̂(f0) + t γ̂(f1)
= (1− t) γ̂mx + t γ̂mx = γ̂mx .

But this contradicts the fact that γ̂mx is the maximum of γ̂(f) over Π.
Therefore at most one maximizer can exist.
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Two Risk-Free Rate Model (Introduction)

Here we will prove Fact 4 for the two risk-free rate model. Recall from
(3.13), (3.14) and (3.15c) that for this model we have

M2 =
{

(f, f si, f cl) ∈ RN+2 :

1Tf + f si + f cl = 1 , f si ≥ 0 , f cl ≤ 0
}
,

(5.24a)

Ω2 =
{

(f, f si, f cl) ∈M2 :

1 + r(d)Tf + µsif si + µclf cl > 0 ∀d
}
,

(5.24b)

γ̂(f, f si, f cl) =
D∑

d=1
wd log

(
1 + r(d)Tf + µsif si + µclf cl

)
. (5.24c)

The natural domain of γ̂(f, f si, f cl) is an open set in RN+2 containing Ω2.
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Two Risk-Free Rate Model (Fact 4 Proof)

Proof of Fact 4. The estimator γ̂(f, f si, f cl) is infinitely differentiable
over its natrual domain. Let Hess(γ̂)(f, f si, f cl) denote the Hessian of γ̂ at
some (f, f si, f cl) ∈ Ω2, so that

Hess(γ̂) =

 ∇2
f γ̂ ∇f∂f si γ̂ ∇f∂f cl γ̂

∂f si∇f γ̂
T ∂ 2

f si γ̂ ∂f si∂f cl γ̂

∂f cl∇f γ̂
T ∂f cl∂f si γ̂ ∂ 2

f cl γ̂

 .

Because of the equality constraint in definition (5.24a) of M2, and
because Ω2 ⊂M2, tangent vectors of Ω2 must satisfy the constraint

1Ty + y si + y cl = 0 . (5.25)

The tangent space of Ω2 is comprised of all such vectors.
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Two Risk-Free Rate Model (Fact 4 Proof)
It can be shown for any (f, f si, f cl) ∈ Ω2 and any (y, y si, y cl) ∈ RN+2 that

(
yT y si y cl

)
Hess(γ̂)(f, f si, f cl)

 y
y si

y cl


= −

D∑
d=1

wd

(
r(d)Ty + µsiy si + µcly cl

)2

(1 + r(d)Tf + µsif si + µclf cl)2 .

Because tangent vectors of Ω2 satisfy (5.25), we see that
Hess(γ̂) is nonpositive definite.
Hess(γ̂) is negative definite over the tangent space of Ω2 if and only if

1Ty + y si + y cl = 0
r(d)Ty + µsiy si + µcly cl = 0 ∀d

}
=⇒

 y
y si

y cl

 =

0
0
0

 . (5.26)
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Two Risk-Free Rate Model (Fact 4 Proof)
Because

r(d)Ty + µsiy si + µcly cl = 0 ∀d =⇒ mTy + µsiy si + µcly cl = 0 ,

we see that (
r(d)−m

)Ty = 0 ∀d .

But this implies Vy = 0, which says y = 0 because V is positive definite.
The linear system in (5.26) thereby reduces to the 2×2 system

y si + y cl = 0 ,
µsiy si + µcly cl = 0 .

Because µcl > µsi, this system shows that y si = y cl = 0. Thus, we have
proved implication (5.26), which shows that Hess(γ̂) is negative definite
over the tangent space of Ω2. Therefore γ̂ is strictly concave over Ω2.
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