Portfolios that Contain Risky Assets 5.2. Limited-Leverage Frontiers

C. David Levermore

University of Maryland, College Park, MD

Math 420: *Mathematical Modeling* March 15, 2022 version © 2022 Charles David Levermore

・ロト ・日ト ・ヨト ・ヨー うへで

Portfolios that Contain Risky Assets Part I: Portfolio Models

- 1. Preliminary Topics
- 2. Markowitz Portfolio Model
- 3. Models for Portfolios with Risk-Free Assets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 4. Models for Long Portfolios
- 5. Models for Limited-Leverage Portfolios

Portfolios that Contain Risky Assets Part I: Portfolio Models

- 5. Models for Limited-Leverage Portfolios
 - 5.1. Limited-Leverage Portfolios
 - 5.2. Limited-Leverage Frontiers
 - 5.3. Limited-Leverage with Risk-Free Assets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

5.4. Limited-Leverage and Return Bounds

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets

Limited-Leverage Frontiers

- Vizualizing Frontiers
- Quadratic Programming
- 3 Computing Frontiers
- ④ General Portfolio with Two Risky Assets
- 5 General Portfolio with Three Risky Assets

Visualizing ●000000	Quadratic Programming	Computing 00000	Two Assets	Three Assets
Vizualizing	Frontiers: $\Sigma(\Pi^{\ell})$) in the σ_{μ}	<i>ı</i> -Plane	

The set Π^{ℓ} in \mathbb{R}^{N} of ℓ -limited portfolio allocations is associated with the set $\Sigma(\Pi^{\ell})$ in the $\sigma\mu$ -plane of volatilities and return means given by

$$\boldsymbol{\Sigma}(\boldsymbol{\Pi}^{\ell}) = \left\{ \ (\sigma, \mu) \in \mathbb{R}^2 \ : \ \sigma = \sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}} \ , \ \mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} \ , \ \mathbf{f} \in \boldsymbol{\Pi}^{\ell} \right\} \ .$$

For every $\ell > 0$ we have shown that $\Pi^{\ell} = \operatorname{Hull}(\mathcal{E}^{\ell})$, the convex hull in \mathbb{R}^{N} of the set $\mathcal{E}^{\ell} = \{\mathbf{e}_{ij}^{\ell}\}$ of the N(N-1) long-short pair allocations. As such, the set Π^{ℓ} is convex and compact (closed and bounded).

Because the set $\Sigma(\Pi^\ell)$ is the image in \mathbb{R}^2 of Π^ℓ under the continuous mapping

$$\mathbf{f} \mapsto (\sigma(\mathbf{f}), \mu(\mathbf{f})) = \left(\sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}}, \mathbf{m}^{\mathrm{T}} \mathbf{f}\right),$$

the set $\Sigma(\Pi^{\ell})$ is pathwise connected and compact.

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
000000				

Vizualizing Frontiers: Bounding μ and σ for $\mathbf{f} \in \Pi^{\ell}$

We already have some easy bounds on μ and σ for $\mathbf{f} \in \Pi^{\ell}$.

• Because the mapping $\mathbf{f} \mapsto \mathbf{m}^T \mathbf{f}$ is linear over $\Pi^{\ell} = \operatorname{Hull}(\mathcal{E}^{\ell})$, its image is the interval $[\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$, where

$$\mu_{mn}^{\ell} = \min\left\{\mathbf{m}^{\mathrm{T}}\mathbf{f} \, : \, \mathbf{f} \in \mathcal{E}^{\ell}\right\}, \qquad \mu_{mx}^{\ell} = \max\left\{\mathbf{m}^{\mathrm{T}}\mathbf{f} \, : \, \mathbf{f} \in \mathcal{E}^{\ell}\right\}.$$

• Because the mapping $\mathbf{f} \mapsto \sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}}$ is convex over $\Pi^{\ell} = \mathrm{Hull}(\mathcal{E}^{\ell})$, its image is the interval $[\sigma_{\mathrm{mn}}^{\ell}, \sigma_{\mathrm{mx}}^{\ell}]$, where

$$\sigma_{\mathrm{mv}}^{\ell} = \min\left\{\sqrt{\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f}} \, : \, \mathbf{f} \in \Pi^{\ell}\right\}, \qquad \sigma_{\mathrm{mx}}^{\ell} = \max\left\{\sqrt{\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f}} \, : \, \mathbf{f} \in \mathcal{E}^{\ell}\right\}.$$

Notice that $\sigma_{mv}^{\ell} \geq \sigma_{mv}$ with equality if and only if $\mathbf{f}_{mv} \in \Pi^{\ell}$. • Because $\Pi^{\ell} \subset \mathcal{M}$, we know that $\Sigma(\Pi^{\ell}) \subset \Sigma(\mathcal{M})$, where

$$\Sigma(\mathcal{M}) = \left\{ (\sigma, \mu) \in \mathbb{R}^2 : \sigma = \sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}}, \ \mu = \mathbf{m}^{\mathrm{T}} \mathbf{f}, \ \mathbf{f} \in \mathcal{M} \right\}.$$

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
000000				

Vizualizing Frontiers: Bounding $\Sigma(\Pi^\ell)$

Therefore $\Sigma(\Pi^{\ell})$ is contained within the intersction of the Markowitz region $\Sigma(\mathcal{M})$ with the closed box $[\sigma_{mv}^{\ell}, \sigma_{mx}^{\ell}] \times [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$. Earlier we derived the exact formulas

$$\mu_{\mathrm{mn}}^\ell = \mu_{\mathrm{mn}} - \ell \left(\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}
ight), \qquad \mu_{\mathrm{mx}}^\ell = \mu_{\mathrm{mn}} + \ell \left(\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}
ight),$$

where

$$\mu_{\mathrm{mn}} = \min_{i} \{m_i\}, \qquad \mu_{\mathrm{mx}} = \max_{i} \{m_i\},$$

and the rough bounds

$$egin{aligned} \sigma_{\mathrm{mv}} &\leq \sigma_{\mathrm{mv}}^\ell \leq \sigma_{\mathrm{mn}}\,, \ \sigma_{\mathrm{mx}} + \ell\left(\sigma_{\mathrm{mx}} - \sigma_{\mathrm{mn}}
ight) &\leq \sigma_{\mathrm{mx}}^\ell \leq \left(1 + 2\,\ell\right)\sigma_{\mathrm{mx}}\,, \end{aligned}$$

where

$$\sigma_{\mathrm{mn}} = \min_{i} \{\sigma_i\}, \qquad \sigma_{\mathrm{mx}} = \max_{i} \{\sigma_i\}.$$

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
0000000				

Vizualizing Frontiers: Definition of the *l*-Limited Frontier

The set $\Pi^{\ell}(\mu)$ of ℓ -limited portfolio allocations with return mean μ is defined for every $\mu \in \mathbb{R}$ by

$$\Pi^{\ell}(\mu) = \left\{ \mathbf{f} \in \Pi^{\ell} : \mathbf{m}^{\mathrm{T}}\mathbf{f} = \mu \right\}.$$

This set is nonempty if and only if $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$. Hence, $\Sigma(\Pi^{\ell})$ can be expressed as

$$\Sigma(\Pi^\ell) = \left\{ \ \left(\sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}} \,, \, \mu
ight) \, : \, \mu \in [\mu_{\mathrm{mn}}^\ell, \mu_{\mathrm{mx}}^\ell] \,, \; \mathbf{f} \in \Pi^\ell(\mu) \
ight\} \,.$$

Definition. The points on the boundary of $\Sigma(\Pi^{\ell})$ that correspond to those ℓ -limited portfolios that have less volatility than every other ℓ -limited portfolio with the same return mean is called the ℓ -limited frontier.

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
0000000				

Vizualizing Frontiers: Definition of the *l*-Limited Frontier

Remark. The rest of the boundary of $\Sigma(\Pi^{\ell})$ is contained within the image of all convex combinations of pairs of long-short allocations in \mathcal{E}^{ℓ} that are vertices of an edge of Π^{ℓ} . Recall that \mathbf{e}_{ij}^{ℓ} , $\mathbf{e}_{kl}^{\ell} \in \mathcal{E}^{\ell}$ are vertices of an edge of Π^{ℓ} if and only if $(i, j) \neq (k, l)$ with k = i or l = j. For each such pair set

$$\sigma_{ij}^{\ell} = \sigma(\mathbf{e}_{ij}^{\ell}), \quad \mu_{ij}^{\ell} = \mu(\mathbf{e}_{ij}^{\ell}), \qquad \sigma_{kl}^{\ell} = \sigma(\mathbf{e}_{kl}^{\ell}), \quad \mu_{kl}^{\ell} = \mu(\mathbf{e}_{kl}^{\ell}).$$

If $\mu_{ij}^{\ell} = \mu_{kl}^{\ell}$ then plot the line segment connecting $(\sigma_{ij}^{\ell}, \mu_{ij}^{\ell})$ and $(\sigma_{kl}^{\ell}, \mu_{kl}^{\ell})$. If $\mu_{ij}^{\ell} \neq \mu_{kl}^{\ell}$ then without loss of generality suppose that $\mu_{ij}^{\ell} < \mu_{kl}^{\ell}$, set

$$\mathbf{f}_{ij,kl}^\ell(\mu) = rac{\mu_{kl}^\ell - \mu}{\mu_{kl}^\ell - \mu_{ij}^\ell} \, \mathbf{e}_{ij}^\ell + rac{\mu - \mu_{ij}^\ell}{\mu_{kl}^\ell - \mu_{ij}^\ell} \, \mathbf{e}_{kl}^\ell \,,$$

and plot the hyperbola segment

$$\sigma = \sigma \Bigl(\mathbf{f}^\ell_{ij,kl}(\mu) \Bigr) \qquad \text{over } \mu \in [\mu^\ell_{ij},\mu^\ell_{kl}] \,.$$

There are N(N-1)(N-2) such pairs of pairs, one for each edge of Π^{ℓ} .

Visualizing ○○○○○●○	Quadratic Programming	Computing 00000	Two Assets	Three Assets
Vizualizing	Frontiers: Defir	nition of $\sigma_{\!\scriptscriptstyle \mathrm{f}}^\ell$	(μ)	

The ℓ -limited frontier is the curve in the $\sigma\mu$ -plane given by the equation

$$\sigma = \sigma^\ell_{\rm f}(\mu) \quad {\rm over} \quad \mu \in [\mu^\ell_{\rm mn}, \mu^\ell_{\rm mx}]\,,$$

where the value of $\sigma_f^\ell(\mu)$ is obtained for each $\mu \in [\mu_{mn}^\ell, \mu_{mx}^\ell]$ by solving the constrained minimization problem

$$\sigma_{\rm f}^{\ell}(\mu)^2 = \min\left\{ \ \sigma^2 \ : \ (\sigma,\mu) \in \Sigma(\Pi^{\ell}) \ \right\} = \min\left\{ \ \mathbf{f}^{\rm T} \mathbf{V} \mathbf{f} \ : \ \mathbf{f} \in \Pi^{\ell}(\mu) \ \right\} \ .$$

Because the function $\mathbf{f} \mapsto \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ is continuous over the compact set $\Pi^{\ell}(\mu)$, *a minimizer exists.*

Because **V** is positive definite, the function $\mathbf{f} \mapsto \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ is strictly convex over the convex set $\Pi^{\ell}(\mu)$, whereby *the minimizer is unique*.

Assels Infee Assel	ets
	0000000

Vizualizing Frontiers: Definition of $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$

If we denote this unique minimizer by $\mathbf{f}_{f}^{\ell}(\mu)$ then for every $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ the function $\sigma_{f}^{\ell}(\mu)$ is given by

$$\sigma_{\mathrm{f}}^{\ell}(\mu) = \sqrt{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{\mathrm{f}}^{\ell}(\mu)},$$

where $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu) = rg\min\left\{ \; rac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f} \; : \; \mathbf{f} \in \Pi^{\ell}(\mu) \;
ight\} \, .$$

Here $\arg\min$ is read "the argument that minimizes". It means that $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is the minimizer of the function $\mathbf{f} \mapsto \frac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f}$ subject to the given constraints. **Remark.** This problem cannot be solved by Lagrange multipliers because the set $\Pi^{\ell}(\mu)$ is defined by inequality constraints. It is harder to solve analytically than the analogous minimization problem for long portfolios. Therefore we take a numerical approach that can be applied generally.

C. David Levermore (UMD)

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
	00000000			

Quadratic Programming: Standard Form

Because the function being minimized is quadratic in **f** while the constraints are linear in **f**, this is called a *quadratic programming problem*. It can be solved for a particular **V**, **m**, and μ by using either the Matlab command "quadprog" or an equivalent command in some other language.

Recall that the Matlab command quadprog($A, b, C, d, C_{eq}, d_{eq}$) returns the solution of a quadratic programming problem in the *standard form*

$$rgmin\left\{ \ rac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathrm{T}} \mathbf{x} \ : \ \mathbf{x} \in \mathbb{R}^{M} \ , \ \mathbf{C} \mathbf{x} \leq \mathbf{d} \ , \ \mathbf{C}_{\mathrm{eq}} \mathbf{x} = \mathbf{d}_{\mathrm{eq}} \
ight\} \ ,$$

where $\mathbf{A} \in \mathbb{R}^{M \times M}$ is nonnegative definite, $\mathbf{b} \in \mathbb{R}^{M}$, $\mathbf{C} \in \mathbb{R}^{K \times M}$, $\mathbf{d} \in \mathbb{R}^{K}$, $\mathbf{C}_{eq} \in \mathbb{R}^{K_{eq} \times M}$, and $\mathbf{d}_{eq} \in \mathbb{R}^{K_{eq}}$. Here K and K_{eq} are the number of inequality and equality constraints respectively.

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
	0000000			

Quadratic Programming: A Complication

Given V, m, and $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$, the problem that we want to solve to obtain $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is

$$\arg\min\left\{ \ \frac{1}{2}\boldsymbol{\mathsf{f}}^{\mathrm{T}}\boldsymbol{\mathsf{V}}\boldsymbol{\mathsf{f}} \ : \ \boldsymbol{\mathsf{f}}\in\mathbb{R}^{\boldsymbol{\mathsf{N}}} \,, \ \|\boldsymbol{\mathsf{f}}\|_{1}\leq1+2\ell \,, \ \boldsymbol{\mathsf{1}}^{\mathrm{T}}\boldsymbol{\mathsf{f}}=1 \,, \ \boldsymbol{\mathsf{m}}^{\mathrm{T}}\boldsymbol{\mathsf{f}}=\mu \ \right\} \,.$$

By comparing this with the standard quadratic programming problem on the previous slide we see that if we set $\mathbf{x} = \mathbf{f}$ then M = N, $K_{eq} = 2$, and

$$\mathbf{A} = \mathbf{V}, \quad \mathbf{b} = \mathbf{0}, \quad \mathbf{C}_{eq} = \begin{pmatrix} \mathbf{1}^{T} \\ \mathbf{m}^{T} \end{pmatrix}, \quad \mathbf{d}_{eq} = \begin{pmatrix} 1 \\ \mu \end{pmatrix}.$$

However, it is less clear how the inequality constraint $\|\mathbf{f}\|_1 \leq 1 + 2\ell$ can be expressed in the standard form $\mathbf{C}\mathbf{f} \leq \mathbf{d}$.

Visualizing	Quadratic Programming	Computing 00000	Two Assets	Three Assets
Quadratic	Programming:	Converting	$\ \mathbf{f}\ _1 < 1 + 2$	2ℓ

The inequality $\|\mathbf{f}\|_1 \leq 1 + 2\ell$ can be expressed as the inequality constraints

 $\pm f_1 \pm f_2 \pm \cdots \pm f_{N-1} \pm f_N \leq 1 + 2\ell,$

where there are 2^N choices of \pm signs. When the \pm are chosen to be the same sign then the inequality constraint is always satisfied because of the the equality constraint $\mathbf{1}^T \mathbf{f} = 1$. That leaves $2^N - 2$ inequality constraints that still need to be imposed.

The number $2^N - 2$ grows too fast with N for this approach to be useful for all but small values of N. For example, if N = 9 then $2^N - 2 = 510$. With this many inequality constraints quadprog could suffer numerical difficulties. This raises the following question.

Are all of these $2^N - 2$ inequality constraints needed?

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
	0000000			

Quadratic Programming: Index Subsets Constraints

The answer is yes if we insist on setting $\mathbf{x} = \mathbf{f}$. However, the answer is no if we enlarge the dimension of \mathbf{x} .

To understand why the answer is yes if we insist on setting $\mathbf{x} = \mathbf{f}$, consider any of these inequality constraints written along with the equality constraint $\mathbf{1}^{\mathrm{T}}\mathbf{f} = 1$ as

$$\pm f_1 \pm f_2 \pm \cdots \pm f_{N-1} \pm f_N \le 1 + 2\ell ,$$

$$f_1 + f_2 + \cdots + f_{N-1} + f_N = 1 .$$

By adding these and dividing by 2 we obtain

$$\sum_{i\in S}f_i\leq 1+\ell\,,$$

where S is the subset of indices i with a plus in the inequality constraint.

mee Assets
5

Quadratic Programming: Index Subsets Constraints

For every $S \subset \{1, 2, \cdots, N\}$ define the i^{th} entry of $\mathbf{1}_S \in \mathbb{R}^N$ by

$$\operatorname{ent}_i(\mathbf{1}_S) = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$$

Then the $2^N - 2$ inequality conatraints can be expressed as

$$\mathbf{1}_{\mathcal{S}}^{\mathrm{T}}\mathbf{f} \leq 1+\ell$$
 for every nonempty, proper $\mathcal{S} \subset \{1,2,\cdots,\mathcal{N}\}$. (2.1a)

The equality constraint $\mathbf{1}^{T}\mathbf{f} = 1$ can be used to show that these $2^{N} - 2$ inequality conatraints can also be expressed as

$$-\ell \leq \mathbf{1}_{\mathcal{S}}^{\mathrm{T}}\mathbf{f}$$
 for every nonempty, proper $\mathcal{S} \subset \{1,2,\cdots, N\}$. (2.1b)

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
	000000000			

Quadratic Programming: Two Reformulations

To understand why the answer is no if we enlarge the dimension of \mathbf{x} , consider the following reformulations.

$$\begin{split} \mathsf{\Pi}^{\ell} &\equiv \left\{ \mathbf{f} \in \mathbb{R}^{N} \ : \ \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mathbf{1} \ , \ \|\mathbf{f}\|_{1} \leq \mathbf{1} + 2\ell \right\} \\ &= \left\{ \mathbf{f} \in \mathbb{R}^{N} \ : \ \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mathbf{1} \ , \ \exists \mathbf{s} \in \mathbb{R}^{N} \ : \ \mathbf{s} \geq \mathbf{0} \ , \ (\mathbf{f} + \mathbf{s}) \geq \mathbf{0} \ , \ \mathbf{1}^{\mathrm{T}} \mathbf{s} \leq \ell \right\} \\ &= \left\{ \mathbf{f} \in \mathbb{R}^{N} \ : \ \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mathbf{1} \ , \ \exists \mathbf{g} \in \mathbb{R}^{N} \ : \ (\mathbf{g} \pm \mathbf{f}) \geq \mathbf{0} \ , \ \mathbf{1}^{\mathrm{T}} \mathbf{g} \leq \mathbf{1} + 2\ell \right\} \end{split}$$

The fact that the last two sets contain Π^{ℓ} is seen by taking

$$\mathbf{s} = \mathbf{f}^-, \qquad \mathbf{g} = \mathbf{f}^+ + \mathbf{f}^-.$$

We must show that they are equal to Π^{ℓ} . This is left as an exercise.

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
	000000000			

Quadratic Programming: First Reformulation

If we use the first reformulation then the problem that we want to solve to obtain $f_{\rm f}^\ell(\mu)$ is

$$\arg\min\left\{ \ \frac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f} \ : \ \mathbf{s} \ge \mathbf{0} \,, \ (\mathbf{f} + \mathbf{s}) \ge \mathbf{0} \,, \ \mathbf{1}^{\mathrm{T}}\mathbf{s} \le \ell \,, \ \mathbf{1}^{\mathrm{T}}\mathbf{f} = 1 \,, \ \mathbf{m}^{\mathrm{T}}\mathbf{f} = \mu \right\}$$

By comparing this with the standard quadratic programming problem we see that if we set $\mathbf{x} = (\mathbf{f}^T \mathbf{s}^T)^T$ then M = 2N, K = 2N + 1, $K_{eq} = 2$, and

$$\begin{split} \mathbf{A} &= \begin{pmatrix} \mathbf{V} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \\ \mathbf{C} &= \begin{pmatrix} -\mathbf{I} & -\mathbf{I} \\ \mathbf{O} & -\mathbf{I} \\ \mathbf{0}^{\mathrm{T}} & \mathbf{1}^{\mathrm{T}} \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \ell \end{pmatrix}, \quad \mathbf{C}_{\mathrm{eq}} = \begin{pmatrix} \mathbf{1}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{m}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} \end{pmatrix}, \quad \mathbf{d}_{\mathrm{eq}} = \begin{pmatrix} \mathbf{1} \\ \mu \end{pmatrix}, \end{split}$$

where **O** and **I** are the $N \times N$ zero and identity matrices.

C. David Levermore (UMD)

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
	000000000			

Quadratic Programming: Second Reformulation

If we use the second reformulation then the problem that we want to solve to obtain $f^\ell_f(\mu)$ is

$$rgmin\left\{ \ rac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} \ : \ (\mathbf{g} \pm \mathbf{f}) \geq \mathbf{0} \ , \ \mathbf{1}^{\mathrm{T}} \mathbf{g} \leq 1 + 2\ell \ , \ \mathbf{1}^{\mathrm{T}} \mathbf{f} = 1 \ , \ \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mu \
ight\} \ .$$

By comparing this with the standard quadratic programming problem we see that if we set $\mathbf{x} = (\mathbf{f}^T \ \mathbf{g}^T)^T$ then M = 2N, K = 2N + 1, $K_{eq} = 2$, and

$$\begin{split} \mathbf{A} &= \begin{pmatrix} \mathbf{V} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \\ \mathbf{C} &= \begin{pmatrix} -\mathbf{I} & -\mathbf{I} \\ \mathbf{I} & -\mathbf{I} \\ \mathbf{0}^{\mathrm{T}} & \mathbf{1}^{\mathrm{T}} \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} + 2\ell \end{pmatrix}, \quad \mathbf{C}_{\mathrm{eq}} = \begin{pmatrix} \mathbf{1}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{m}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} \end{pmatrix}, \quad \mathbf{d}_{\mathrm{eq}} = \begin{pmatrix} \mathbf{1} \\ \mu \end{pmatrix}, \end{split}$$

where **O** and **I** are the $N \times N$ zero and identity matrices.

C. David Levermore (UMD)

Visualizing	Quadratic Programming	Computing 00000	Two Assets	Three Assets
Quadratic	Programming:	Matlab "gu	adprog" Cor	nmand

In either case $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ can be obtained as the first N entries of the output x of a quadprog command that is formated as

 $x = \mathsf{quadprog}(A, b, C, d, Ceq, deq),$

where the matrices $A,\,C,$ and Ceq, and the vectors $b,\,d,$ and deq are given on the previous slides.

Remark. By doubling the dimension of the vector **x** from *N* to 2*N* we have reduced the number of inequality constraints from $2^N - 2$ to 2N + 1. If N = 9 then reduction is from 510 to 19!

Remark. There are other ways to use quadprog to obtain $\mathbf{f}_{f}^{\ell}(\mu)$. Documentation for this command is easy to find on the web. The similar command in R is also called "quadprog".

Visualizing	Quadratic Programming	Computing ●0000	Two Assets	Three Assets

Computing Frontiers: Properties of $\sigma_{ m f}^\ell(\mu)$

When computing an ℓ -limited frontier, it helps to know some general properties of the function $\sigma_f^{\ell}(\mu)$. These include:

- $\sigma_{\rm f}^\ell(\mu)$ is continuous over $[\mu_{\rm mn}^\ell,\mu_{\rm mx}^\ell];$
- $\sigma_{\rm f}^\ell(\mu)$ is strictly convex over $[\mu_{\rm mn}^\ell,\mu_{\rm mx}^\ell];$
- $\sigma_{\rm f}^{\ell}(\mu)$ is piecewise hyperbolic over $[\mu_{\rm mn}^{\ell}, \mu_{\rm mx}^{\ell}]$.

This means that $\sigma_{\rm f}^{\ell}(\mu)$ is built up from segments of hyperbolas that are connected at a finite number of *nodes* that correspond to points in the interval $(\mu_{\rm mn}^{\ell}, \mu_{\rm mx}^{\ell})$ where $\sigma_{\rm f}^{\ell}(\mu)$ has either

- a jump discontinuity in its first derivative or
- a jump discontinuity in its second derivative.

Guided by these facts we now show how an ℓ -limited frontier can be approximated numerically with the Matlab command quadprog.

Visualizing	Quadratic Programming	Computing ○●○○○	Two Assets	Three Assets
Computing	Frontiers: Appr	proximating	$\sigma_{ m f}^\ell(\mu)$	

First, partition the interval $[\mu_{\mathrm{mn}}^\ell,\mu_{\mathrm{mx}}^\ell]$ as

$$\mu_{mn}^{\ell} = \mu_0 < \mu_1 < \cdots < \mu_{n-1} < \mu_n = \mu_{mx}^{\ell}$$
.

For example, set $\mu_k = \mu_{mn}^{\ell} + k(\mu_{mx}^{\ell} - \mu_{mn}^{\ell})/n$ for a uniform partition. Pick *n* large enough to resolve all the features of the ℓ -limited frontier. There should be at most one node in each subinterval $[\mu_{k-1}, \mu_k]$.

Second, for every $k = 1, \dots, n-1$ use quadprog to compute $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k)$. (This computation will not be exact, but we will speak as if it is.) The allocations $\{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k)\}_{k=0}^{n}$ should be saved.

Third, for every $k = 1, \dots, n-1$ compute σ_k by

$$\sigma_k = \sigma_{\mathrm{f}}^{\ell}(\mu_k) = \sqrt{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k)}.$$

Visualizing	Quadratic Programming	Computing 00000	Two Assets	Three Assets

Computing Frontiers: Linear Interpolation in $\sigma\mu$ -Plane

Fourth. There is typically a unique long-short pair allocation \mathbf{e}_{ij}^{ℓ} such that $\mu_{mn}^{\ell} = (1 + \ell)m_i - \ell m_j$ that is most efficient, in which case we have

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_0) = \mathbf{e}_{ij}^{\ell}\,, \qquad \sigma_0 = \sigma_{ij}^{\ell} = \sqrt{(\mathbf{e}_{ij}^{\ell})^{\mathrm{T}}\mathbf{V}\mathbf{e}_{ij}^{\ell}}\,.$$

Similarly, there is typically a unique long-short pair allocation \mathbf{e}_{kl}^{ℓ} such that $\mu_{\max}^{\ell} = (1 + \ell)m_k - \ell m_l$ that is most efficient, in which case we have

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{n}) = \mathbf{e}_{kl}^{\ell}, \qquad \sigma_{n} = \sigma_{kl}^{\ell} = \sqrt{(\mathbf{e}_{kl}^{\ell})^{\mathrm{T}} \mathbf{V} \mathbf{e}_{kl}^{\ell}}.$$

Finally, we "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ to build an approximation to the ℓ -limited frontier in the $\sigma\mu$ -plane. This can be done by linear interpolation. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$ilde{\sigma}^\ell_{\mathrm{f}}(\mu) = rac{\mu_k-\mu}{\mu_k-\mu_{k-1}}\,\sigma_{k-1} + rac{\mu-\mu_{k-1}}{\mu_k-\mu_{k-1}}\,\sigma_k\,.$$

Visualizing	Quadratic Programming	Computing 00000	Two Assets	Three Assets

Computing Frontiers: Linear Interpolation in Π^{ℓ}

A better way to "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ is motivated by the two-fund property. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$\mathbf{\tilde{f}}_{\mathrm{f}}^{\ell}(\mu) = \frac{\mu_{k} - \mu}{\mu_{k} - \mu_{k-1}} \, \mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{k-1}) + \frac{\mu - \mu_{k-1}}{\mu_{k} - \mu_{k-1}} \, \mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{k}) \,,$$

and then set

$$ilde{\sigma}_{\mathrm{f}}^{\ell}(\mu) = \sqrt{\mathbf{\tilde{f}}_{\mathrm{f}}^{\ell}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{\tilde{f}}_{\mathrm{f}}^{\ell}(\mu)} \,.$$

Remark. This will be a very good approximation if *n* is large enough. Over each interval (μ_{k-1}, μ_k) it approximates $\sigma_{\rm f}^{\ell}(\mu)$ with a hyperbola rather than with a line.

Visualizing	Quadratic Programming	Computing ○○○○●	Two Assets	Three Assets
C				
(omputu	ng Frontiers. Line	ar Internola	ntion in 11°	

Remark. Because $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k) \in \Pi^{\ell}(\mu_k)$ and $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{k-1}) \in \Pi^{\ell}(\mu_{k-1})$, we can show that

$$\mathbf{ ilde{f}}^\ell_\mathrm{f}(\mu)\in \mathsf{\Pi}^\ell(\mu) \quad ext{for every } \mu\in (\mu_{k-1},\mu_k)\,.$$

Therefore $\tilde{\sigma}_{f}^{\ell}(\mu)$ gives an approximation to the ℓ -limited frontier that lies on or to the right of the ℓ -limited frontier in the $\sigma\mu$ -plane.

Remark. When there are no nodes in the interval (μ_{k-1}, μ_k) then we can use the two-fund property to show that $\tilde{\sigma}_{f}^{\ell}(\mu) = \sigma_{f}^{\ell}(\mu)$.

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
			•0	

General Portfolio with Two Risky Assets: **m** and **V**

Recall the portfolio of two risky assets with mean vector ${\bf m}$ and covarience matrix ${\bf V}$ given by

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \qquad \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} \\ v_{12} & v_{22} \end{pmatrix}$$

Without loss of generality we can assume that $m_1 < m_2.$ Then $\mu_{\rm mn} = m_1$, $\mu_{\rm mx} = m_2$ and

$$\mu_{
m mn}^\ell = m_1 - \ell(m_2 - m_1), \qquad \mu_{
m mn}^\ell = m_2 + \ell(m_2 - m_1).$$

Recall that for every $\mu \in \mathbb{R}$ the unique portfolio allocation that satisfies the constraints $\mathbf{1}^T \mathbf{f} = 1$ and $\mathbf{m}^T \mathbf{f} = \mu$ is

$$\mathbf{f} = \mathbf{f}(\mu) = \frac{1}{m_2 - m_1} \begin{pmatrix} m_2 - \mu \\ \mu - m_1 \end{pmatrix}$$

Clearly $\mathbf{f}(\mu) \in \Pi^{\ell}$ if and only if $\mu \in [\mu_{\min}^{\ell}, \mu_{\max}^{\ell}]$.

Visualizing	Quadratic Programming	Computing 00000	Two Assets ○●	Three Assets

General Portfolio with Two Risky Assets: $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ and $\sigma_{\mathrm{f}}^{\ell}(\mu)$

Therefore the set $\Pi^{\ell}(\mu)$ is given by

$$\mathsf{\Pi}^\ell = \left\{ \mathbf{f}(\mu) \, : \, \mu \in [\mu_{\mathrm{mn}}^\ell, \mu_{\mathrm{mx}}^\ell] \right\}.$$

In other words, the set Π^{ℓ} is the line segment in \mathbb{R}^2 that is the image of the interval $[\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ under the affine mapping $\mu \mapsto \mathbf{f}(\mu)$.

Because for every $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ the set $\Pi^{\ell}(\mu)$ consists of the single portfolio $\mathbf{f}(\mu)$, the minimizer of $\mathbf{f}^{T}\mathbf{V}\mathbf{f}$ over $\Pi^{\ell}(\mu)$ is $\mathbf{f}(\mu)$. Therefore the ℓ -limited frontier portfolios are

$$\mathbf{f}^\ell_\mathrm{f}(\mu) = \mathbf{f}(\mu) \qquad ext{for } \mu \in \left[\mu^\ell_\mathrm{mn}, \mu^\ell_\mathrm{mx}
ight],$$

and the $\ell\text{-limited}$ frontier is given by

$$\sigma = \sigma^\ell_\mathrm{f}(\mu) = \sqrt{\mathbf{f}(\mu)^\mathrm{T} \mathbf{V} \, \mathbf{f}(\mu)} \qquad ext{for } \mu \in [\mu^\ell_\mathrm{mn}, \mu^\ell_\mathrm{mx}] \,.$$

Hence, the ℓ -limited frontier is simply a segment of the frontier hyperbola. It has no nodes.

C. David Levermore (UMD)

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
				•000000000

General Portfolio with Three Risky Assets: \mathbf{m} and \mathbf{V}

Recall the portfolio of three risky assets with mean vector ${\boldsymbol{m}}$ and covarience matrix ${\boldsymbol{V}}$ given by

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}, \qquad \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{12} & v_{22} & v_{23} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$$

Without loss of generality we can assume that

$$m_1 \leq m_2 \leq m_3 \,, \qquad m_1 < m_3 \,.$$

Then $\mu_{
m mn}=\textit{m}_1$, $\mu_{
m mx}=\textit{m}_3$ and

$$\mu_{
m mn}^\ell = m_1 - \ell(m_3 - m_1)\,, \qquad \mu_{
m mn}^\ell = m_3 + \ell(m_3 - m_1)\,.$$

•

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets ○●○○○○○○○○
General	Portfolio with Th	ree Risky As	ssets: $f(\mu, \phi)$)

Recall that for every $\mu \in \mathbb{R}$ the portfolios that satisfies the constraints $\mathbf{1}^T \mathbf{f} = 1$ and $\mathbf{m}^T \mathbf{f} = \mu$ are

$$\mathbf{f} = \mathbf{f}(\mu, \phi) = \mathbf{f}_{13}(\mu) + \phi \, \mathbf{n} \,, \qquad ext{for some } \phi \in \mathbb{R} \,,$$

where

$$\mathbf{f}_{13}(\mu) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu \\ 0 \\ \mu - m_1 \end{pmatrix}, \qquad \mathbf{n} = \frac{1}{m_3 - m_1} \begin{pmatrix} m_2 - m_3 \\ m_3 - m_1 \\ m_1 - m_2 \end{pmatrix}.$$

Here $\mathbf{f}_{13}(\mu)$ is the two-asset allocation for assets 1 and 3 that satisfies

$$\mathbf{1}^{\mathrm{T}}\mathbf{f}_{13}(\mu) = 1, \qquad \mathbf{m}^{\mathrm{T}}\mathbf{f}_{13}(\mu) = \mu,$$

while **n** satisfies $\mathbf{1}^{\mathrm{T}}\mathbf{n} = 0$ and $\mathbf{m}^{\mathrm{T}}\mathbf{n} = 0$.

Visualizing	Q i 00	uadratic Prog	ramming	Computing	vo Assets	Three Assets
						0

General Portfolio with Three Risky Assets: $\mathbf{f}(\mu, \phi) \in \Pi^{\ell}$

Because

$$\mathbf{f}(\mu,\phi) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu - \phi (m_3 - m_2) \\ \phi (m_3 - m_1) \\ \mu - m_1 - \phi (m_2 - m_1) \end{pmatrix},$$

We see from (2.1) that $\mathbf{f}(\mu,\phi)\in \mathsf{\Pi}^\ell$ if and only if $\mu\in [\mu_{\mathrm{mn}}^\ell,\mu_{\mathrm{mx}}^\ell]$ and

$$\begin{split} -\ell &\leq \frac{m_3 - \mu}{m_3 - m_1} - \phi \, \frac{m_3 - m_2}{m_3 - m_1} \leq 1 + \ell \,, \\ &-\ell \leq \phi \leq 1 + \ell \,, \\ -\ell &\leq \frac{\mu - m_1}{m_3 - m_1} - \phi \, \frac{m_2 - m_1}{m_3 - m_1} \leq 1 + \ell \,. \end{split}$$

Visualizing	Quadratic Programming	Computing 00000	Two Assets	Three Assets
C 1				
General	Portfolio with Thr	ee Kisky As	sets: ϕ^{ι}_{mv} (μ), $\phi_{mn}^{\epsilon}(\mu)$

For every $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ these inequalities yield the bounds

$$\begin{aligned} &-\frac{\mu - \mu_{\rm mn}^{\ell}}{m_3 - m_2} \le \phi \le \frac{\mu_{\rm mx}^{\ell} - \mu}{m_3 - m_2} \qquad \text{if } m_2 < m_3 \,, \\ &-\ell \le \phi \le 1 + \ell \,, \\ &-\frac{\mu_{\rm mx}^{\ell} - \mu}{m_2 - m_1} \le \phi \le \frac{\mu - \mu_{\rm mn}^{\ell}}{m_2 - m_1} \qquad \text{if } m_2 > m_1 \,. \end{aligned}$$

This region can be expressed as

$$\phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi \leq \phi_{\mathrm{mx}}^{\ell}(\mu),$$

where $\phi_{mn}^{\ell}(\mu)$ and $\phi_{mx}^{\ell}(\mu)$ are defined on the next slide.

 $\varphi_{\mathrm{mx}}(\mu)$,

 $\varphi_{mn}(\mu)$

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
				000000000

General Portfolio with Three Risky Assets: $\phi_{mx}^{\ell}(\mu)$, $\phi_{mn}^{\ell}(\mu)$

$$\phi_{\mathrm{mx}}^{\ell}(\mu) = \begin{cases} \min\left\{1+\ell, \frac{\mu_{\mathrm{mx}}^{\ell}-\mu}{m_{3}-m_{1}}\right\} & \text{if } m_{2} = m_{1}, \\ \min\left\{\frac{\mu-\mu_{\mathrm{mn}}^{\ell}}{m_{2}-m_{1}}, 1+\ell, \frac{\mu_{\mathrm{mx}}^{\ell}-\mu}{m_{3}-m_{2}}\right\} & \text{if } m_{2} \in (m_{1}, m_{3}), \\ \min\left\{\frac{\mu-\mu_{\mathrm{mn}}^{\ell}}{m_{3}-m_{1}}, 1+\ell\right\} & \text{if } m_{2} = m_{3}, \\ \\ \phi_{\mathrm{mn}}^{\ell}(\mu) = \begin{cases} -\min\left\{\frac{\mu-\mu_{\mathrm{mn}}^{\ell}}{m_{3}-m_{1}}, \ell\right\} & \text{if } m_{2} = m_{1}, \\ -\min\left\{\frac{\mu-\mu_{\mathrm{mn}}^{\ell}}{m_{3}-m_{2}}, \ell, \frac{\mu_{\mathrm{mx}}^{\ell}-\mu}{m_{2}-m_{1}}\right\} & \text{if } m_{2} \in (m_{1}, m_{3}), \\ -\min\left\{\ell, \frac{\mu_{\mathrm{mx}}^{\ell}-\mu}{m_{3}-m_{1}}\right\} & \text{if } m_{2} = m_{3}. \end{cases} \end{cases}$$

C. David Levermore (UMD)

March 15, 2022

General Portfolio with Three Risky Assets: \mathcal{H}^{ℓ} and Π^{ℓ}

When $\ell > 0$ this region is the convex hexagon \mathcal{H}^{ℓ} in the $\mu\phi$ -plane whose vertices are the six distinct points

$$(m_{2} - \ell(m_{3} - m_{2}), 1 + \ell) \bullet \cdots \bullet (m_{2} + \ell(m_{2} - m_{1}), 1 + \ell)$$

$$(m_{1} - \ell(m_{3} - m_{1}), 0) \bullet \bullet (m_{3} + \ell(m_{3} - m_{1}), 0)$$

$$(m_{1} - \ell(m_{2} - m_{1}), -\ell) \bullet \cdots \bullet (m_{3} + \ell(m_{3} - m_{2}), -\ell)$$

Therefore the set Π^{ℓ} is given by

$$\Pi^{\ell} = \left\{ \mathbf{f}(\mu, \phi) : (\mu, \phi) \in \mathcal{H}^{\ell} \right\}.$$

Therefore the sets Π^{ℓ} and $\Pi^{\ell}(\mu)$ can be visualized as follows.

- The set Π^{ℓ} is the hexagon in \mathbb{R}^3 that is the image of the hexagon \mathcal{H}^{ℓ} under the affine mapping $(\mu, \phi) \mapsto \mathbf{f}(\mu, \phi)$.
- For every $\mu \in [\mu_{\mathrm{mn}}^\ell, \mu_{\mathrm{mx}}^\ell]$ the set $\Pi^\ell(\mu)$ is the intersection of
 - the hexagon Π^ℓ in the plane $\{ \bm{f} \in \mathbb{R}^3 \, : \, \bm{1}^{\! \mathrm{T}} \bm{f} = 1 \}$ with
 - the transverse plane $\{\mathbf{f} \in \mathbb{R}^3 : \mathbf{m}^T \mathbf{f} = \mu\}.$

This is a line segment that might be a single point. It is given by

$$\mathsf{\Pi}^\ell(\mu) = \left\{ \mathbf{f}(\mu,\phi) \, : \, \phi^\ell_{\mathrm{mn}}(\mu) \leq \phi \leq \phi^\ell_{\mathrm{mx}}(\mu)
ight\}.$$

Therefore the set $\Pi^{\ell}(\mu)$ is the line segment in \mathbb{R}^3 that is the image of the interval $[\phi_{mn}^{\ell}(\mu), \phi_{mx}^{\ell}(\mu)]$ under the affine mapping $\phi \mapsto \mathbf{f}(\mu, \phi)$.

Hence, the point on the ℓ -limited frontier associated with $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ is $(\sigma_{f}^{\ell}(\mu), \mu)$ where $\sigma_{f}^{\ell}(\mu)$ solves the constrained minimization problem

$$\begin{split} \sigma_{\mathrm{f}}^{\ell}(\mu)^2 &= \min \left\{ \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} \ : \ \mathbf{f} \in \Pi^{\ell}(\mu) \right\} \\ &= \min \left\{ \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) \ : \ \phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi \leq \phi_{\mathrm{mx}}^{\ell}(\mu) \right\} \end{split}$$

Because the objective function

$$\mathbf{f}(\mu,\phi)^{\mathrm{T}}\mathbf{V}\mathbf{f}(\mu,\phi) = \mathbf{f}_{13}(\mu)^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + 2\phi\,\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + \phi^{2}\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{n}$$

is a quadratic in ϕ , we see that it has a unique global minimizer at

$$\phi = \phi_{
m mf}(\mu) = -rac{\mathbf{n}^{
m T} \mathbf{V} \mathbf{f}_{13}(\mu)}{\mathbf{n}^{
m T} \mathbf{V} \mathbf{n}}$$

The Markowitz frontier allocation is $\mathbf{f}_{mf}(\mu) = \mathbf{f}(\mu, \phi_{mf}(\mu))$.

Visualizing	Quadratic Programming	Computing	Two Assets	Three Assets
				0000000000

General Portfolio with Three Risky Assets: Minimizers

The global minimizer $\phi_{mf}(\mu)$ will be the minimizer of our constrained minimization problem for the ℓ -limited frontier if and only if

$$\phi_{\mathrm{mn}}^\ell(\mu) \leq \phi_{\mathrm{mf}}(\mu) \leq \phi_{\mathrm{mx}}^\ell(\mu)$$
.

Because the derivative of the objective function with respect to ϕ can be written as

$$\partial_{\phi} \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) = 2 \, \mathbf{n}^{\mathrm{T}} \mathbf{V} \mathbf{n} \left(\phi - \phi_{\mathrm{mf}}(\mu) \right),$$

we can read off the following.

- If $\phi_{mf}(\mu) < \phi_{mn}^{\ell}(\mu)$ then the objective function is increasing over $[\phi_{mn}^{\ell}(\mu), \phi_{mx}^{\ell}(\mu)]$, whereby its minimizer is $\phi = \phi_{mn}^{\ell}(\mu)$.
- If $\phi_{mx}^{\ell}(\mu) < \phi_{mf}(\mu)$ then the objective function is decreasing over $[\phi_{mn}^{\ell}(\mu), \phi_{mx}^{\ell}(\mu)]$, whereby its minimizer is $\phi = \phi_{mx}^{\ell}(\mu)$.

Hence, the minimizer $\phi_{\rm f}^\ell(\mu)$ of our constrained minimization problem is

$$\begin{split} \phi_{\rm f}^{\ell}(\mu) &= \begin{cases} \phi_{\rm mn}^{\ell}(\mu) & \text{if } \phi_{\rm mf}(\mu) \leq \phi_{\rm mn}^{\ell}(\mu) \\ \phi_{\rm mf}(\mu) & \text{if } \phi_{\rm mn}^{\ell}(\mu) < \phi_{\rm mf}(\mu) < \phi_{\rm mx}^{\ell}(\mu) \\ \phi_{\rm mx}^{\ell}(\mu) & \text{if } \phi_{\rm mx}^{\ell}(\mu) < \phi_{\rm mf}(\mu) \\ &= \max\left\{\phi_{\rm mn}^{\ell}(\mu), \min\left\{\phi_{\rm mf}(\mu), \phi_{\rm mx}^{\ell}(\mu)\right\}\right\} \\ &= \min\left\{\max\left\{\phi_{\rm mn}^{\ell}(\mu), \phi_{\rm mf}^{\ell}(\mu)\right\}, \phi_{\rm mx}^{\ell}(\mu)\right\}. \end{split}$$

Therefore the ℓ -limited frontier is given by

$$\sigma^\ell_{\mathrm{f}}(\mu) = \sqrt{\mathbf{f}(\mu,\phi^\ell_{\mathrm{f}}(\mu))^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu,\phi^\ell_{\mathrm{f}}(\mu))}\,.$$

(日)