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Introduction

Independent, Identically Distributed (IID) models of returns make two
simplifying assumptions.

1. Independent. That what happens on day d is independent of what
has happened in the past.

2. Identically Distributed. What happens each day is statistically
identical to what happens every other day.

In IID models the random numbers {Rd}Dd=1 that mimic a return history
are each drawn from (−1,∞) in accord with the same probability density.
The question arises as to how well a given return history {r(d)}Dd=1 is
mimiced by such a model. We will present ways by which the validity of
each assumption can be assessed.
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Introduction

Earlier we examined how to assess the validity of the identically
distributed assumption. This came down to understanding how likely it is
that two different return histories, say {r1(d)}D1

d=1 and {r2(d)}D2
d=1, might

be drawn from the same probability density. We took three approaches:
graphical,
comparing means and variances,
comparing distributions.

Here we will examine how to assess the validity of the independent
assumption. This comes down to understanding how correlated each r(d)
is with earlier values, say with r(d − 1). We will take three approaches:

graphical,
comparing with an autoregressive model,
comparing autocovariance matrices.
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Stationary Autoregressive Models (Introduction)

Stationary Autoregressive Models. One way to quantify how well a
return history {r(d)}Dd=1 is mimicked by an IID model is to fit it to a more
complicated model and then measure how far that fit is from an IID
model. We illustrate this approach using the family of stationary
autoregressive models. These models have the form

Rd = a + b Rd−1 + Zd for d ∈ {1, 2, · · · } , (2.1)

where a and b are real numbers, R0 is a random variable and {Zd}∞d=1 is a
sequence of IID random variables with mean zero.
Definition. An autoregressive model in the form (2.1) is called stationary
when the statistical behavior of the random variables is translation
invariant in d .
Remark. We will see that stationarity implies that |b| < 1.
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Stationary Autoregressive Models (η, µ and ξ)

Let η > 0 be the variance of the IID mean-zero variables Zd . Then

Ex(Zd ) = 0 , Vr(Zd ) = η , for every d ∈ {1, 2, · · · } . (2.2a)

Because the random variables {Zd}∞d=1 are mean-zero and are IID, we
have the covariance formula

Cv(Zd ,Zd ′) = Ex(Zd Zd ′) = 0 ,
for every d , d ′ ∈ {1, 2, · · · } with d 6= d ′ .

(2.2b)

Let µ ∈ R and ξ > 0 be the mean and variance of the random variable R0.
Then stationarity implies that

Ex(Rd ) = µ , Vr(Rd ) = ξ , for every d ∈ {0, 1, · · · } . (2.2c)
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Stationary Autoregressive Models (Main Result)
The mean-variance statistics of stationary autoregressive models in the
form (2.1) are specified by just three parameters. Specifically, we will
prove the following.
Fact 1. The parameters a, b, µ, ξ, and η satisfy the relations

µ = a + b µ , (1− b2) ξ = η , b2 < 1 . (2.3a)

If b 6= 0 then for every d , d ′ ∈ {0, 1, · · · } with d ′ ≥ 1 we have the formula

Cv(Rd ,Zd ′) =
{

0 for d < d ′ ,
η bd−d ′ for d ≥ d ′ .

(2.3b)

If b 6= 0 then for every d , d ′ ∈ {0, 1, · · · } we have the formula

Cv(Rd ,Rd ′) = ξ b|d−d ′| . (2.3c)
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Stationary Autoregressive Models (Remarks)

Remarks. Before proving Fact 1, we make some remarks about it.
If b = 0 then µ = a and ξ = η and the stationary autoregressive
model (2.1) reduces to the IID model with Rd = a + Zd .
The fact that Cv(Rd ,Zd ′) and Cv(Rd ,Rd ′) given by formulas (2.3b)
and (2.3c) are functions of d − d ′ is a consequence of the stationarity
of the model.
Because |b| < 1, we see that both Cv(Rd ,Zd ′) and Cv(Rd ,Rd ′)
decay as |d − d ′| increases.
The fact that Cv(Rd ,Zd ′) = 0 for d < d ′ reflects the fact that Rd is
independent of any future Zd ′ .
The fact that Cv(Rd ,Zd ′) 6= 0 for d ≥ d ′ reflects the fact that Rd is
dependent upon any present or past Zd ′ when b 6= 0.
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Stationary Autoregressive Models (Mean Relation)

Proof. By taking expected values of the form (2.1) while using the facts
from (2.2) that Ex(Rd ) = Ex(Rd−1) = µ and Ex(Zd ) = 0 we obtain

µ = Ex(Rd ) = a + b Ex(Rd−1) + Ex(Zd ) = a + b µ .

Therefore a, b, and µ satisfy the first relation in (2.2a), which is

µ = a + b µ . (2.4)

By using this relation to eliminate a from the form (2.1) we obtain

R̃d = b R̃d−1 + Zd , for d = 1, 2, · · · , (2.5a)

where
R̃d = Rd − µ . (2.5b)
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Stationary Autoregressive Models (Cv(Rd ,Zd ′))
By multiplying (2.5a) by Zd ′ and taking expected values we obtain

Ex
(

R̃d Zd ′

)
= b Ex

(
R̃d−1 Zd ′

)
+ Ex(Zd Zd ′) ,

for every d , d ′ ∈ {1, 2, · · · } .
(2.6)

Because the random variable R0 is independent of each Zd ′ , we have

Ex
(

R̃0 Zd ′

)
= 0 , for every d ′ ∈ {1, 2, · · · } . (2.7)

Because Ex(Zd Zd ′) = 0 for d 6= d ′ by (2.2b), we see from (2.6) that

Ex
(

R̃d Zd ′

)
= b Ex

(
R̃d−1 Zd ′

)
, for every d < d ′ .

Then an induction argument on d initialized by (2.7) proves that

Cv(Rd ,Zd ′) = Ex
(

R̃d Zd ′

)
= 0 ,

for every d , d ′ ∈ {0, 1 · · · } with d < d ′ .
(2.8)
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Stationary Autoregressive Models (Cv(Rd ,Zd ′))

By setting d = d ′ in (2.6) while using (2.2a) and (2.8) we obtain

Ex
(

R̃d ′ Zd ′

)
= Vr(Zd ′) = η , for every d ′ ∈ {1, 2, · · · } . (2.9)

Because Ex(Zd Zd ′) = 0 for d 6= d ′ by (2.2b), we see from (2.6) that

Ex
(

R̃d Zd ′

)
= b Ex

(
R̃d−1 Zd ′

)
, for every d > d ′ .

Then an induction argument on d initialized by (2.9) proves that

Cv(Rd ,Zd ′) = Ex
(

R̃d Zd ′

)
= η bd−d ′

,

for every d , d ′ ∈ {1, 2, · · · } with d ′ ≤ d .
(2.10)

Combining (2.8) with (2.10) proves formula (2.3b).
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Stationary Autoregressive Models (Variance Relation)
By squaring (2.5a) and taking expected values while using (2.2) and (2.8),
we obtain

ξ = Vr(Rd ) = Ex
(

R̃ 2
d

)
= Ex

((
b R̃d−1 + Zd

)2
)

= b2Ex
(

R̃ 2
d−1

)
+ 2b Ex

(
R̃d−1 Zd

)
+ Ex

(
Z 2

d

)
= b2Vr(Rd−1) + Vr(Zd ) = b2ξ + η .

Therefore b, ξ, and η are related by

(1− b2) ξ = η . (2.11a)

Because the variances ξ and η are positive, we see that

b2 < 1 , 0 < η ≤ ξ . (2.11b)

Combining (2.4) with (2.11) proves relations (2.3a).
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Stationary Autoregressive Models (Cv(Rd ,Rd ′))
By multiplying (2.5a) by R̃d ′ and taking expected values we obtain

Ex
(

R̃d R̃d ′

)
= b Ex

(
R̃d−1 R̃d ′

)
+ Ex

(
Zd R̃d ′

)
,

for every d ∈ {1, 2, · · · } and d ′ ∈ {0, 1, · · · } .
(2.12)

We know from (2.2c) that

Ex
(

R̃d ′ R̃d ′

)
= Vr(Rd ′) = ξ , for every d ′ ∈ {0, 1, · · · } . (2.13)

Because Ex
(

Zd R̃d ′

)
= 0 for d > d ′ by (2.8), we see from (2.12) that

Ex
(

R̃d R̃d ′

)
= b Ex

(
R̃d−1 R̃d ′

)
, for every d > d ′ .

Then an induction argument on d initialized by (2.13) proves that

Cv(Rd ,Rd ′) = Ex
(

R̃d R̃d ′

)
= ξ bd−d ′

,

for every d ∈ {0, 1, · · · } with d ≥ d ′ .
(2.14)
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Stationary Autoregressive Models (Cv(Rd ,Rd ′))

We know from (2.10) that

Ex
(

Zd R̃d ′

)
= η bd ′−d , for d ≤ d ′ ,

and from (2.11a) that
η = ξ (1− b2) .

Therefore if d ≤ d ′ then (2.12) becomes

Ex
(

R̃d R̃d ′

)
= b Ex

(
R̃d−1 R̃d ′

)
+ ξ (1− b2) bd ′−d ,

for every d ′ ∈ {1, 2, · · · } and d ∈ {1, 2, · · · , d ′} .
(2.15)
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Stationary Autoregressive Models (Cv(Rd ,Rd ′))

Setting d = d ′ in (2.15) we can use (2.2c) to find that

ξ = b Ex
(

R̃d−1 R̃d ′

)
+ ξ (1− b2) , for every d ′ ∈ {1, 2, · · · } .

Hence, if b 6= 0 we obtain

Ex
(

R̃d ′−1 R̃d ′

)
= ξ b , for every d ′ ∈ {1, 2, · · · } . (2.16)

Then by using (2.15) we can make an countdown induction argument on d
initialized by (2.16) to show that if b 6= 0 then

Cv(Rd ,Rd ′) = Ex
(

R̃d R̃d ′

)
= ξ bd ′−d ,

for every d ∈ {0, 1, · · · } with d ≤ d ′ .
(2.17)

Combining (2.14) with (2.17) proves formula (2.3c).
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Stationary Autoregressive Models (Autoregression Time)
When b 6= 0 the autoregression time tar of the stationary autoregressive
model (2.1) is defined by

1
tar

= log
( 1
|b|

)
. (2.18)

Then by (2.3b) we have

|Cv(Rd ,Zd ′)| = η exp
(
−d − d ′

tar

)
,

for every d , d ′ ∈ {1, · · · } with d ′ ≤ d ,

and by (2.3c) we have

|Cv(Rd ,Rd ′)| = ξ exp
(
−|d − d ′|

tar

)
, for every d , d ′ ∈ {0, 1, · · · } ,

The stationary autoregressive model is close to an IID model if tar is small.
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Fitting Stationary Autoregressive Models (Introduction)
Fitting Stationary Autoregressive Models. Given a return history
{r(d)}Dd=0 and a choice of positive weights {wd}Dd=1 that sum to 1 we can
use least squares to fit a stationary autoregressive model of the form (2.1).
Specifically, this approach constructs estmators â and b̂ such

(
â, b̂

)
= arg min

{ D∑
d=1

wd |r(d)− a − b r(d − 1)|2
}
, (3.19)

and then construct the estmator η̂ by

η̂ = min
{ D∑

d=1
wd |r(d)− a − b r(d − 1)|2

}

=
D∑

d=1
wd |r(d)− â − b̂ r(d − 1)|2 .

(3.20)
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Fitting Stationary Autoregressive Models (Statistics)
It is helpful to define the return sample means

m0 =
D∑

d=1
wd r(d) , m1 =

D∑
d=1

wd r(d − 1) , (3.21a)

the return sample variances

v00 =
D∑

d=1
wd
(
r(d)−m0

)2
, v11 =

D∑
d=1

wd
(
r(d − 1)−m1

)2
, (3.21b)

and the return sample autocovariance

v10 =
D∑

d=1
wd
(
r(d − 1)−m1

)(
r(d)−m0

)
. (3.21c)

It is also helpful to replace a with ã that is defined by
a = m0 − b m1 + ã . (3.22)
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Fitting Stationary Autoregressive Models (Nugget)
Then our goal is to find (a, b) that minimizes the nugget

D∑
d=1

wd |z(d)|2 , where z(d) = r(d)− a − b r(d − 1) .

We see from (3.21) and (3.22) that
z(d) =

(
r(d)−m0

)
− b

(
r(d − 1)−m1

)
+ ã

= r̃0(d)− br̃1(d) + ã ,
where we define

r̃0(d) = r(d)−m0 , r̃1(d) = r(d − 1)−m1 . (3.23)
Then

|z(d)|2 = |r̃0(d)|2 + b2|r̃1(d)|2 + ã2

− 2b r̃1(d) r̃0(d) + 2ã r̃0(d)− 2ãb r̃1(d) .
(3.24)
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Fitting Stationary Autoregressive Models (Nugget)
It is evident from (3.21) and (3.23) that {r̃0(d)}Dd=1 and {r̃1(d)}Dd=1 satisfy

D∑
d=1

wd r̃0(d) = 0 ,
D∑

d=1
wd r̃1(d) = 0 ,

D∑
d=1

wd |r̃0(d)|2 = v00 ,
D∑

d=1
wd |r̃1(d)|2 = v11 ,

D∑
d=1

wd r̃1(d) r̃0(d) = v10 .

By using these facts we see from (3.24) that our goal now is to find (ã, b)
that minimizes the nugget

D∑
d=1

wd |z(d)|2 = v00 + b2v11 + ã2 − 2b v10 .
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Fitting Stationary Autoregressive Models (Minimizer)

Because v11 > 0, the nugget is clearly minimized when

ã = 0 , b = v10
v11

,

and that

min
{ D∑

d=1
wd |z(d)|2

}
= v00 −

v 2
10

v11
.

Recalling (3.19), (3.20), and (3.22), this suggests using the estimators

â = m0 −
v10
v11

m1 , b̂ = v10
v11

, η̂ = v00 −
v 2

10
v11

. (3.25)

However, there is a problem with these estimators. Namely, the formula
for b̂ can give values that lie outside of the interval (−1, 1).
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Fitting Stationary Autoregressive Models (New Estimators)
So rather than use the estimators (3.25) given by the least squares fit, we
will use the estimators

â = m0 −
v10
v11

m1 , b̂ = v10√v00 v11
, η̂ = v00 −

v 2
10

v11
. (3.26)

These estimators will satisfy b̂ ∈ (−1, 1) and η̂ > 0 if and only if the
autocovariance matrix V is positive definite, where

V =
(

v00 v10
v10 v11

)
. (3.27)

This condition is always met in practice. If we set ξ̂ = v00 then

η̂ = ξ̂
(

1− b̂2
)
, (3.28)

which is an analog of the second relation in (2.3a).
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Fitting Stationary Autoregressive Models (t̂ar)

Remark. Given a return history {r(d)}Dd=0 of any risky asset, we can use
the autoregressive estimator b̂ given by (3.26) to estimate a autoregrssion
time for that asset when b̂ 6= 0. In that case, motivated by formula (2.18),
we define t̂ar by

1
t̂ar

= log
(

1
|b̂|

)
. (3.29)

Because the history has length D, we would like t̂ar � D in order to have
some confidence in our estimators of the return mean µ and the return
variance ξ.
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Autocovariance Matrix (Introduction)

Consider the 2× 2 autocovariance matrix

V =
(

v00 v10
v10 v11

)
. (4.30)

This matrix is symmetric and is usually positive definite. If the data was
drawn from an IID process with mean µ and variance ξ then it can be
shown that

Ex(V ) = ξW , where W =
(

1− w̄ −w̄1
−w̄1 1− w̄

)
, (4.31)

with

w̄ =
D∑

d=1
w 2

d , w̄1 =
D∑

d=2
wd wd−1 .
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Autocovariance Matrix (W Matrix)

It can be shown for D > 1 that in general we have

0 < w̄1 < w̄ , w̄ + w̄1 < 1 , (4.32)

which implies that the symmetric matrix W given by (4.31) is always
diagonally dominant and thereby is always positive definite.
Example. For uniform weights wd = 1/D we have

w̄ = 1
D , w̄1 = D−1

D2 ,

whereby W is the positive definite matrix

W =

1− 1
D −D−1

D2

−D−1
D2 1− 1

D

 .
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Autocovariance Matrix (Least Squares Fit)

The deviation of V given by (4.30) from the form (4.31) measures of how
well an IID model mimics the data. For example, its size can be measured
with the Frobenius norm, which for any real matrix A is determined by

‖A‖ 2
F = tr

(
ATA

)
.

It is easily seen that ‖A‖ 2
F is the sum of the squares of the entries of A.

We can estimate ξ in the form (4.31) to give the best least squares fit
with respect to the Frobenius norm. In other words, we set

ξ̂ = arg min
{

tr
(
(V − ξW )2)}
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Autocovariance Matrix (ξ Estimator)

Because

tr
(
(V − ξW )2) = tr

(
V 2)− 2ξ tr(W V ) + ξ2 tr

(
W 2) ,

we see that its minimizer yields the estimator

ξ̂ = tr(W V )
tr
(
W 2) . (4.33)

When this estimator ξ̂ is expressed in terms of the entries of the matrices
V and W given by (4.30) and (4.31) we have

ξ̂ = (1− w̄)
(
v00 + v11

)
− 2w̄1v10

2
(
(1− w̄)2 + w̄ 2

1
) .
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Autocovariance Matrix (ξ Estimator)

The fact that ξ̂ > 0 whenever V 6= 0 is can be seen directly from (4.33)
and the following general fact, the proof of which is left as an exercise.
Fact 2. If A and B are symmetric matrices of the same size such that A is
positive definite, B is nonnegative definite, and B 6= 0 then tr(AB) > 0.
(Hint: Diagonalize B.)
Moreover, it is evident from (4.31) and (4.33) that

Ex(ξ̂) = tr
(
W Ex(V )

)
tr
(
W 2) = tr

(
ξW 2)

tr
(
W 2) = ξ .

Therefore ξ̂ is an unbiased estimator of ξ.
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Assessing Independence (Introduction)

Assessing Independence. We will now present three ways to assess how
much a given return history {r(d)}Dd=1 that is consistent with the identical
distribution assumption of an IID model is also consistent with the
independence assumption of an IID model. More specifically, we will
present:

a graphical assessment,
an autoregressive assessment,
an autocovariance assessment.

The first is purely visual, but can be used to build understanding of the
data. The other two are analytical. They will yield measures ωar and ωac

of how consistent the given data is with the independence assumption. As
before, these measures will take values in the interval [0, 1] with higher
values indicating greater consistency with the independence assumption.
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Assessing Independence (Graphical)

Graphical Assessment. In an IID model the random numbers {Rd}Dd=1
are drawn from (−1,∞) in accord with the probability density q(R)
independent of each other. This means that there is no correlation
between Rd and Rd ′ when d 6= d ′. Because of this, if we scatter plot the
points {(Rd ,Rd+c)}D−c

d=1 in the rr ′-plane for any c > 0 then they will be
distributed in accord with the probability density q(R)q(R ′).
Therefore if the return history {r(d)}Dd=1 is mimicked by such a model
then when the points {(r(d), r(d + c))}D−c

d=1 are scatter plotted in the
rr ′-plane they should appear to be distributed in a way consistant with the
probability density q(r)q(r ′).
We expect that the strongest correlation should be seen when c = 1
because the behavior of an asset price on any given trading day seems to
correlate with its behavior on the previous trading day.
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Assessing Independence (Autoregressive Statistics)
Autoregressive Assessment. Given a return history {r(d)}Dd=0 and a
choice of positive weights {wd}Dd=1 that sum to 1, we define the return
sample means

m0 =
D∑

d=1
wd r(d) , m1 =

D∑
d=1

wd r(d − 1) ,

the return sample variances

v00 =
D∑

d=1
wd
(
r(d)−m0

)2
, v11 =

D∑
d=1

wd
(
r(d − 1)−m1

)2
,

and the return sample autocovariance

v10 =
D∑

d=1
wd
(
r(d − 1)−m1

)(
r(d)−m0

)
.

This is often done with uniform weights wd = 1/D.
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Intro Autoregress Fitting Autocovar Independ

Assessing Independence (Autoregressive Calibration)
The estimators (3.26) for the autoregressive model of the return history
{r(d)}Dd=0 are then given by

â = m0 −
v10
v11

m1 , b̂ = v10√v00 v11
, η̂ = v00 −

v 2
10

v11
. (5.34)

Because v00 is the sample variance of {r(d)}Dd=1, we can set

ξ̂ = v00 .

Then the estimators satisfy

η̂ =
(

1− b̂2
)
ξ̂ .

Because η̂ is the sample variance of nugget {z(d)}Dd=1, we see that
b̂2 is the fraction of ξ̂ contributed by the autoregression term;
1− b̂2 is the fraction of ξ̂ contributed by the nugget term.
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Intro Autoregress Fitting Autocovar Independ

Assessing Independence (Autoregressive Metric)

This suggests that a natural metric of how well the history {r(d)}Dd=1 can
be mimicked by an IID model is

ωar = b̂2 = v 2
10

v00 v11
. (5.35)

The closer ωar is to 0, the better the IID model.
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Intro Autoregress Fitting Autocovar Independ

Assessing Independence (Autocovariance Metric)

Autocovariance Assessment. The size of the deviation of V given by
(4.30) from the form (4.31) with ξ = ξ̂ given by (4.33) is quantified by

‖V − ξ̂W ‖2F
‖V ‖2F

= 1− tr(W V )2

tr
(
V 2) tr

(
W 2) .

Therfore we defined the metric

ωac = 1− tr(W V )2

tr
(
V 2) tr

(
W 2) . (5.36)

This is the square of the sine of the angle between V and W as
determined by the Frobenius scalar product. The closer ωac is to 0, the
better an IID model mimics the data.
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Intro Autoregress Fitting Autocovar Independ

Assessing Independence (Autocovariance Metric)

Remark. From (5.36) we can show by using (4.30) and (4.31) that

ωac = δ2 +
(

1− δ2
)

cos(φ)2 ,

where
δ2 = (v00 − v11)2

(v00 − v11)2 + (v00 + v11)2 + 4v 2
10
,

cos(φ)2 =
(
2(1− w̄)v10 + w̄1(v00 + v11)

)2(
(1− w̄)2 + w̄ 2

1
)(

(v00 + v11)2 + 4v 2
10
) .

This shows that ωac is near 0 if and only if both δ and cos(φ) are small.
The first condition holds if and only if v00 and v11 are relatively close. The
second holds if and only if the vectors (1− w̄ , w̄1) and (2v10, v00 + v11) are
nearly orthogonal.
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