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Visualizing Quadratic Programming Computing Two Assets Three Assets

Vizualizing Frontiers: Σ(Π`) in the σµ-Plane

The set Π` in RN of `-limited portfolio allocations is associated with the
set Σ(Π`) in the σµ-plane of volatilities and return means given by

Σ(Π`) =
{

(σ, µ) ∈ R2 : σ =
√

fTVf , µ = mTf , f ∈ Π`
}
.

For every ` > 0 we have shown that Π` = Hull
(
E`
)
, the convex hull in RN

of the set E` =
{

e`ij
}

of the N(N − 1) long-short pair allocations. As such,
the set Π` is convex and compact (closed and bounded).
Because the set Σ(Π`) is the image in R2 of Π` under the continuous
mapping

f 7→
(
σ(f) , µ(f)

)
=
(√

fTVf , mTf
)
,

the set Σ(Π`) is pathwise connected and compact.
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Vizualizing Frontiers: Bounding µ and σ for f ∈ Π`

We already have some easy bounds on µ and σ for f ∈ Π`.
Because the mapping f 7→ mTf is linear over Π` = Hull

(
E`
)
, its image

is the interval [µ`mn, µ
`
mx], where

µ`mn = min
{

mTf : f ∈ E`
}
, µ`mx = max

{
mTf : f ∈ E`

}
.

Because the mapping f 7→
√

fTVf is convex over Π` = Hull
(
E`
)
, its

image is the interval [σ`mn, σ
`
mx], where

σ`mv = min
{√

fTVf : f ∈ Π`
}
, σ`mx = max

{√
fTVf : f ∈ E`

}
.

Notice that σ`mv ≥ σmv with equality if and only if fmv ∈ Π`.
Because Π` ⊂M, we know that Σ(Π`) ⊂ Σ(M), where

Σ(M) =
{

(σ, µ) ∈ R2 : σ =
√

fTVf , µ = mTf , f ∈M
}
.
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Vizualizing Frontiers: Bounding Σ(Π`)
Therefore Σ(Π`) is contained within the intersction of the Markowitz
region Σ(M) with the closed box [σ`mv, σ

`
mx]× [µ`mn, µ

`
mx]. Earlier we

derived the exact formulas

µ`mn = µmn − ` (µmx − µmn) , µ`mx = µmn + ` (µmx − µmn) ,

where
µmn = min

i
{mi} , µmx = max

i
{mi} ,

and the rough bounds

σmv ≤ σ`mv ≤ σmn ,

σmx + `
(
σmx − σmn

)
≤ σ`mx ≤ (1 + 2 `)σmx ,

where
σmn = min

i
{σi} , σmx = max

i
{σi} .
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Visualizing Quadratic Programming Computing Two Assets Three Assets

Vizualizing Frontiers: Definition of the `-Limited Frontier

The set Π`(µ) of `-limited portfolio allocations with return mean µ is
defined for every µ ∈ R by

Π`(µ) =
{

f ∈ Π` : mTf = µ
}
.

This set is nonempty if and only if µ ∈ [µ`mn, µ
`
mx]. Hence, Σ(Π`) can be

expressed as

Σ(Π`) =
{ (√

fTVf , µ
)

: µ ∈ [µ`mn, µ
`
mx] , f ∈ Π`(µ)

}
.

Definition. The points on the boundary of Σ(Π`) that correspond to
those `-limited portfolios that have less volatility than every other `-limited
portfolio with the same return mean is called the `-limited frontier.
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Vizualizing Frontiers: Definition of the `-Limited Frontier
Remark. The rest of the boundary of Σ(Π`) is contained within the image
of all convex combinations of pairs of long-short allocations in E` that are
vertices of an edge of Π`. Recall that e`ij , e`kl ∈ E` are vertices of an edge
of Π` if and only if (i , j) 6= (k, l) with k = i or l = j . For each such pair set

σ`ij = σ
(
e`ij
)
, µ`ij = µ

(
e`ij
)
, σ`kl = σ

(
e`kl
)
, µ`kl = µ

(
e`kl
)
.

If µ`ij = µ`kl then plot the line segment connecting (σ`ij , µ`ij) and (σ`kl , µ
`
kl ).

If µ`ij 6= µ`kl then without loss of generality suppose that µ`ij < µ`kl , set

f`ij,kl (µ) = µ`kl − µ
µ`kl − µ`ij

e`ij +
µ− µ`ij
µ`kl − µ`ij

e`kl ,

and plot the hyperbola segment
σ = σ

(
f`ij,kl (µ)

)
over µ ∈ [µ`ij , µ`kl ] .

There are N(N − 1)(N − 2) such pairs of pairs, one for each edge of Π`.
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Vizualizing Frontiers: Definition of σ`f (µ)

The `-limited frontier is the curve in the σµ-plane given by the equation

σ = σ`f (µ) over µ ∈ [µ`mn, µ
`
mx] ,

where the value of σ`f (µ) is obtained for each µ ∈ [µ`mn, µ
`
mx] by solving

the constrained minimization problem

σ`f (µ)2 = min
{
σ2 : (σ, µ) ∈ Σ(Π`)

}
= min

{
fTVf : f ∈ Π`(µ)

}
.

Because the function f 7→ fTVf is continuous over the compact set Π`(µ),
a minimizer exists.

Because V is positive definite, the function f 7→ fTVf is strictly convex
over the convex set Π`(µ), whereby the minimizer is unique.
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Vizualizing Frontiers: Definition of f`f (µ)

If we denote this unique minimizer by f`f (µ) then for every µ ∈ [µ`mn, µ
`
mx]

the function σ`f (µ) is given by

σ`f (µ) =
√

f`f (µ)TVf`f (µ) ,

where f`f (µ) is

f`f (µ) = arg min
{

1
2 fTVf : f ∈ Π`(µ)

}
.

Here arg min is read “the argument that minimizes”. It means that f`f (µ) is
the minimizer of the function f 7→ 1

2 fTVf subject to the given constraints.
Remark. This problem cannot be solved by Lagrange multipliers because
the set Π`(µ) is defined by inequality constraints. It is harder to solve
analytically than the analogous minimization problem for long portfolios.
Therefore we take a numerical approach that can be applied generally.
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Quadratic Programming: Standard Form

Because the function being minimized is quadratic in f while the
constraints are linear in f, this is called a quadratic programming problem.
It can be solved for a particular V, m, and µ by using either the Matlab
command “quadprog” or an equivalent command in some other language.
Recall that the Matlab command quadprog(A,b,C,d,Ceq,deq) returns
the solution of a quadratic programming problem in the standard form

arg min
{

1
2xTAx + bTx : x ∈ RM , Cx ≤ d , Ceqx = deq

}
,

where A ∈ RM×M is nonnegative definite, b ∈ RM , C ∈ RK×M , d ∈ RK ,
Ceq ∈ RKeq×M , and deq ∈ RKeq . Here K and Keq are the number of
inequality and equality constraints respectively.
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Quadratic Programming: A Complication

Given V, m, and µ ∈ [µ`mn, µ
`
mx], the problem that we want to solve to

obtain f`f (µ) is

arg min
{

1
2 fTVf : f ∈ RN , ‖f‖1 ≤ 1 + 2` , 1Tf = 1 , mTf = µ

}
.

By comparing this with the standard quadratic programming problem on
the previous slide we see that if we set x = f then M = N, Keq = 2, and

A = V , b = 0 , Ceq =
(

1T

mT

)
, deq =

(
1
µ

)
.

However, it is less clear how the inequality constraint ‖f‖1 ≤ 1 + 2` can be
expressed in the standard form Cf ≤ d.
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Quadratic Programming: Converting ‖f‖1 ≤ 1 + 2`

The inequality ‖f‖1 ≤ 1 + 2` can be expressed as the inequality constraints

±f1 ± f2 ± · · · ± fN−1 ± fN ≤ 1 + 2` ,

where there are 2N choices of ± signs. When the ± are chosen to be the
same sign then the inequality constraint is always satisfied because of the
the equality constraint 1Tf = 1. That leaves 2N − 2 inequality constraints
that still need to be imposed.
The number 2N − 2 grows too fast with N for this approach to be useful
for all but small values of N. For example, if N = 9 then 2N − 2 = 510.
With this many inequality constraints quadprog could suffer numerical
difficulties. This raises the following question.

Are all of these 2N − 2 inequality constraints needed?
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Quadratic Programming: Index Subsets Constraints

The answer is yes if we insist on setting x = f. However, the answer is no
if we enlarge the dimension of x.
To understand why the answer is yes if we insist on setting x = f, consider
any of these inequality constraints written along with the equality
constraint 1Tf = 1 as

±f1 ± f2 ± · · · ± fN−1 ± fN ≤ 1 + 2` ,
f1 + f2 + · · ·+ fN−1 + fN = 1 .

By adding these and dividing by 2 we obtain∑
i∈S

fi ≤ 1 + ` ,

where S is the subset of indices i with a plus in the inequality constraint.
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Quadratic Programming: Index Subsets Constraints

For every S ⊂ {1, 2, · · · ,N} define the i th entry of 1S ∈ RN by

enti (1S) =
{

1 if i ∈ S ,
0 if i /∈ S .

Then the 2N − 2 inequality conatraints can be expressed as

1T
Sf ≤ 1 + ` for every nonempty, proper S ⊂ {1, 2, · · · ,N} . (2.1a)

The equality constraint 1Tf = 1 can be used to show that these 2N − 2
inequality conatraints can also be expressed as

− ` ≤ 1T
Sf for every nonempty, proper S ⊂ {1, 2, · · · ,N} . (2.1b)
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Quadratic Programming: Two Reformulations

To understand why the answer is no if we enlarge the dimension of x,
consider the following reformulations.

Π` ≡
{

f ∈ RN : 1Tf = 1 , ‖f‖1 ≤ 1 + 2`
}

=
{

f ∈ RN : 1Tf = 1 , ∃s ∈ RN : s ≥ 0 , (f + s) ≥ 0 , 1Ts ≤ `
}

=
{

f ∈ RN : 1Tf = 1 , ∃g ∈ RN : (g ± f) ≥ 0 , 1Tg ≤ 1 + 2`
}
.

The fact that the last two sets contain Π` is seen by taking

s = f− , g = f+ + f− .

We must show that they are equal to Π`. This is left as an exercise.
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Quadratic Programming: First Reformulation
If we use the first reformulation then the problem that we want to solve to
obtain f`f (µ) is

arg min
{

1
2 fTVf : s ≥ 0 , (f + s) ≥ 0 , 1Ts ≤ ` , 1Tf = 1 , mTf = µ

}
.

By comparing this with the standard quadratic programming problem we
see that if we set x = (fT sT)T then M = 2N, K = 2N + 1, Keq = 2, and

A =
(

V O
O O

)
, b =

(
0
0

)
,

C =

−I −I
O −I
0T 1T

 , d =

0
0
`

 , Ceq =
(

1T 0T

mT 0T

)
, deq =

(
1
µ

)
,

where O and I are the N×N zero and identity matrices.
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Quadratic Programming: Second Reformulation
If we use the second reformulation then the problem that we want to solve
to obtain f`f (µ) is

arg min
{

1
2 fTVf : (g ± f) ≥ 0 , 1Tg ≤ 1 + 2` , 1Tf = 1 , mTf = µ

}
.

By comparing this with the standard quadratic programming problem we
see that if we set x = (fT gT)T then M = 2N, K = 2N + 1, Keq = 2, and

A =
(

V O
O O

)
, b =

(
0
0

)
,

C =

−I −I
I −I

0T 1T

 , d =

 0
0

1 + 2`

 , Ceq =
(

1T 0T

mT 0T

)
, deq =

(
1
µ

)
,

where O and I are the N×N zero and identity matrices.
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Quadratic Programming: Matlab “quadprog” Command

In either case f`f (µ) can be obtained as the first N entries of the output x
of a quadprog command that is formated as

x = quadprog(A, b,C, d,Ceq,deq) ,

where the matrices A, C, and Ceq, and the vectors b, d, and deq are
given on the previous slides.
Remark. By doubling the dimension of the vector x from N to 2N we
have reduced the number of inequality constraints from 2N − 2 to 2N + 1.
If N = 9 then reduction is from 510 to 19!
Remark. There are other ways to use quadprog to obtain f`f (µ).
Documentation for this command is easy to find on the web. The similar
command in R is also called “quadprog”.
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Computing Frontiers: Properties of σ`f (µ)

When computing an `-limited frontier, it helps to know some general
properties of the function σ`f (µ). These include:

σ`f (µ) is continuous over [µ`mn, µ
`
mx];

σ`f (µ) is strictly convex over [µ`mn, µ
`
mx];

σ`f (µ) is piecewise hyperbolic over [µ`mn, µ
`
mx].

This means that σ`f (µ) is built up from segments of hyperbolas that are
connected at a finite number of nodes that correspond to points in the
interval (µ`mn, µ

`
mx) where σ`f (µ) has either

a jump discontinuity in its first derivative or
a jump discontinuity in its second derivative.

Guided by these facts we now show how an `-limited frontier can be
approximated numerically with the Matlab command quadprog.
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Computing Frontiers: Appproximating σ`f (µ)

First, partition the interval [µ`mn, µ
`
mx] as

µ`mn = µ0 < µ1 < · · · < µn−1 < µn = µ`mx .

For example, set µk = µ`mn + k(µ`mx − µ`mn)/n for a uniform partition.
Pick n large enough to resolve all the features of the `-limited frontier.
There should be at most one node in each subinterval [µk−1, µk ].
Second, for every k = 1, · · · , n − 1 use quadprog to compute f`f (µk).
(This computation will not be exact, but we will speak as if it is.)
The allocations {f`f (µk)}nk=0 should be saved.
Third, for every k = 1, · · · , n − 1 compute σk by

σk = σ`f (µk) =
√

f`f (µk)TVf`f (µk) .
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Computing Frontiers: Linear Interpolation in σµ-Plane
Fourth. There is typically a unique long-short pair allocation e`ij such that
µ`mn = (1 + `)mi − `mj that is most efficient, in which case we have

f`f (µ0) = e`ij , σ0 = σ`ij =
√

(e`ij)TVe`ij .

Similarly, there is typically a unique long-short pair allocation e`kl such that
µ`mx = (1 + `)mk − `ml that is most efficient, in which case we have

f`f (µn) = e`kl , σn = σ`kl =
√

(e`kl )TVe`kl .

Finally, we “connect the dots” between the points {(σk , µk)}nk=0 to build
an approximation to the `-limited frontier in the σµ-plane. This can be
done by linear interpolation. Specifically, for every µ ∈ (µk−1, µk) we set

σ̃`f (µ) = µk − µ
µk − µk−1

σk−1 + µ− µk−1
µk − µk−1

σk .
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Computing Frontiers: Linear Interpolation in Π`

A better way to “connect the dots” between the points {(σk , µk)}nk=0 is
motivated by the two-fund property. Specifically, for every µ ∈ (µk−1, µk)
we set

f̃ `f (µ) = µk − µ
µk − µk−1

f`f (µk−1) + µ− µk−1
µk − µk−1

f`f (µk) ,

and then set
σ̃`f (µ) =

√
f̃ `f (µ)TVf̃ `f (µ) .

Remark. This will be a very good approximation if n is large enough.
Over each interval (µk−1, µk) it approximates σ`f (µ) with a hyperbola
rather than with a line.
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Computing Frontiers: Linear Interpolation in Π`

Remark. Because f`f (µk) ∈ Π`(µk) and f`f (µk−1) ∈ Π`(µk−1), we can
show that

f̃ `f (µ) ∈ Π`(µ) for every µ ∈ (µk−1, µk) .

Therefore σ̃`f (µ) gives an approximation to the `-limited frontier that lies
on or to the right of the `-limited frontier in the σµ-plane.
Remark. When there are no nodes in the interval (µk−1, µk) then we can
use the two-fund property to show that σ̃`f (µ) = σ`f (µ).
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General Portfolio with Two Risky Assets: m and V
Recall the portfolio of two risky assets with mean vector m and covarience
matrix V given by

m =
(

m1
m2

)
, V =

(
v11 v12
v12 v22

)
.

Without loss of generality we can assume that m1 < m2. Then µmn = m1,
µmx = m2 and

µ`mn = m1 − `(m2 −m1) , µ`mn = m2 + `(m2 −m1) .

Recall that for every µ ∈ R the unique portfolio allocation that satisfies
the constraints 1Tf = 1 and mTf = µ is

f = f(µ) = 1
m2 −m1

(
m2 − µ
µ−m1

)
.

Clearly f(µ) ∈ Π` if and only if µ ∈ [µ`mn, µ
`
mx].
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General Portfolio with Two Risky Assets: f`f (µ) and σ`f (µ)
Therefore the set Π`(µ) is given by

Π` =
{

f(µ) : µ ∈ [µ`mn, µ
`
mx]
}
.

In other words, the set Π` is the line segment in R2 that is the image of
the interval [µ`mn, µ

`
mx] under the affine mapping µ 7→ f(µ).

Because for every µ ∈ [µ`mn, µ
`
mx] the set Π`(µ) consists of the single

portfolio f(µ), the minimizer of fTVf over Π`(µ) is f(µ). Therefore the
`-limited frontier portfolios are

f`f (µ) = f(µ) for µ ∈ [µ`mn, µ
`
mx] ,

and the `-limited frontier is given by

σ = σ`f (µ) =
√

f(µ)TV f(µ) for µ ∈ [µ`mn, µ
`
mx] .

Hence, the `-limited frontier is simply a segment of the frontier hyperbola.
It has no nodes.
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General Portfolio with Three Risky Assets: m and V

Recall the portfolio of three risky assets with mean vector m and
covarience matrix V given by

m =

m1
m2
m3

 , V =

v11 v12 v13
v12 v22 v23
v13 v23 v33

 .

Without loss of generality we can assume that

m1 ≤ m2 ≤ m3 , m1 < m3 .

Then µmn = m1, µmx = m3 and

µ`mn = m1 − `(m3 −m1) , µ`mn = m3 + `(m3 −m1) .
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General Portfolio with Three Risky Assets: f(µ, φ)

Recall that for every µ ∈ R the portfolios that satisfies the constraints
1Tf = 1 and mTf = µ are

f = f(µ, φ) = f13(µ) + φn , for some φ ∈ R ,

where

f13(µ) = 1
m3 −m1

m3 − µ
0

µ−m1

 , n = 1
m3 −m1

m2 −m3
m3 −m1
m1 −m2

 .

Here f13(µ) is the two-asset allocation for assets 1 and 3 that satisfies

1Tf13(µ) = 1 , mTf13(µ) = µ ,

while n satisfies 1Tn = 0 and mTn = 0.
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General Portfolio with Three Risky Assets: f(µ, φ) ∈ Π`

Because

f(µ, φ) = 1
m3 −m1

m3 − µ− φ (m3 −m2)
φ (m3 −m1)

µ−m1 − φ (m2 −m1)

 ,

We see from (2.1) that f(µ, φ) ∈ Π` if and only if µ ∈ [µ`mn, µ
`
mx] and

−` ≤ m3 − µ
m3 −m1

− φ m3 −m2
m3 −m1

≤ 1 + ` ,

−` ≤ φ ≤ 1 + ` ,

−` ≤ µ−m1
m3 −m1

− φ m2 −m1
m3 −m1

≤ 1 + ` .
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General Portfolio with Three Risky Assets: φ`mx(µ), φ`mn(µ)

For every µ ∈ [µ`mn, µ
`
mx] these inequalities yield the bounds

−µ− µ
`
mn

m3 −m2
≤ φ ≤ µ`mx − µ

m3 −m2
if m2 < m3 ,

−` ≤ φ ≤ 1 + ` ,

−µ
`
mx − µ

m2 −m1
≤ φ ≤ µ− µ`mn

m2 −m1
if m2 > m1 .

This region can be expressed as

φ`mn(µ) ≤ φ ≤ φ`mx(µ) ,

where φ`mn(µ) and φ`mx(µ) are defined on the next slide.
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General Portfolio with Three Risky Assets: φ`mx(µ), φ`mn(µ)

φ`mx(µ) =



min
{

1 + ` ,
µ`mx − µ
m3 −m1

}
if m2 = m1 ,

min
{
µ− µ`mn
m2 −m1

, 1 + ` ,
µ`mx − µ
m3 −m2

}
if m2 ∈ (m1,m3) ,

min
{
µ− µ`mn
m3 −m1

, 1 + `

}
if m2 = m3 ,

φ`mn(µ) =



−min
{
µ− µ`mn
m3 −m1

, `

}
if m2 = m1 ,

−min
{
µ− µ`mn
m3 −m2

, ` ,
µ`mx − µ
m2 −m1

}
if m2 ∈ (m1,m3) ,

−min
{
` ,

µ`mx − µ
m3 −m1

}
if m2 = m3 .
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Visualizing Quadratic Programming Computing Two Assets Three Assets

General Portfolio with Three Risky Assets: H` and Π`

When ` > 0 this region is the convex hexagon H` in the µφ-plane whose
vertices are the six distinct points(

m2 − `(m3 −m2) , 1 + `
)
•—— •

(
m2 + `(m2 −m1) , 1 + `

)
� �

� �(
m1 − `(m3 −m1) , 0

)
• •

(
m3 + `(m3 −m1) , 0

)
� �(

m1 − `(m2 −m1),−`
)
•———— •

(
m3 + `(m3 −m2),−`

)
Therefore the set Π` is given by

Π` =
{

f(µ, φ) : (µ, φ) ∈ H`
}
.
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Visualizing Quadratic Programming Computing Two Assets Three Assets

General Portfolio with Three Risky Assets: Π` and Π`(µ)

Therefore the sets Π` and Π`(µ) can be visualized as follows.
The set Π` is the hexagon in R3 that is the image of the hexagon H`
under the affine mapping (µ, φ) 7→ f(µ, φ).
For every µ ∈ [µ`mn, µ

`
mx] the set Π`(µ) is the intersection of

the hexagon Π` in the plane {f ∈ R3 : 1Tf = 1} with
the transverse plane {f ∈ R3 : mTf = µ}.

This is a line segment that might be a single point. It is given by

Π`(µ) =
{

f(µ, φ) : φ`mn(µ) ≤ φ ≤ φ`mx(µ)
}
.

Therefore the set Π`(µ) is the line segment in R3 that is the image of
the interval [φ`mn(µ), φ`mx(µ)] under the affine mapping φ 7→ f(µ, φ).
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Visualizing Quadratic Programming Computing Two Assets Three Assets

General Portfolio with Three Risky Assets: φmf(µ)
Hence, the point on the `-limited frontier associated with µ ∈ [µ`mn, µ

`
mx]

is (σ`f (µ), µ) where σ`f (µ) solves the constrained minimization problem

σ`f (µ)2 = min
{

fTVf : f ∈ Π`(µ)
}

= min
{

f(µ, φ)TVf(µ, φ) : φ`mn(µ) ≤ φ ≤ φ`mx(µ)
}
.

Because the objective function

f(µ, φ)TVf(µ, φ) = f13(µ)TVf13(µ) + 2φnTVf13(µ) + φ2nTVn

is a quadratic in φ, we see that it has a unique global minimizer at

φ = φmf(µ) = −nTVf13(µ)
nTVn .

The Markowitz frontier allocation is fmf(µ) = f
(
µ, φmf(µ)

)
.
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Visualizing Quadratic Programming Computing Two Assets Three Assets

General Portfolio with Three Risky Assets: Minimizers

The global minimizer φmf(µ) will be the minimizer of our constrained
minimization problem for the `-limited frontier if and only if

φ`mn(µ) ≤ φmf(µ) ≤ φ`mx(µ) .

Because the derivative of the objective function with respect to φ can be
written as

∂φf(µ, φ)TVf(µ, φ) = 2 nTVn
(
φ− φmf(µ)

)
,

we can read off the following.
If φmf(µ) < φ`mn(µ) then the objective function is increasing over
[φ`mn(µ), φ`mx(µ)], whereby its minimizer is φ = φ`mn(µ).

If φ`mx(µ) < φmf(µ) then the objective function is decreasing over
[φ`mn(µ), φ`mx(µ)], whereby its minimizer is φ = φ`mx(µ).
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Visualizing Quadratic Programming Computing Two Assets Three Assets

General Portfolio with Three Risky Assets: φ`f (µ), σ`f (µ)

Hence, the minimizer φ`f (µ) of our constrained minimization problem is

φ`f (µ) =


φ`mn(µ) if φmf(µ) ≤ φ`mn(µ)
φmf(µ) if φ`mn(µ) < φmf(µ) < φ`mx(µ)
φ`mx(µ) if φ`mx(µ) < φmf(µ)

= max
{
φ`mn(µ) , min

{
φmf(µ) , φ`mx(µ)

}}
= min

{
max

{
φ`mn(µ) , φmf(µ)

}
, φ`mx(µ)

}
.

Therefore the `-limited frontier is given by

σ`f (µ) =
√

f(µ, φ`f (µ))TVf(µ, φ`f (µ)) .
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