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Central Moments (Introduction)

Central Moments. We recall from Fact 6 that if Ex(W*) < oo then the
unbiased variance estimator Vr(W) has variance given by

Vi (Vi(w)) = W vi( (v - Ex(w)))

., — (1.1a)
w® —w 2
-I-QWVI"(\U) y

where w, w2, and w3 are given by

D D D
W:ZWdz, m:ZWj, W:ZW;‘. (1.1b)
d=1 d=1 d=1
This suggests that it would be useful to have estimators for
2
Vr((lli ~ Ex(V)) ) L V(W) (1.2)
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Central Moments (Definition)

For any function 1 : (—1,00) — R, the variance of W = ¢)(R) with respect
to the probability density g(R) is given by

Vi(W) = Ex<(w _ Ex(\ll))z) _ /OO ((R) - Ex(¥)) q(R) dR.

—1
Given any k € N the k'™ central moment of W = ¢(R) with respect to the
probability density g(R) is defined by

Cny(V) = Ex<(w - Ex(W))k> = /O: (w(R)—Ex(\U))kq(R)dR. (1.3)

The first three are Cng(V) =1, Cni (V) =0, and Cny(V) = Vr(V).
For each k > 2 the central moment Cn (W) gives an alternative measure
of the variation of W about its expected value Ex(W¥).

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moments (Cubic and Quartic)

The cubic and quartic central moments are the next most important after
the variance. We denote them by

Ch(W) = Cn3(V) = Ex((\lf - Ex(\U))3) :
\ (1.4)
Qr(V) = Cng(V) = Ex((\ll ~ Ex(V)) ) .

Then the first quantity on the right-hand side of (1.1a) can be expressed as
vi( (v - x)") = (0 - 2x0w)” - (v - x))) ) )
= b (v Bx(v)") B (v - Bx(w)))’

= Qr(V) — Vr(W)2.

C. David Levermore (UMD)
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Central Moments (Dispersion Decomposition)

This shows that the quartic central moment has the decomposition

Qr(W) = Ds(V) + Vr(V)?, (1.5a)
where
Ds(W) = w((w - Ex(\ll))2> . (1.5b)

This quantity does not have a widely used name. We will call it the

dispersion of W and call (1.5a) the dispersion deomposition of Qr(V).
Equation (1.1a) can then be expressed as

— w—2w? + w3 w2 — w3

where w, w2, and w3 are given by (1.1b).

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moments (Sample Central Moments)

Given {wy}D_; and {W4}5_,, we know Vr(W) has the unbiased estimator
— 1
where w is given by (1.1b) and SmpVr(WV) is the sample variance,
b _ 2
SmpVr(V) = Z Wy <\|Jd — EX(W)) )
d=1

Below we give estimators for Cb(V) and Qr(W) built from SmpVr(V¥) and
the sample cubic and quartic central moments given by

(1.7b)

D _ 3
SmpCh(W) = 3 wy(Wy — Ex(V)) ", (1.8a)
d=1
D _ 4
SmpQr(W) = >~ wa (Vg — Ex(V)) . (1.8b)
d=1
C. David Levermore (UMD) 1ID Models for Assets

May 9, 2022



Central Moments
0o0000e

Central Moments (Sample Dispersion Decomposition)

We will also use the sample dispersion defined by

SmpDs(¥) = i W ((Wd - EAX(‘V))2
d=1

5 N (1.9a)
— Z Wy (Wd/ —E;((W)) )

d'=1

The sample quartic central moment SmpQr(WV) defined by (1.8b) then
satisfies a discrete analog of the dispersion decomposition (1.5b) given by

SmpQr(V¥) = SmpDs(V) + SmpVr(¥)?, (1.9b)
where that sample variance SmpVr(W) is defined by (1.7b).

C. David Levermore (UMD) 1ID Models for Assets
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Cubic Central Moment Estimators (Ex(SmpCb(V¥)))

Cubic Central Moment Estimators. Let Uy = Wy — Ex(W). Then
Ex(V) = Ex(V) - Ex(V),
e o (2.10)
Wy — Ex(V) = Uy — Ex(w) :
whereby the sample cubic central moment (1.8a) is

D . 3 D _ N3
SmpCh(W) = 3 wy (Vg — Bx(¥)) =" wy (Vg — Bx(V))

d=1 d=1

D D D o
=Y wg¥3-3%" Z wawg, V3 Wy

d=1 d=1d;=1

D D D
+2 Z Z Z Wd Wd, Wd2\|ld\|1d1\|ld2 .
d=1d1=1dr=1

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Cubic Central Moment Estimators (Ex(SmpCb(V¥)))

Beca~use \TJd and Jld/ are independent when d # d’, and because
Ex(V4) =0, we find that

EX({IVI(? \Tld1> = 5dd1Ex(\TJ3) ,
EX(\T/d\del\deQ) = 5dd15dd2EX(\TJ3> .

Because
Ex(W?) = Ch(w),

we see that the expected value of the sample cubic central moment is
Ex(SmpCb(W)) = (1 - 3w + 2w?) Ch(W),

where w and w2 are given by (1.1b).

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Cubic Central Moment Estimators (Unbiased)

It can be shown that w? < w2 < w, whereby we have the bounds

1-3w+20°<1-3w+2w2<1l—w.

Because 1 — 3w + 2w? = (1 — 2w)(1 — w), the lower bound is positive
when @ < 3. In that case we see that an unbiased estimator of Cb(W) is

1

Cb _—
(V) = 1—3w+2w?

SmpCh(WV). (2.11)

This is the positive factor 1/(1 — 3w + 2w?2) times the sample cubic
central moment. The upper bound above shows that this factor is larger
than the factor 1/(1 — ) that arises in the unbiased estimator Vr(W).
For uniform weights (2.11) becomes

Ch(V) = SmpCh(V). (2.12)

- (D- 1)(D 2)

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Ex(SmpQr(WV)))

Quartic Central Moment Estimators. Let Wy = Wy — Ex(V). Then by
(2.10) the sample quartic central moment (1.8b) is

SmpQr(V) = i Wy (Wd — Ex( W)) i (\Tjd - E;(<\TJ>>4

d 1

= Z Wd\lfd — 42 Z Wdel‘Ud llidl

d=1d=
D

+6Z Z Z WdeIWdZ\Tlg qjd1qld2

d=1d;=1dr=1
D D

D D
-3 Z Z Z Z Wd, Wd, Wd3Wd4Wd1wdzwd3wd4-

di=1dr=1d3=1ds=1

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Ex(SmpQr(WV)))

Because \Tld and \Tld/ are independent when d # d’, and because
Ex(W4) =0, we find that

Ex(W3 Wy, ) = 04, Bx(V*) |
Ex(ﬁlg xTJdI\de2) P Ex(\TJ“)
+ banan(1 — ag) Ex (92",
Ex (Ve W, W et ) = OOty B (W4

+ 5d1d25d3d4(1 - 5d1d3)
)
)

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Ex(SmpQr(WV)))

Because N ~
Ex(V*) =Qr(w),  Ex(V?) = Vr(v),
we have
Ex(SmpQr(V)) = (1 - 4% + 6w? — 3w?) Qr(V)
_ _ (3.13a)
+ (6@ — 6w2 — 92 + 9w?) Vr(W)?.

On the other hand, the similar calculation in the first five pages of the
proof of Fact 6 showed that

Ex (Smer(\U)2) = (v‘v —2w? + W) Qr(v)

7 - (3.13b)
+ (1= 3% + 2w? 4 302 — 3w3) Vi(W)?.

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Determinant)

Equations (3.13) give Ex(SmpQr(¥)) and Ex(SmpVr(W¥)?) as linear
combinations of Qr(W) and Vr(W)2. This linear system can be inverted if
and only if its determinant is nonzero. By adding 3 times the second row
to the first, factoring out (1 — w) from the first row, and evaluating the
resulting determinant, we obtain

1—4w+6w2—3wd3 6w —6w? —9w? 4+ 9n3
det _ —  — _ — o o—=
w—2w?2 + w3 1—3w+2w2 + 3w’ —3w3
1—w 3—3w
—det| " — A
w—2w2+wd 1—-3w+2w2+3w? —3ws

— (1— w)det 1 3
- w—2w2+ w3 1-3w+2w2+3w?2—3u3
= (1-w) (1 6@ +3% +8w? — 6w3) .

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Determinant)

Because 0 < w < 1 for every D > 2, we see that 1 — w > 0, so we just
have to analyze the sign of the second factor of the determinant.

Because the function w ~ 8w? — 6w?3 is strictly convex over (—oo, g], if
wy < % for every d then the Jensen inequality bounds this second factor
below as

1—6w+3w°+8w2—6w3>1—6w+11w? — 6w’
=(1-w)(1—-2w)(1 —3w),

which is positive when w < %

Remark. This lower bound is sharp for uniform weights. It is positive for
uniform weights when D > 3. In general both the condition wy < & g for
every d and the condition w < 1 hold when w < é?, which is always the
case in practice.

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Qr(W) & Vr(¥)?)

When the determinant is positive, the system (3.13) can be solved for
Qr(W) and Vr(¥)? in terms of Ex(SmpQr(¥)) and Ex(SmpVr(W)?) as

1 1-3w+2w2+3w?2—3u3

r(V) = — — — Ex(SmpQr(V¥
Qr(V) 1-wi1—-6w+3w2+8w2—6ws (SmpQr(V))
1 ~ 62 _ 02 )
B _ 6W_ 6W_ 9W:9W7EX(Smer(\U)2),
1-wi1—-6w+3w2+8w2—6w3
1 w—2w2 4+ w3
Vr(W)?2 = — — — — BEx(SmpQr(V¥
() 1-w1—6w+3w2+8w2—6w3 (SmpQr(¥))
1 1— 4w +6w? —3w3 )
+ - ——— Ex(SmpVr(V)“) .
1-wi1—6w+3w2+8w2—6w3 ( P ())

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Unbiased)

Hence, unbiased estimators of Qr(W) and Sq(W) = Vr(W)? are seen to be

- Yy 12 -2 A 3
1 1—-3w+2w?+ 3w 3W78mer(\U)

Qr(V) = —— =
V) 1—=w1—6w+3w2+8w? — 6w?
7 6w2 — Q2 w3
B 1_ ow — 6w gwigwiSmer(\U)z,
—~ 1 w—2w? + w3 '
Sq(V) = ——— ————————SmpQr(V)
1-w1-—6w+3w2+8w? —6w3
1 1— 4w +6w2 —3u3
W+ 6w?* — 3w  SmpVa(W)2,

1—-w1—6w+3w2+8w2—6ws

where w, w2 and w3 are given by (1.1b). These formulas have none of the
simplicity of formula (1.7) for Vr(W) or formula (2.11) for Ch(V).

May 9, 2022
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Quartic Central Moment Estimators (Uniform Weights)

For uniform weights the unbiased estimators (3.14) become
A D(D*—2D+3
Qr(\U) = (ng)(D,Q)(D),:),) Smer(W)

3D(2D—-3 2
~ oAb SmpVI(V)?, (3.15a)

SAQ(‘U) = —WD(D_g) SmpQr(V)

2_
+ (DL_)Y)J(DESZLS)_@ SmpVr(V)?, (3.15b)

and the unbiased estimator of the dispersion is
_ -
Ds(V) = (p1yio-2)0-3) SmpQr(Y)
2 —
~ oD Do Smp V(). (3.15¢)

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Quartic Central Moment Estimators (Uniform Weights)

These unbiased estimators can also be expressed in terms of the sample
dispersion SmpDs(W) and sample variance SmpVr(V¥) as

~ D(D%2—2D+3
Qr(Vv) = (D—g)(D 2)(D) 3 SmpDs(V)
2
+ (DD(S(Dsg)JZ/BZ)ss) SmpVr(V)?, (3.16a)

Ds(¥) = 15 _Dl<)’(3D o2 SmpDs(V) — 5—iPp—z; SmpVi(¥)?, (3.16b)
Sa(V) = — 5mam5=3 SmpDs(V) + pymts; SmpVr(W)?.  (3.16¢)
These estimators satisfy the dispersion decomposition
Qr(¥) = Ds(W) + Sa(V).

However, while it is clear from (3.16a) that Q\r@) is positive, it is also
clear from (3.16b) and (3.16c) that Ds(W) or Sq(V¥) can be negative!

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moment Inequalities (Introduction)

The central moments Vr(W), Cb(W¥) and Qr(V) must satisfy moment
inequalities that arise because for every (po, p1, p2) € R3 we have

2
[ (po+ pr(R) + p2 0(R)?)a(RYAR > 0.
This shows that for every (po, p1, p2) € R3 that W = t(R) satisfies

1 Ex(V) Ex(V?)

Po
(po 1 pg) Ex(V) Ex(W?) Ex(W3)||p | >0.
Ex(V2) Ex(V3) Ex(V*)] \p
This is equivalent to
1 Ex(V) Ex(V?)
Ex(V) Ex(V?) Ex(W3)| is nonnegative definite. (4.17)
Ex(V?) Ex(V3) Ex(V*)

C. David Levermore (UMD) 1ID Models for Assets
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Central Moment Inequalities (Central Moments)

Because Ex(V), Ex(V?), Ex(W3) and Ex(W*), are related to the central
moments Vr(V¥), Cb(V) and Qr(WV) by

Ex(V?) = Ex(V)? + Vi(V),
Ex(V3) = Ex(V)? + 3Ex(V) Vi(V) 4+ Ch(V),
Ex (V%) = Ex(W)* + 6 Ex(V)*Vr(¥) + 4 Ex(V) Cb(W) + Qr(V),

a bit of calculation shows that

1 Ex(V) Ex(V?) 1 0 Vr(v)
Ex(V) Ex(V?) Ex(W3) | =L| 0  Vr(¥) Ch(v)|L",
Ex(W2) Ex(W3) Ex(V*) Vr(V) Cb(V) Qr(v)

where
1 0 0
L = | Ex(V) 1 0
Ex(V)? 2Ex(V) 1

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moment Inequalities (Central Moments)

We thereby see that condition (4.17) is equivalent to

1 0 Vi(V)
0 Vr(V) Cbh(V) is nonnegative definite .
Vi(W) Ch(V) Qr(v)
But this holds if and only if Vr(W), Cb(W) and Qr(V) satisfy

V(W) >0,  Vr(V)Qr(V) — Ch(¥)? — Vr(¥)® > 0. (4.18)

Remark. The moment inequalities (4.18) become strict if we make the
reasonable assumption that for every sufficiently nice function ¥ (R) the
probability density g(R) satisfies

/_O: (po + p1Y(R) + ;azw(f‘<')2)2 q(R)dR >0,

for every (pO) P1, PZ) € ]R3 with (p()u P1, P2) 7& (0’0)0)

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moment Inequalities (Sample Moments)

It might be hoped that our unbiased estimators for Vr(¥), Cb(W¥) and
Qr(WV) will satisfy an analog of the moment inequalities (4.18).

By mimicing our derivation of (4.18) it is easy to show that the sample
moments SmpVr(V), SmpCb(V¥) and SmpQr(W¥) given by (1.7b) and
(1.8) satisfy

1 0 SmpVr(V)
0 SmpVr(V) SmpCh(V) is positive definite,
SmpVr(V) SmpCb(V) SmpQr(V)

which is equivalent to

SmpVr(V) >0,

(4.19)
SmpVr(¥) SmpQr(V¥) — SmpCh(W)? — SmpVr(¥)® > 0.

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moment Inequalities (Central Moment Estimators)

We would like our central moment estimators to satisfy

1 0 Vr(w)
0 V(W) Cb(W) is positive definite,
Vi(¥) Ch(¥) Qr(v)

These estimators will have the general form
Vr(W) = a SmpVr(¥),  Cb(V) = 3SmpCh(V),
Qr(¥) = v SmpQr(W) — 6 SmpVr(W)?,

for some positive a, 3, v and §. Because SmpVr(V¥) > 0, proving the
positive definiteness comes down to showing that

oy SmpVr(W) SmpQr(V¥) > 2 SmpCh(W)?
+ (o2 + ad) SmpVr(W)3.

(4.20)

(4.21)

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moment Inequalities (Central Moment Estimators)

Because by (4.19)
SmpVr(V) SmpQr(¥) > SmpCh(V¥)? + SmpVr(¥)3,
we see that (4.21) is satisfied when «, 3, v and § satisfy
ay > B2, y>a?+4. (4.22)

For uniform weights the unbiased estimators given by (1.7), (2.12) and
(3.15) are specified by

2
= %’ B = (D—1[)>(D—2) ) 4.3
_ D(D?*-2D+3) 5= 3D(2D-3) (4.23)
7= -1 (D-2)(D-3) * = (-1 (b—2)(D-3)

These do not satisfy either of the inequalities in (4.22), so it is not clear
that our unbiased estimators satisfy the moment inequalities (4.21).

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Central Moment Inequalities (New Quartic Estimators)

Both of the inequalities in (4.22) are satisfied for every D > 3 by choices

_ D - D
@=Dp71> B = (D—1)(D-2) ° (4.24)

0= o203 -

_ D3
7= =1 (D-2)(D-3) ’
When these choices are placed into the general form (4.20) they yield

\Tr(w) = 2 Smer(\IJ) (4.25a)
Qr D Smer(\U) - WL()D—Q SmpVr(W¥)? (4.25¢)

Qr(V¥) = o= 0=3)
D(D—2) SmpVr(W)?2.

Smst(\U) + m

— D3
— (D-1)(D-2)(D-3)
These recover the unbiased estimators for Vr(W) and Cb(V), but give a

new estimator for Q\r(\ll)
May 9, 2022
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Central Moment Inequalities (New Quartic Estimators)

We can recast (4.25c) as the dispersion decomposition

Qr(¥) = Ds(¥) + Sq(V), (4.262)

where
Ds(¥) = (p=iypeayp=3) SmpDs(V), (4.26b)
Sa(V) = p2iatsy SmpVe(W)2. (4.26¢)

By comparing these estimators with the unbiased estimators given by
(3.16) we see that these are biased estimators that tend to overestimate.
However these are better than the unbiased estimators in two ways:
o Vr(W), Cb(¥) and Qr(W) satisfy the moment inequalities (4.21);
o Ds(W) and Sq(W) are positive whenever SmpDs(W) and SmpVr(V)
are positive, which is usually the case.

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Variance Certainty Metrics (Introduction)

Variance Certainty Metrics. Estimators of Ds(V) and Sq(V) lead to an
estimator for the variance of Vr(W). Recall that if Ex(W*) < oo then the
unbiased variance estimator Vr(W) has variance given by (1.6) as

w—2w? 4+ w3 w? — w3

Vr(\//;(\ll)) = L Ds(V) + 2m

VI’(\U)z )

where w, @and w3 are given by (1.1b). Therefore an estimator for the
variance of Vr(V¥) is

w—2w2 + w3 ~ w2 — w3 ~
T2 T Ds(W) 42 Sq(w 5.27
1= w)? s(V) + 5 Sq(V), (5.27)

(1—w)
where Ds(W) and Sq(W) are estimators Ds(¥) and Sq(W). If they are the
unbiased estimators determined by (3.14) then the estimator (5.27) will

also be unbiased.
C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Variance Certainty Metrics (SNR)

The standard deviation of \//\r(lll) then has the (biased) estimator

SD(Vi(w)) = /Vr(Va(w)),

where \//}(\//}(\U)) is given by (5.27).
A signal-to-noise ratio for Vr(V¥) is

SNR(VE(W)) = @\(’%"(’\)U)). (5.28)

The larger this SNR, the more certainty we have in the estimator \//?(\U)

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Variance Certainty Metrics (Metrics)

If a signal-to-noise ratio ratio of at least r, is desired then this certainty
can be scored by the metric

w@("’) _ r2 _ Ar%Yr(Vr(\U)/)\ (5.20)
r2 + SNR(Vr(V)) r2vr(vr(w)) + Vr(W)2
W Ds(W) + 2 (Vf_; ()
C ow—2u? W3 w2 — w3 Vr(v)?
(1—w; (W)Hﬁ&l( )+ 52)

The smaller this is, the more certainty we have in the estimator Vr(W).
The closer it is to 1, the less certainty we have in the estimator Vr(V¥).

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Variance Certainty Metrics (Uniform)

For unifrom weights this metric becomes

1 Pa 2 &
S AP
1 Pa 2 q Vi(V)?
o
where Vr(W) is the unbiased variance estimator
Vi(V) = 25 SmpVr(V), (5.30b)

and Ds(V) and Sq(W) are either
@ the unbiased estimators given by (3.16b) and (3.16c), or
o the biased estimators given by (4.26b) and (4.26c¢).

C. David Levermore (UMD) 1ID Models for Assets May 9, 2022
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Variance Certainty Metrics (Example)

Example. Let {r;(d)}}_, be a return history for asset i. Set

D
mi=Ex(r) =5 r(d),
d=1
D 2
v; = SmpVr(r;) = % Z (ri(d) —mj)”,
d=1
D ) 5
qi = SmpDs(r;) = % Z ((ri(d) - mi) - Vi)
d=1

Using (5.30b) and the biased estimators (4.26b) and (4.26c) gives

éi = VI‘(I’,') = De]_ Vi,

—~ 3 a= D(D-2 2
Ds(r;) = (D—l)(DD—2)(D—3) i Sa(r) = m Vi
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Variance Certainty Metrics (Example)

Then because

_— 3 D(D—-2
Vi(é) = 5 ooy 9 oD oo
D? 2(D-2) 2

= -3 9 T =13 Vi

the signal-to-noise ratio (5.28) becomes

5o1VYi
SNR(g;) = R

D2
\/ O-1)(0-2)(0-3) ¥ T (>-1)7(D-3) Vi
Vi

(5.31)

D D—2 '
\/(D 2)(113 3) i D2((D 32) v
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Variance Certainty Metrics (Example)

By placing SNR(¢;) given by (5.31) into the general metric formula (5.29)
we arrive at the metric
D—1 2(D-2) 2
: D-20-3 9 T D2(o=3y Vi
¢ (5.32)

D-1 . 2(D-2) 2 1.2
D203 9 T oy Vi T2 Vi

This is the analog for the return variance estimator é,- of the metric for the
return mean estimator [i; given by

1

~ ATV
wit = B (5.33)

T . 1.2
p-1Vit 7z m

The smaller these metrics are, the greater certainty we have in their
associated estimator.
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