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Limited-Leverage One-Rate Model: M; and [}

The set of Markowitz allocations for the one-rate model is
My = {(F ) € RN 17 4 £ =1} (1.1)
The return mean and volatility for a portfolio with allocation (f, f;) are
p(f, fig) = m'F 4 iy, o(f, fiy) = VETVE. (1.2)
The leverage ratio of this portfolio can be expressed as
MF, fie) = S (IFll + [fiel = 1) (1.3)

Therefore for every £ > 0 the set of Markowitz allocations with leverage
ratio no greater than / is

i = {(f. £) € My« Ifla + [ <1420} (1.4)
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Limited-Leverage One-Rate Model: Tobin Frontier

The efficient Tobin frontier for M is given by

W= [y + VO foroc >0, (1.5)

where v > 0 is determined by

T
uf = (M= puel) V(M — )
and the Tobin frontier allocation is given by

(i) = " TV (m — prel) (1.6)

Lt

The asssociated risk-free frontier allocation is

m— :u’r :umv - ,LLr
fir) = 1~ 1) = 1 - WPl ) g
f “mv
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Limited-Leverage One-Rate Model: Tangent Portfolio

When p.¢ # i, the tangent portfolio exists and is given by

:u’tg — Myt Vfl

ftg = ftf(utg) = 12
rf

(m - :u’rfl) ’

where p, is determined by

(teg — Hag) (lmy — Hag) _
Ui oy

The analysis of the Tobin frontier allocations falls into three cases:

Hot < My 5 tangent portfolio is efficient;
Moy = Mot 5 tangent portfolio does not exist;
Py < fhyf 5 tangent portfolio is inefficient.
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Limited-Leverage One-Rate Model: Tangent Efficient

When p.¢ < i, the tangent portfolio is efficient. The efficient frontier
allocation is

o g
fore(0) = ;ftg7 fier(0) =1 — -
tg tg

The leverage ratio is

)\etf(a) - )‘(fetf(a) ) f;fef(o'))

g
j— (gl = 1) for 0 € [0, 0],
— te
g
% (a (Hftng +1) — 2> for o € (04, 00) -
e

Notice that Aetr(0) < ¢ for sufficiently small o.
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Limited-Leverage One-Rate Model: Tangent Inefficient

When p,,, < p,¢ the tangent portfolio is inefficient. The efficient frontier
allocation is

g g
fore(0) = —;g fig fier(0) =1+ gg .
The leverage ratio is
g
Aett(0) = Mot (0) , firer(0)) = 3 — (Ifiglli +1),  for o €[0,00).

tg
Notice that Aete(o) < ¢ for sufficiently small o.

Remark. This shows that for sufficiently small o the efficient frontier for
MN{ coincides with the efficient Tobin frontier for Mj. In particular, it is
linear with slope 1 for small o.
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Limited-Leverage One-Rate Model: 1! .

It can be shown that M§ = Hull(&f) where

& ={(ef.0), (1+ e, ~0), (—Lej,1+0)}.

Therefore
.uﬁm = max{u(f, ﬁrf) : (f’ f;rf) € n?}
= max{u(fv ﬁrf) : (fv frf) € 8{}
= max{(l + f) Hmx — Eﬂmn )
(1+£)N’mx _elurfv
(1+€):u’rf _glumn}?'
where

P = Min{m;}, P = Max{m;}.
1 1
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Limited-Leverage One-Rate Model: Tangent Inefficient

Because

1—|—€2£ ((1+£)me—furf) +11_:_2é <(1+£)#rf—fﬂmn) = it 5

and because

(1+£)me_€:u’rf > (1+£)Mrf_€:u’mn7

we see that 1y < (14 £) gy — £ e < pil. Therefore the efficient
frontier of I'I{ exists for p € [,urf,,uf;m]. We can approximate it numerically
using the Malab “quadprog” command.
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Computng the One-Rate Model: Quadratic Programming

Because the function being minimized is quadratic in f while the
constraints are linear in f, this is called a quadratic programming problem.
It can be solved for a particular V, m, and p by using either the Matlab
command “quadprog” or an equivalent command in some other language.

Recall that the Matlab command quadprog(A,b,C,d,C,,d,,) returns

the solution of a quadratic programming problem in the standard form
argmin{ %XTAX +b'x : xeRM, Cx<d, Cex =dg, } ,

where A € RM*M jg nonnegative definite, b € RM C e RKXM d ¢ RK,
C., € RNa*M and d,, € R¥«a. Here K and K, are the number of
|nequa||ty and equality constraints respectively.
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Computng the One-Rate Model: Standard Form

Given V, m, and p € [u,¢, iy, ], the problem that we want to solve to
obtain ff(u) and f.4(p) is

argmin 3FTVF © (F, ) € RNTL, [Iflls + || <1+ 20,
f+fe=1, mTf+Mrffrf::U'}-

By comparing this with the standard form on the previous slide we see that
if we set x" = (f fir) then M = N+ 1, K., =2, and

vV 0 0 1T 1 1
A= o) o= (o) e far ) 0= ()

However, the inequality constraint ||f||; + |f;| <1+ 2 is not in the
standard form Cx < d.
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Computng the One-Rate Model: Two Reformulations

As was done for the limited-leverage allocations ¢ without risk-free

assets, we enlarge the dimension of x and consider the following
reformulations M{.

N ={(Ffy) e RN 2 TF £ =1, [Ifll+ | <1420}
- {(f, fo) RN 1T 4 £ =1, 3(s,s¢) € RV
s>0, (F+5)>0, 5;>0, (fr+57) >0, I"s+s, <0}
={(f£) e RV TTF 4 £ =1, T(g,g) € RV
(g+F)>0, (gr+f) >0, I'g+g, <142 }.

The proofs of these reformulations are left as exercises.
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Computng the One-Rate Model: First Reformulation

If we use the first reformulation then the problem that we want to solve to
obtain ff(u) and f,g(u) is

argmind 2F'VF @ (F,s, fie,5.0) € RPNF2 ATF 4 £ =1, m'f + pofp = 41,
2 rfy =2rf rf rf 'rf

s>0,(F+5)>0,5:>0, (f+5)>0, s +5, <0}

By comparing this with the standard form we see that if we set
x = (f st fe srf)T then M = 2N +2, K =2N + 3, K,, =2, and

A: T T 5 b— 5 C: O _I 0 0 5 d: 0 5
0- 00 0 O 0 of 17 o 1 ,
0" 0T 0 0 0
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Computng the One-Rate Model: Second Reformulation

If we use the second reformulation then the problem that we want to solve
to obtain ff(u) and f,g(u) is

arg mln{%fTVf : (f)ga frf7grf) € R2N+27 ]'Tf + frf = 17 mTf + Nrff;f = M,

(g+f)>0,(gr 1) >0, 1Tg+grf§1+2£}‘

By comparing this with the standard form we see that if we set
x = (f' g' £ g4)' then M =2N +2, K =2N+3, K., =2, and

A: T T ,b: ,C: I _I 0 0 ,d: 0 ,
0 0 00 0 o 1T o0 1 14 2¢
of 0T 0 o 0

1 0" 1 o 1
Ceq_<mT oT Lot 0>7 deq_<'u>'
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Computng the One-Rate Model: quadprog Command

In either case ff(y) and £%(u) are the first N entries and the 2N + 1 entry
of the output x of a quadprog command that is formated as

x = quadprog(A, b, C, d, Ceq, deq) ,

where the matrices A, C, and Ceq, and the vectors b, d, and deq are
given on the previous slides.

Remark. By doubling the dimension of the vector x from N 4 1 to
2N + 2, the number of inequality constraints becomes 2N + 3. If N =9
then this is 21!

Remark. There are other ways to use quadprog to find ff(u) and f5(u).
Documentation for this command is easy to find on the web. The similar
command in R is also called “quadprog”.
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Computng the One-Rate Model: Properties of ()

When computing an /¢-limited efficient frontier, it helps to know some
general properties of the function of (1) over the interval [u,¢, pé.]. These
include:

o of(p) is continuous over [, pih;

o of(p) is increasing and convex over [p¢, pb . ];

o of(p) is piecewise hyperbolic over [p¢, pé ]

This means that af(,u) is built up from segments of a line and hyperbolas
that are connected at a finite number of nodes that correspond to points
in the interval (u,¢, ity ) where of(u) has either

@ a jump discontinuity in its first derivative or

@ a jump discontinuity in its second derivative.

Guided by these facts we now show how an /-limited efficient frontier can
be approximated numerically with the Matlab “quadprog” command.
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Computing the One-Rate Model: Appproximating of (1)

First, partition the interval [u,;, u%.] as
¢
Hpp = Ho < H1 < -+ < Hn-1 < fbn = [y -

For example, set pux = by, + k(pby — p,¢)/n for a uniform partition. Pick
n large enough to resolve all the features of the /-limited efficient frontier.
There should be at most one node in each subinterval [px—_1, k]

Second, for every k =1, ---, n — 1 use quadprog to compute ff(px) and
% (uk)- (This computation will not be exact, but we will speak as if it is.)
The allocations {ff(1x)}7_, should be saved.

Third, for every k =1, ---, n— 1 compute o, by

ok = of () = \/FE (P VEE (i) -
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Computing the One-Rate Model: Interpolation in ou-Plane

Fourth. Set
fi(uo) =0, fi(mo)=1, o0=0.

There is typically a unique long-short pair allocation efj such that

,uf;lx = (14 ¢) m; — £ m;j that is most efficient, in which case we have
ffg(:un) = efjv ﬁreff(:un) =0, op= of = (eﬁ-)TVe,ej-

Finally, we “connect the dots" between the points {(o, itk)};_, to build
an approximation to the /-limited frontier in the ou-plane. This can be
done by linear interpolation. Specifically, for every p € (pk—1, f1x) we set

. K — — Hk—1
p) = _HkTR o BT

[k — Hk—1 [tk — Pk—1
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Computing the One-Rate Model: Linear Interpolation in I

A better way to “connect the dots” between the points {(o, fik)}5_g is

motivated by the two-fund property. Specifically, for every u € (pix—1, tk)
we set

F (1) + L ()

ok — Hk—1 [k — fig—1 ’
= Bk — K g H— Hk—1 ¢
Fe = ——— fig(ph—1) + ———— fig (k) »
() e — [ vir (1k—1) P v (1K)

and then set
- ~0 ~0
&f(p) = VE(u)TVE (1) -

Remark. This will be a very good approximation if n is large enough.

Over each interval (u_1, fk) it generally approximates of(u) with a
hyperbola rather than with a line.
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Computing the One-Rate Model: Linear Interpolation in I

Remark. Because ff(ux) € M*(uk) and ff(ux—1) € M(ux_1), we can
show that

=0
Br(p) € N°(n) for every p € (pk—1, k) -

Therefore &f(11) gives an approximation to the (-limited frontier that lies
on or to the right of the ¢-limited frontier in the ou-plane.

Remark. When there are no nodes in the interval (px—1, ik) then we can
use the two-fund property to show that &f(u) = of ().
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