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Introduction

Independent, Identically Distributed (IID) models of returns make two
simplifying assumptions.

1. Independent. That what happens on day d is independent of what
has happened in the past.

2. Identically Distributed. What happens each day is statistically
identical to what happens every other day.

In IID models the random numbers {Rd}Dd=1 that mimic a return history
are each drawn from (−1,∞) in accord with the same probability density.
The question arises as to how well a given return history {r(d)}Dd=1 is
mimiced by such a model. We will present ways by which the validity of
each assumption can be assessed.
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Introduction

Here we will examine how to assess the validity of the identically
distributed assumption.
In an IID model the random numbers {Rd}Dd=1 are drawn from (−1,∞) in
accord with the same probability density q(R). This means that for every
d and every R ∈ (−1,∞) we have

Pr{Rd ≤ R} =
∫ R

−1
q(R ′) dR ′ .

If a return history {r(d)}Dd=1 is consistent with an IID model then every
subsample of the return history should behave as if it was drawn from the
same probability density. This is the idea of being identically distributed.
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Introduction

Therefore the question that we must address is how to tell if it is likely
that any two samples, {r1(d)}D1

d=1 and {r2(d)}D2
d=1, are drawn from the

same probability density. We will take three approaches:
graphical,
comparing means and variances,
comparing distributions.

Later, we will examine how to assess the validity of the independent
assumption. This comes down to understanding how correlated each r(d)
is with earlier values, say with r(d − 1). We will take three approaches:

graphical,
comparing with an autoregressive model,
comparing autocovariance matrices.
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Comparing Means and Variances (Introduction)

Introduction. Given any two samples {r1(d)}D1
d=1 and {r2(d)}D2

d=1, their
sample means and variances are

m1 = 1
D1

D1∑
d=1

r1(d) , m2 = 1
D2

D2∑
d=1

r2(d) ,

v1 = 1
D1

D1∑
d=1

(
r1(d)−m1

)2
, v2 = 1

D2

D2∑
d=1

(
r2(d)−m2

)2
.

We will assume that v1 > 0 and v2 > 0, which is always the case in
practice. If {r1(d)}D1

d=1 and {r2(d)}D2
d=1, are drawn from the same

probability density then we would expect that m1 is close to m2 and v1 is
close to v2 when D1 and D2 are sufficiantly large. Our goal is to develop
measures of how close m1 is to m2 and v1 is to v2.
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Comparing Means and Variances (Variances)
We begin by assessing the closeness of v1 and v2 because it is easier.
Because we have assumed that v1 and v2 are positive, we can define the
relative difference of v1 and v2 by the ratio

v1 − v2
v1 + v2

.

This ratio takes values in the interval (−1, 1). When its absolute value is
small then v1 and v2 are relatively close.
When this ratio is squared we get

(v1 − v2)2

(v1 + v2)2 = 1− 4v1v2
(v1 + v2)2 . (2.1)

This quantity takes values in the interval [0, 1). Its value is closer to 0
when v1 and v2 are relatively closer.
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Comparing Means and Variances (Means)
We now assess the closeness of m1 and m2. Using relative difference does
not work because m1 and m2 might have opposite signs and m1 + m2
might be zero or nearly zero. Rather, because the variances associated
with m1 and m2 are estimated by 1

D1
v1 and 1

D2
v2, we use the ratio

(m1 −m2)2

1
D1

v1 + 1
D2

v2
.

This ratio takes values in the interval [0,∞). It is close to 0 when
|m1 −m2| is small compared to either standard deviation.
When this ratio is divided by 1 plus this ratio we get

(m1 −m2)2

1
D1

v1 + 1
D2

v2 + (m1 −m2)2 . (2.2)

This quantity takes values in the interval [0, 1). Its value is closer to 0
when m1 and m2 are relatively closer.
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Comparing Distributions (Introduction)
Introduction. Before addressing how likely it is that two samples are
drawn from the same probability density, we start with a simpler question.
How to compare two probability densities over (−1,∞), say q1(R) and
q2(R) where q1(R) ≥ 0, q2(R) ≥ 0, and∫ ∞

−1
q1(R) dR =

∫ ∞
−1

q2(R) dR = 1 .

One idea is to compare their distributions Q1(R) and Q2(R), which are

Q1(R) =
∫ R

−1
q1(R ′) dR ′ , Q2(R) =

∫ R

−1
q2(R ′) dR ′ . (3.3a)

These are nondecreasing functions of R over (−1,∞) that satisfy
lim

R→−1
Q1(R) = lim

R→−1
Q2(R) = 0 ,

lim
R→∞

Q1(R) = lim
R→∞

Q2(R) = 1 .
(3.3b)
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Comparing Distributions (K-S and Kuiper for Densities)

The Kolmogorov-Smirnov measure of the closeness of Q1 and Q2 is the
sup norm of their difference:

‖Q2 − Q1‖KS = sup
{
|Q2(R)− Q1(R)| : R ∈ (−1,∞)

}
. (3.4a)

The Kuiper measure of the closeness of Q1 and Q2 is

‖Q2 − Q1‖Ku = sup
{

Q2(R)− Q1(R) : R ∈ (−1,∞)
}

+ sup
{

Q1(R)− Q2(R) : R ∈ (−1,∞)
}

.
(3.4b)

Fact 1. These measures satisfy the relations

1
2‖Q2 − Q1‖Ku ≤ ‖Q2 − Q1‖KS ≤ ‖Q2 − Q1‖Ku ≤ 1 . (3.5)
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Comparing Distributions (K-S and Kuiper Relations)
Proof. The first inequality in (3.5) should be clear from definitions (3.4).
Because Q1(R) and Q2(R) satisfy (3.3b) we have

lim
R→−1

(
Q2(R)− Q1(R)

)
= 0 , lim

R→∞

(
Q2(R)− Q1(R)

)
= 0 .

It follows that the components of the Kuiper measure satisfy

sup
{

Q2(R)− Q1(R) : R ∈ (−1,∞)
}
≥ 0 ,

sup
{

Q1(R)− Q2(R) : R ∈ (−1,∞)
}
≥ 0 .

But it can be shown that at least one of these components must equal the
Kolmogorov-Smirnov measure. Therefore

‖Q2 − Q1‖KS ≤ ‖Q2 − Q1‖Ku .

In order to prove (3.5) it still needs to be shown that ‖Q2 − Q1‖Ku ≤ 1.
This is left as an exercise.
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Comparing Distributions (Cramer-von Mises and Lp)

Remark. There are other ways to measure of the closeness of Q1 and Q2.
For example, the Cramer-von Mises measure is the L2-norm of their
difference:

‖Q2 − Q1‖CvM =
(∫ ∞
−1

(
Q2(R)− Q1(R)

)2
dR
) 1

2
.

This can clearly be generalized to any Lp-norm with respect to any
positive measure over (−1,∞). For example, for every p ∈ [1,∞) we have

‖Q2 − Q1‖Lp =
(∫ ∞
−1

(
Q2(R)− Q1(R)

)p
dR
) 1

p
.

However, we will stick to the Kolmogorov-Smirnov and Kuiper measures.
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Comparing Distributions (Emperical Distributions)

Now we return to our original question. Given two samples, {r1(d)}D1
d=1

and {r2(d)}D2
d=1, we construct their so-called emperical distributions

Q̂1(R) = #
{
d : r1(d) ≤ R

}
D1

, Q̂2(R) = #
{
d : r2(d) ≤ R

}
D2

. (3.6a)

Here #S denotes the number of elements in a set S. These are analogs of
the distributions Q1(R) and Q2(R) defined in (3.3a). They are piecewise
constant, nondecreasing staircase functions of R over (−1,∞) with steps
at R ∈ {r1(d)}D1

d=1 and R ∈ {r2(d)}D2
d=1 respectively. They satisfy

lim
R→−1

Q̂1(R) = lim
R→−1

Q̂2(R) = 0 ,

lim
R→∞

Q̂1(R) = lim
R→∞

Q̂2(R) = 1 .
(3.6b)
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Comparing Distributions (Emperical Distributions)

Remark. Emperical distributions in the form (3.6a) approximate any
distribution Q(R) in the following sense. Let {Rd}∞d=1 be drawn from the
distribution Q(R). This means that for every d ∈ Z+ we have

Q(R) = Pr
{
Rd ≤ R

}
.

For every D ∈ Z+ define the emperical distribution

Q̂D(R) = #
{
d ≤ D : Rd ≤ R

}
D .

It will not be shown here, but Kolmogorov and Smirnov showed that

lim
D→∞

∥∥Q̂D(R)− Q(R)
∥∥

KS = 0 .
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Comparing Distributions (K-S and Kuiper for Samples)

Because the Kolmogorov-Smirnov and Kuiper measures quantify the size
of the difference Q̂2 − Q̂1, they give us ways to quantify the likelihood that
samples are drawn from similar distributions. Because Q̂1 and Q̂2 are
staircase functions, there are algorithms that evaluate∥∥Q̂2 − Q̂1

∥∥
KS = max

{∣∣Q̂2(R)− Q̂1(R)
∣∣ : R ∈ (−1,∞)

}
.∥∥Q̂2 − Q̂1

∥∥
Ku = max

{
Q̂2(R)− Q̂1(R) : R ∈ (−1,∞)

}
+ max

{
Q̂1(R)− Q̂2(R) : R ∈ (−1,∞)

}
.

(3.7)

Fortunately statisticians have provided software that efficiently computes
these values given any two samples {r1(d)}D1

d=1 and {r2(d)}D2
d=1. These are

called respectively the two-sample KS test and the two-sample Kuiper test.
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Assessing Identical Distribution (Introduction)

Assessing Identical Distribution. We will now present three ways to
assess how much a given return history {r(d)}Dd=1 is consistent with the
identical distribution assumption. More specifically, we will present:

a graphical assessment,
a mean and a variance assessment,
two distribution assessments.

The first is purely visual, but can be used to build understanding of the
data. The other two are analytical. They will yield metrics ωm, ωv, ωKS,
and ωKu of how consistent the given data is with the identical distribution
assumption. As before, these metrics will take values in the interval [0, 1]
with higher values indicating greater consistency with the identical
distribution assumption.
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Assessing Identical Distribution (Graphical)

Graphical Assessment. In an IID model the random numbers {Rd}Dd=1
are each drawn from (−1,∞) in accord with the same distribution Q(R).
This means that if we scatter plot the points {(d , Rd )}Dd=1 in the dr -plane
they will usually be distributed in a way that looks uniform in d .
Therefore if the return history {r(d)}Dd=1 is mimiced by such a model then
the points {(d , r(d))}Dd=1 scatter plotted in the dr -plane should appear to
be distributed in a way that is uniform in d .
Remark. Of course, determining whether such a scatter plot is distributed
in a way that is uniform in d simply by looking at it is subjective.
However, sometimes this graphical approach can make it quite clear that
the identical distribution assumption is flawed! Henceforth, we will present
quantitative approaches.

C. David Levermore (UMD) Assessment of IID Models May 9, 2022



Intro Means & Variances Distributions Ident Dist

Assessing Identical Distribution (m and v Metrics)
Mean and Variance Assessments. Given return histories over a year
{r(d)}Dd=1, we can split the year into quarters and compare the mean and
variance of each quarter with that of another quarter or with that of the
other three quarters combined. The maximum of all such comparisons
made is the score for the year. For example, using (2.2) and (2.1), for
each year we define

ωm = max
{

(m1 −m2)2

1
D1

v1 + 1
D2

v2 + (m1 −m2)2 : all comparisons made
}

,

ωv = max
{

(v1 − v2)2

(v1 + v2)2 : all comparisons made
}

. (4.8)

If we compare quarters with each other then six comparisons are made. If
we compare each quarter with the other three quarters combined then four
comparisons are made. Notice that the means are closer when ωm is
nearer 0, and that the variances are closer when ωv is nearer 0.
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Assessing Identical Distribution (KS and Ku Metrics)

Distribution Assessments. Similarly, given return histories over a year
{r(d)}Dd=1, we can split the year into quarters and compare the emperical
distribution of each quarter with that of another quarter or with that of
the other three quarters combined. The maximum of all such comparisons
made is the score for the year. For example, for each year we define

ωKS = max
{∥∥Q̂2 − Q̂1

∥∥
KS : all comparisons made

}
,

ωKu = max
{∥∥Q̂2 − Q̂1

∥∥
Ku : all comparisons made

}
.

(4.9)

If we choose to compare quarters with each other then six comparisons are
made. If we choose to compare each quarter with the other three quarters
combined then four comparisons are made. Notice that ωKS ≤ ωKu ≤ 1,
and that the distributions are closer when ωKu is nearer 0.
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