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One-Rate Model Computing One

Limited-Leverage One-Rate Model: M1 and Π`
1

The set of Markowitz allocations for the one-rate model is

M1 =
{

(f, frf) ∈ RN+1 : 1Tf + frf = 1
}
. (1.1)

The return mean and volatility for a portfolio with allocation (f, frf) are

µ(f, frf) = mTf + µrf frf , σ(f, frf) =
√

fTVf . (1.2)

The leverage ratio of this portfolio can be expressed as

λ(f, frf) = 1
2
(
‖f‖1 + |frf | − 1

)
. (1.3)

Therefore for every ` ≥ 0 the set of Markowitz allocations with leverage
ratio no greater than ` is

Π`
1 =

{
(f, frf) ∈M1 : ‖f‖1 + |frf | ≤ 1 + 2 `

}
. (1.4)
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One-Rate Model Computing One

Limited-Leverage One-Rate Model: Tobin Frontier
The efficient Tobin frontier for M1 is given by

µ = µrf + νrfσ for σ ≥ 0 , (1.5)

where νrf > 0 is determined by

ν 2
rf =

(
m− µrf1

)TV
(
m− µrf1

)
,

and the Tobin frontier allocation is given by

ftf(µ) = µ− µrf
ν 2
rf

V−1(m− µrf1
)
. (1.6)

The asssociated risk-free frontier allocation is

frff(µ) = 1− 1Tftf(µ) = 1− (µ− µrf)(µmv − µrf)
ν 2
rf σ

2
mv

. (1.7)
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One-Rate Model Computing One

Limited-Leverage One-Rate Model: Tangent Portfolio
When µrf 6= µmv the tangent portfolio exists and is given by

ftg = ftf(µtg) =
µtg − µrf

ν 2
rf

V−1(m− µrf1
)
,

where µtg is determined by

(µtg − µrf)(µmv − µrf)
ν 2
rf σ

2
mv

= 1 .

The analysis of the Tobin frontier allocations falls into three cases:

µrf < µmv , tangent portfolio is efficient ;
µmv = µrf , tangent portfolio does not exist ;
µmv < µrf , tangent portfolio is inefficient .
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One-Rate Model Computing One

Limited-Leverage One-Rate Model: Tangent Efficient

When µrf < µmv the tangent portfolio is efficient. The efficient frontier
allocation is

fetf(σ) = σ

σtg
ftg , frfef(σ) = 1− σ

σtg
.

The leverage ratio is

λetf(σ) = λ(fetf(σ) , frfef(σ))

=


1
2
σ

σtg

(
‖ftg‖1 − 1

)
for σ ∈ [0, σtg] ,

1
2

(
σ

σtg

(
‖ftg‖1 + 1

)
− 2

)
for σ ∈ (σtg,∞) .

Notice that λetf(σ) ≤ ` for sufficiently small σ.
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One-Rate Model Computing One

Limited-Leverage One-Rate Model: Tangent Inefficient

When µmv < µrf the tangent portfolio is inefficient. The efficient frontier
allocation is

fetf(σ) = − σ

σtg
ftg , frfef(σ) = 1 + σ

σtg
.

The leverage ratio is

λetf(σ) = λ(fetf(σ) , frfef(σ)) = 1
2
σ

σtg

(
‖ftg‖1 + 1

)
, for σ ∈ [0,∞) .

Notice that λetf(σ) ≤ ` for sufficiently small σ.
Remark. This shows that for sufficiently small σ the efficient frontier for
Π`

1 coincides with the efficient Tobin frontier for M1. In particular, it is
linear with slope νrf for small σ.
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One-Rate Model Computing One

Limited-Leverage One-Rate Model: µ`mx

It can be shown that Π`
1 = Hull

(
E`

1
)

where

E`
1 =

{(
e`

ij , 0
)
,
(
(1 + `) ei , −`

)
,
(
− ` ej , 1 + `

)}
.

Therefore
µ`

mx = max
{
µ
(
f , frf

)
:
(
f , frf

)
∈ Π`

1

}
= max

{
µ
(
f , frf

)
:
(
f , frf

)
∈ E`

1

}
= max

{
(1 + `)µmx − ` µmn ,

(1 + `)µmx − ` µrf ,

(1 + `)µrf − ` µmn

}
, .

where
µmn = min

i
{mi} , µmx = max

i
{mi} .
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Limited-Leverage One-Rate Model: Tangent Inefficient

Because
`

1 + 2 `
(

(1 + `)µmx − ` µrf

)
+ 1 + `

1 + 2 `
(

(1 + `)µrf − ` µmn

)
= µrf ,

and because

(1 + `)µmx − ` µrf > (1 + `)µrf − ` µmn ,

we see that µrf < (1 + `)µmx − ` µrf ≤ µ`
mx. Therefore the efficient

frontier of Π`
1 exists for µ ∈

[
µrf , µ

`
mx
]
. We can approximate it numerically

using the Malab “quadprog” command.
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One-Rate Model Computing One

Computng the One-Rate Model: Quadratic Programming

Because the function being minimized is quadratic in f while the
constraints are linear in f, this is called a quadratic programming problem.
It can be solved for a particular V, m, and µ by using either the Matlab
command “quadprog” or an equivalent command in some other language.
Recall that the Matlab command quadprog(A,b,C,d,Ceq,deq) returns
the solution of a quadratic programming problem in the standard form

arg min
{

1
2xTAx + bTx : x ∈ RM , Cx ≤ d , Ceqx = deq

}
,

where A ∈ RM×M is nonnegative definite, b ∈ RM , C ∈ RK×M , d ∈ RK ,
Ceq ∈ RKeq×M , and deq ∈ RKeq . Here K and Keq are the number of
inequality and equality constraints respectively.
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One-Rate Model Computing One

Computng the One-Rate Model: Standard Form

Given V, m, and µ ∈ [µrf , µ
`
mx], the problem that we want to solve to

obtain f`
f (µ) and frff(µ) is

arg min
{

1
2 fTVf : (f, frf) ∈ RN+1 , ‖f‖1 + |frf | ≤ 1 + 2 ` ,

1Tf + frf = 1 , mTf + µrf frf = µ
}
.

By comparing this with the standard form on the previous slide we see that
if we set xT = (f frf) then M = N + 1, Keq = 2, and

A =
(

V 0
0T 0

)
, b =

(
0
0

)
, Ceq =

(
1T 1
mT µrf

)
, deq =

(
1
µ

)
.

However, the inequality constraint ‖f‖1 + |frf | ≤ 1 + 2 ` is not in the
standard form Cx ≤ d.
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Computng the One-Rate Model: Two Reformulations

As was done for the limited-leverage allocations Π` without risk-free
assets, we enlarge the dimension of x and consider the following
reformulations Π`

1.

Π`
1 =

{
(f, frf) ∈ RN+1 : 1Tf + frf = 1 , ‖f‖1 + |frf | ≤ 1 + 2`

}
=
{

(f, frf) ∈ RN+1 : 1Tf + frf = 1 , ∃(s, srf) ∈ RN+1 :

s ≥ 0 , (f + s) ≥ 0 , srf ≥ 0 , (frf + srf) ≥ 0 , 1Ts + srf ≤ `
}

=
{

(f, frf) ∈ RN+1 : 1Tf + frf = 1 , ∃(g, grf) ∈ RN+1 :

(g ± f) ≥ 0 , (grf ± frf) ≥ 0 , 1Tg + grf ≤ 1 + 2`
}
.

The proofs of these reformulations are left as exercises.
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Computng the One-Rate Model: First Reformulation
If we use the first reformulation then the problem that we want to solve to
obtain f`

f (µ) and frff(µ) is

arg min
{

1
2 fTVf : (f, s, frf , srf) ∈ R2N+2, 1Tf + frf = 1, mTf + µrf frf = µ,

s ≥ 0 , (f + s) ≥ 0 , srf ≥ 0 , (frf + srf) ≥ 0 , 1Ts + srf ≤ `
}
.

By comparing this with the standard form we see that if we set
x = (fT sT frf srf)T then M = 2N + 2, K = 2N + 3, Keq = 2, and

A =


V O 0 0
O O 0 0
0T 0T 0 0
0T 0T 0 0

 , b =


0
0
0
0

 , C =

−I −I 0 0
O −I 0 0
0T 1T 0 1

 , d =

0
0
`

 ,
Ceq =

(
1T 0T 1 0
mT 0T µrf 0

)
, deq =

(
1
µ

)
.
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Computng the One-Rate Model: Second Reformulation
If we use the second reformulation then the problem that we want to solve
to obtain f`

f (µ) and frff(µ) is

arg min
{

1
2 fTVf : (f, g, frf , grf) ∈ R2N+2, 1Tf + frf = 1, mTf + µrf frf = µ,

(g ± f) ≥ 0 , (grf ± frf) ≥ 0 , 1Tg + grf ≤ 1 + 2 `
}
.

By comparing this with the standard form we see that if we set
x = (fT gT frf grf)T then M = 2N + 2, K = 2N + 3, Keq = 2, and

A =


V O 0 0
O O 0 0
0T 0T 0 0
0T 0T 0 0

, b =


0
0
0
0

, C =

−I −I 0 0
I −I 0 0

0T 1T 0 1

, d =

 0
0

1 + 2`

,
Ceq =

(
1T 0T 1 0
mT 0T µrf 0

)
, deq =

(
1
µ

)
.
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One-Rate Model Computing One

Computng the One-Rate Model: quadprog Command

In either case f`
f (µ) and f `

rff(µ) are the first N entries and the 2N + 1 entry
of the output x of a quadprog command that is formated as

x = quadprog(A, b,C, d,Ceq,deq) ,

where the matrices A, C, and Ceq, and the vectors b, d, and deq are
given on the previous slides.
Remark. By doubling the dimension of the vector x from N + 1 to
2N + 2, the number of inequality constraints becomes 2N + 3. If N = 9
then this is 21!
Remark. There are other ways to use quadprog to find f`

f (µ) and f `
rff(µ).

Documentation for this command is easy to find on the web. The similar
command in R is also called “quadprog”.
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Computng the One-Rate Model: Properties of σ`f (µ)

When computing an `-limited efficient frontier, it helps to know some
general properties of the function σ`

f (µ) over the interval [µrf , µ
`
mx]. These

include:
σ`

f (µ) is continuous over [µrf , µ
`
mx];

σ`
f (µ) is increasing and convex over [µrf , µ

`
mx];

σ`
f (µ) is piecewise hyperbolic over [µrf , µ

`
mx].

This means that σ`
f (µ) is built up from segments of a line and hyperbolas

that are connected at a finite number of nodes that correspond to points
in the interval (µrf , µ

`
mx) where σ`

f (µ) has either
a jump discontinuity in its first derivative or
a jump discontinuity in its second derivative.

Guided by these facts we now show how an `-limited efficient frontier can
be approximated numerically with the Matlab “quadprog” command.
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Computing the One-Rate Model: Appproximating σ`f (µ)

First, partition the interval [µrf , µ
`
mx] as

µrf = µ0 < µ1 < · · · < µn−1 < µn = µ`
mx .

For example, set µk = µ`
mn + k(µ`

mx − µrf)/n for a uniform partition. Pick
n large enough to resolve all the features of the `-limited efficient frontier.
There should be at most one node in each subinterval [µk−1, µk ].
Second, for every k = 1, · · · , n − 1 use quadprog to compute f`

f (µk) and
f `
rff(µk). (This computation will not be exact, but we will speak as if it is.)

The allocations {f`
f (µk)}nk=0 should be saved.

Third, for every k = 1, · · · , n − 1 compute σk by

σk = σ`
f (µk) =

√
f`
f (µk)TVf`

f (µk) .
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Computing the One-Rate Model: Interpolation in σµ-Plane

Fourth. Set
f`
f (µ0) = 0 , f `

rff(µ0) = 1 , σ0 = 0 .

There is typically a unique long-short pair allocation e`
ij such that

µ`
mx = (1 + `) mi − `mj that is most efficient, in which case we have

f`
f (µn) = e`

ij , f `
rff(µn) = 0 , σn = σ`

ij =
√

(e`
ij)TVe`

ij .

Finally, we “connect the dots” between the points {(σk , µk)}nk=0 to build
an approximation to the `-limited frontier in the σµ-plane. This can be
done by linear interpolation. Specifically, for every µ ∈ (µk−1, µk) we set

σ̃`
f (µ) = µk − µ

µk − µk−1
σk−1 + µ− µk−1

µk − µk−1
σk .
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One-Rate Model Computing One

Computing the One-Rate Model: Linear Interpolation in Π`
1

A better way to “connect the dots” between the points {(σk , µk)}nk=0 is
motivated by the two-fund property. Specifically, for every µ ∈ (µk−1, µk)
we set

f̃ `
f (µ) = µk − µ

µk − µk−1
f`
f (µk−1) + µ− µk−1

µk − µk−1
f`
f (µk) ,

f̃ `
rff(µ) = µk − µ

µk − µk−1
f `
rff(µk−1) + µ− µk−1

µk − µk−1
f `
rff(µk) ,

and then set
σ̃`

f (µ) =
√

f̃ `
f (µ)TVf̃ `

f (µ) .

Remark. This will be a very good approximation if n is large enough.
Over each interval (µk−1, µk) it generally approximates σ`

f (µ) with a
hyperbola rather than with a line.
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Computing the One-Rate Model: Linear Interpolation in Π`
1

Remark. Because f`
f (µk) ∈ Π`(µk) and f`

f (µk−1) ∈ Π`(µk−1), we can
show that

f̃ `
f (µ) ∈ Π`(µ) for every µ ∈ (µk−1, µk) .

Therefore σ̃`
f (µ) gives an approximation to the `-limited frontier that lies

on or to the right of the `-limited frontier in the σµ-plane.
Remark. When there are no nodes in the interval (µk−1, µk) then we can
use the two-fund property to show that σ̃`

f (µ) = σ`
f (µ).
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