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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: Λ, Ω, M & Π`

Recall that we have the containments

Λ ⊂ Ω ⊂M , Λ ⊂ Π` ⊂M for every ` ∈ (0,∞) , (1.1)

where
Λ is the set of long Markowitz allocations,
Ω is the set of solvent Markowitz allocations,
M is the set of all Markowitz allocations,
Π` is the set of `-limited leverage Markowitz allocations.

Here we quantify the relationship between Π` and Ω. Specifically, we will
characterize those ` ∈ (0,∞) for which Π` ⊂ Ω. This gives the leverage
ratio limit ` that insures we are working with solvent Markowitz allocations,
which is required for increasing returns to align with increasing reward!
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: δ(f) & υ(f)
Key tools for proving this characterization are the downside and upside
potentials. Recall that given a return history {r(d)}Dd=1 we defined the
downside and upside potentials for every Markowitz allocation f ∈M by

δ(f) = max
d

{
− r(d)Tf

}
, υ(f) = max

d

{
r(d)Tf

}
. (1.2)

We showed that these satisfy the inequalities
0 < δ(f) + µ(f) < δ(f) + υ(f) , (1.3)

where µ(f) = mTf is the return mean. We proved f ∈ Ω if and only if
δ(f) < 1. This motivated the developement of the liquidity function

ωδ(f) =


δ(f) + µ(f)

1 + µ(f) if δ(f) < 1 ,

1 if δ(f) ≥ 1 .
(1.4)

It takes values in (0, 1]. As it approaches 1, f comes closer to leaving Ω.
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: Λ, δmx & υmx

We define the downside and upside potentials of the set Λ by

δmx = max
{
δ(f) : f ∈ Λ

}
, υmx = max

{
υ(f) : f ∈ Λ

}
. (1.5)

Because δ(f) and υ(f) given by (1.2) are each the maximum of a finite set
of linear functions, they each must be convex over the convex set Λ.
Furthermore, we know Λ = Hull

(
E
)
, where

E =
{

ei : i = 1, · · · ,N
}
. (1.6)

Therefore the maximums over Λ in (1.5) reduce to

δmx = max
{
δ(f) : f ∈ E

}
, υmx = max

{
υ(f) : f ∈ E

}
. (1.7)
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: Λ, δmx & υmx

Because
r(d)Tei = ri (d) ,

we see that

δ(ei ) = max
d

{
− ri (d)

}
, υ(ei ) = max

d

{
ri (d)

}
.

Therefore (1.7) becomes

δmx = max
i ,d

{
− ri (d)

}
, υmx = max

i ,d

{
ri (d)

}
. (1.8)

Because each individual asset is solvent, we have

0 < 1 + ri (d) for every i and d ,

whereby we see from (1.8) that

0 < 1− δmx ≤ 1 + ri (d) ≤ 1 + υmx for every i and d . (1.9)
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: Π`, δ`mx & υ`mx

We define the downside and upside potentials of the set Π` by

δ`mx = max
{
δ(f) : f ∈ Π`

}
, υ`mx = max

{
υ(f) : f ∈ Π`

}
. (1.10)

Because δ(f) and υ(f) given by (1.2) are each the maximum of a finite set
of linear functions, they each must be convex over the convex set Π`.
Furthermore, we know Π` = Hull

(
E`
)
, where

E` =
{

e`ij : i , j = 1, · · · ,N , j 6= i
}
. (1.11)

Therefore the maximums over Π` in (1.10) reduce to

δ`mx = max
{
δ(f) : f ∈ E`

}
, υ`mx = max

{
υ(f) : f ∈ E`

}
. (1.12)
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: Π`, δ`mx & υ`mx

Because
r(d)Te`ij = (1 + `) ri (d)− ` rj(d) ,

we see that
δ
(
e`ij
)

= max
d

{
` rj(d)− (1 + `) ri (d)

}
,

υ
(
e`ij
)

= max
d

{
(1 + `) ri (d)− ` ri (d)

}
.

Therefore (1.12) becomes

δ`mx = max
i ,j 6=i

{
max

d

{
` rj(d)− (1 + `) ri (d)

}}
,

υ`mx = max
i ,j 6=i

{
max

d

{
(1 + `) ri (d)− ` ri (d)

}}
.
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: Π`, δ`mx & υ`mx

By observing that the j = i terms can be included (Do you see why?) and
by exchanging the order of the maximizations we have

δ`mx = max
d

{
max

i ,j

{
` rj(d)− (1 + `) ri (d)

}}
,

υ`mx = max
d

{
max

i ,j

{
(1 + `) ri (d)− ` ri (d)

}}
.

Therefore
δ`mx = max

d

{
` rmx(d)− (1 + `) rmn(d)

}
,

υ`mx = max
d

{
(1 + `) rmx(d)− ` rmn(d)

}
,

(1.13)

where rmn(d) and rmx(d) are the extreme returns on day d defined by

rmn(d) = min
i

{
ri (d)

}
, rmx(d) = max

i

{
ri (d)

}
. (1.14)
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: rmn(d) & rmx(d)
Remark. The extreme returns rmn(d) and rmx(d) defined by (1.14)
represent the returns of the worst and best performing assets on day d .
This data is not captured by the mean-variance statistics of m and V.
They arose naturally when computing formulas (1.12) for δ`mx and υ`mx.
They play a central role in our subsequent analysis.
By using the fact that Λ = Hull(E), it can be shown for every d that[

rmn(d), rmx(d)
]

=
{

r(d)Tf : f ∈ Λ
}
.

Because (1.8) and (1.14) imply that
−δmx = min

d

{
rmn(d)

}
, υmx = max

d

{
rmx(d)

}
,

we see that ⋃
d

[
rmn(d), rmx(d)

]
⊂
[
− δmx, υmx

]
.

We get equality when the intervals in the union leave no gaps.
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: r `mn(d) & r `mx(d)

r `mn(d) = rmn(d)− `
(
rmx(d)− rmn(d)

)
,

r `mx(d) = rmx(d) + `
(
rmx(d)− rmn(d)

)
,

By using the fact that Π` = Hull
(
E`
)
, it can be shown for every d that[

r `mn(d), r `mx(d)
]

=
{

r(d)Tf : f ∈ Π`
}
.

Because (1.8) and (1.14) imply that

−δ`mx = min
d

{
r `mn(d)

}
, υ`mx = max

d

{
r `mx(d)

}
,

we see that ⋃
d

[
r `mn(d), r `mx(d)

]
⊂
[
− δ`mx, υ

`
mx
]
.

We get equality when the intervals in the union leave no gaps.
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: r `mn(d) & r `mx(d)

Because each individual asset is solvent, we know that

− 1 < rmn(d) for every d . (1.15a)

We will make the assumption that

rmn(d) < rmx(d) for every d . (1.15b)

This excludes only the unlikely event that there is a day in which every
asset has the same return!
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Downside & Upside Containments Limit Selection

Downside and Upside Potentials: rmn(d) & rmx(d)
It is clear from (1.9) and (1.15) that rmn(d) and rmx(d) satisfy the bounds

−1 < −δmx ≤ rmn(d) < rmx(d) ≤ υmx ,

where δmx and υmx are given by (1.8). Then δ`mx and υ`mx given by (1.13)
are bounded as

δ`mx ≤ δmx + `
(
δmx + υmx

)
,

υ`mx ≤ υmx + `
(
δmx + υmx

)
.

(1.16)

These bounds are rough. They will be improved soon.
Remark. On most trading days a well-balanced portfolio will have assets
that decrease and assets that increase in value. For such days we will have

−1 < rmn(d) < 0 < rmx(d) .
For small portfolios it is not uncommon to have

−1 < rmn(d) < rmx(d) < 0 on days when the market goes down, or
0 < rmn(d) < rmx(d) on days when the market goes up.

C. David Levermore (UMD) Limited Portfolios March 15, 2022



Downside & Upside Containments Limit Selection

Containments: Ω, Ω
δ̄

& Ωῡ
δ̄

Recall that the set of solvent Markowitz allocations is

Ω =
{

f ∈M : δ(f) < 1
}
. (2.17a)

We now introduce the set of Markowitz allocations with downside
potential no greater than δ̄ ∈ (0,∞) as

Ω
δ̄

=
{

f ∈M : δ(f) ≤ δ̄
}
, (2.17b)

and the set of Markowitz allocations with downside potential no greater
than δ̄ ∈ (0,∞) and upside potential on greater than ῡ ∈ (0,∞) as

Ωῡ
δ̄

=
{

f ∈M : δ(f) ≤ δ̄ , υ(f) ≤ ῡ
}
. (2.17c)

Here we will give bounds on the leverage limit ` that will characterize
when Π` ⊂ Ωῡ

δ̄
, when Π` ⊂ Ω

δ̄
, and when Π` ⊂ Ω.
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Downside & Upside Containments Limit Selection

Containments: δ`mx & υ`mx Bound Characterizations
We begin with the following characterizations.
Fact 1. For every δ̄ > δmx we have

δ`mx ≤ δ̄ ⇐⇒ ` ≤ min
d

{
δ̄ + rmn(d)

rmx(d)− rmn(d)

}
. (2.18a)

For every ῡ > υmx we have

υ`mx ≤ ῡ ⇐⇒ ` ≤ min
d

{
ῡ − rmx(d)

rmx(d)− rmn(d)

}
. (2.18b)

Remark. Any day that assumption (1.15b) breaks down would simply be
excluded from the minimizations in (2.18). Our previous asssumption that
m and 1 are not proportional already excludes the possability that
assumption (1.15b) breaks down every day. Assumption (1.15b) avoids
having to handle exceptional cases in formulas (2.18).
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Downside & Upside Containments Limit Selection

Containments: δ`mx Bound Characterization Proof

Proof of (2.19a). Let δ̄ > δmx. From (1.13) we have

δ`mx = max
d

{
` rmx(d)− (1 + `) rmn(d)

}
.

It is clear from this that δ`mx ≤ δ̄ if and only if

` rmx(d)− (1 + `) rmn(d) ≤ δ̄ for every d ,

which holds if and only if

` ≤ δ̄ + rmn(d)
rmx(d)− rmn(d) for every d ,

which is equivalent to the minimum condition in (2.18a).
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Downside & Upside Containments Limit Selection

Containments: υ`mx Bound Characterization Proof

Proof of (2.19b). Let ῡ > υmx. From (1.13) we have

υ`mx = max
d

{
(1 + `) rmx(d)− ` rmn(d)

}
.

It is clear from this that υ`mx ≤ ῡ if and only if

(1 + `) rmx(d)− ` rmn(d) ≤ ῡ for every d ,

which holds if and only if

` ≤ ῡ − rmx(d)
rmx(d)− rmn(d) for every d ,

which is equivalent to the minimum condition in (2.18b).
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Downside & Upside Containments Limit Selection

Containments: Π` ⊂ Ωῡ
δ̄

We are now ready to state and prove our containment characterizations.
Fact 2. For every δ̄ > δmx and ῡ > υmx we have

Π` ⊂ Ωῡ
δ̄

⇐⇒ ` ≤ ` ῡ
δ̄
, (2.19a)

where ` ῡ
δ̄

is defined by

` ῡ
δ̄

= min
d

{
δ̄ + rmn(d)

rmx(d)− rmn(d) ,
ῡ − rmx(d)

rmx(d)− rmn(d)

}
. (2.19b)

Proof. Let δ̄ > δmx and ῡ > υmx. Fact 1 shows that ` ≤ ` ῡ
δ̄

if and only if

δ`mx ≤ δ̄ and υ`mx ≤ ῡ ,

which by definitions (1.10) and (2.17c) holds if and only if Π` ⊂ Ωῡ
δ̄

.
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Downside & Upside Containments Limit Selection

Containments: Π` ⊂ Ω
δ̄

Fact 3. For every δ̄ > δmx we have

Π` ⊂ Ω
δ̄
⇐⇒ ` ≤ `

δ̄
, (2.20a)

where `
δ̄

is defined by

`
δ̄

= min
d

{
δ̄ + rmn(d)

rmx(d)− rmn(d)

}
. (2.20b)

Proof. Let δ̄ > δmx. Fact 1 shows that ` ≤ `
δ̄

if and only if

δ`mx ≤ δ̄ ,

which by definitions (1.10) and (2.17b) holds if and only if Π` ⊂ Ω
δ̄
.
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Downside & Upside Containments Limit Selection

Containments: Π` ⊂ Ω

Fact 4. We have
Π` ⊂ Ω ⇐⇒ ` < `1 , (2.21)

where `1 is given by (2.20b).
Proof. Because

Ω =
⋃{

Ω
δ̄

: δ̄ ∈ (δmx, 1)
}
,

we see that Π` ⊂ Ω if and only if there exists δ̄ ∈ (δmx, 1) such that
Π` ⊂ Ω

δ̄
, which by Fact 3 is the case if and only if ` ≤ `

δ̄
. But this will be

the case if and only if ` < `1.
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Downside & Upside Containments Limit Selection

Containments: Π` ⊂ Ω

We can restate Fact 4 as

Π` ⊂ Ω ⇐⇒ ` < `Ω , (2.22a)

where `Ω is given by

`Ω = min
d

{ 1 + rmn(d)
rmx(d)− rmn(d)

}
= ρΩ

1− ρΩ
, (2.22b)

with ρΩ defined by
ρΩ = min

d

{1 + rmn(d)
1 + rmx(d)

}
. (2.22c)

Notice that ρΩ ∈ (0, 1). The ratios upon which it depends can be near 1
on days when the market moves down or up substantially, and can be
smallest on days when the market does not make a major move.
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Downside & Upside Containments Limit Selection

Leverage Limit Selection: Uses of `Ω & ρΩ

There are at least two potential uses of `Ω and ρΩ.
It might be used to monitor market stress. The closer ρΩ gets to 1,
the larger `Ω gets, which means it gets less likely that margins of
leveraged portfolios will be called. The closer ρΩ gets to 0, the more
stress the market is under. This use suggests introducing the metric

ωΩ = 1− ρΩ .

It is wise to use a large well-diversified portfolio when computing ρΩ
for this purpose.
It might be used to select a leverage ratio limit for your own portfolio.
It is wise to use a long history when computing ρΩ for this purpose.

It is the second use that we will explore here.
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Downside & Upside Containments Limit Selection

Leverage Limit Selection: Uses of `Ω

For a Markowitz allocation f ∈M the general ideas are as follows.
The leverage ratio λ(f) must be maintain below a certain limit that is
determined by the lender to protect the lender’s interests.
The downside potential δ(f) quantifies the potential loss in value of
the portfolio in a single day. The larger it is, the greater the risk to
the lender’s interests, so the more likely the leverage ratio limit will be
decreased.
δ(f) often increases with λ(f).
Both λ(f) and δ(f) have uncertainty associated with the choice of f,
and δ(f) has the additional uncertainty associated with the relevance
to the current situation of the return history used to compute it.
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Downside & Upside Containments Limit Selection

Leverage Limit Selection: Uses of `Ω

Recall from (1.13) that δ`mx is given by

δ`mx = max
d

{
` rmx(d)− (1 + `) rmn(d)

}
. (3.23)

Because we see that
δ`mx = δmx when ` = 0,
δ`mx = 1 when ` = `Ω,
the mapping ` 7→ δ`mx is convex.

Therefore we can bound δ`mx above over [0, `Ω] by the linear interpolant

δ`mx ≤ δ̄`Ω =
(

1− `

`Ω

)
δmx + `

`Ω
. (3.24)

By construction this is the best upper bound for δ`mx over [0, `Ω] that is
linear in `. In particular, it is better than the rough upper bound in (1.16).
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Downside & Upside Containments Limit Selection

Leverage Limit Selection:
We see from (2.22b) that

1 + `Ω = min
d

{ 1 + rmx(d)
rmx(d)− rmn(d)

}
.

We can use this identity to bound υ`mx above by

υ`mx = max
d

{
rmx(d) + `

(
rmx(d)− rmn(d)

)}
= max

d

{
rmx(d) + `

1 + `Ω
(1 + `Ω)

(
rmx(d)− rmn(d)

)}

≤ max
d

{
rmx(d) + `

1 + `Ω

(
1 + rmx(d)

)}

= υmx + `

1 + `Ω

(
1 + υmx

)
.
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Downside & Upside Containments Limit Selection

Leverage Limit Selection:

Therefore an upper bound for υ`mx is

υ`mx ≤ υ`Ω = υmx + `
1 + υmx
1 + `Ω

. (3.25)
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Downside & Upside Containments Limit Selection

Leverage Limit Selection:

By evaluating the rough upper bound for δ`mx in (1.16) at ` = `Ω we obtain

1 ≤ δmx + `Ω
(
δmx + υmx

)
,

from which we can add υmx to both sides and derive

1 + υmx
1 + `Ω

≤
(
δmx + υmx

)
.

We thereby see that

ῡ`Ω = υmx + `
1 + υmx
1 + `Ω

≤ υmx + `
(
δmx + υmx

)
.

This confirms that ῡ`Ω is a better upper bound for υ`mx than the rough
upper bound for it in (1.16).
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Downside & Upside Containments Limit Selection

Leverage Limit Selection:

Remark. It is natural to ask why an investor who maintains a long
portfolio should care about bounds on leverage limits. The answer is that
bounds on leverage limits can fall well before a market bubble collapses.
During a bubble some investors will succumb to the temptation of taking
highly leveraged positions. The most highly leveraged investors will be
stressed when bounds on leverage limits fall. They may have to shed some
of their position to cover their margins. This creates market volatility,
which in turn can drive bounds on leverage limits down further. This can
go on for quite a while before the market turns down — if it turns down.
Observant long investors can use this time move into a more conservative
position. It is wise to use short histories when computing these bounds for
this purpose.
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