Portfolios that Contain Risky Assets 4.1. Long Portfolios and Their Frontiers

C. David Levermore

University of Maryland, College Park, MD

Math 420: *Mathematical Modeling* March 15, 2022 version © 2022 Charles David Levermore

・ロト ・日ト ・ヨト ・ヨー うへで

Portfolios that Contain Risky Assets Part I: Portfolio Models

- 1. Preliminary Topics
- 2. Markowitz Portfolio Model
- 3. Models for Portfolios with Risk-Free Assets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 4. Models for Long Portfolios
- 5. Models for Limited-Leverage Portfolios

Portfolios that Contain Risky Assets Part I: Portfolio Models

4. Models for Long Portfolios

- 4.1. Long Portfolios and Their Frontiers
- 4.2. Long Portfolios with a Safe Investment

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

4.3. Metrics for Long Portfolios

The Set Λ 0000000	Slices of A	Long Frontiers	Two Assets	Three Assets

Long Portfolios and Their Frontiers

- 3 Long Frontiers
- 4 General Portfolio with Two Risky Assets
- 5 General Portfolio with Three Risky Assets

The Set Λ ●000000	Slices of A	Long Frontiers	Two Assets	Three Assets
The Set A	· Definition			

Because the value of any portfolio with short positions can become negative, many investors will not hold a short position in any risky asset. Portfolios that hold no short positions are called *long portfolios*.

A Markowitz portfolio with allocation **f** is long if and only if $f_i \ge 0$ for every *i*. This can be expressed compactly as

$$\mathbf{f} \ge \mathbf{0} \,, \tag{1.1}$$

where **0** denotes the *N*-vector with each entry equal to 0 and the inequality is understood entrywise. Therefore the set of all *long Markowitz allocations* Λ is given by

$$\Lambda = \left\{ \mathbf{f} \in \mathbb{R}^{N} : \mathbf{1}^{\mathrm{T}} \mathbf{f} = 1, \, \mathbf{f} \ge \mathbf{0} \right\}.$$
(1.2)

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
000000				

The Set Λ : Convex Combinations

Let \mathbf{e}_i denote the vector whose i^{th} entry is 1 while every other entry is 0. For every $\mathbf{f} \in \Lambda$ we have

$$\mathbf{f}=\sum_{i=1}^{N}f_{i}\mathbf{e}_{i}\,,$$

where $f_i \geq 0$ for every $i = 1, \dots, N$ and

$$\sum_{i=1}^N f_i = \mathbf{1}^{\mathrm{T}} \mathbf{f} = 1.$$

This shows that Λ is just all convex combinations of the vectors $\{\mathbf{e}_i\}_{i=1}^N$. We can visualize Λ when N is small.

When N = 2 it is the line segment with vertices

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
000000				

The Set A: Visualization for N = 3 and N = 4

When N = 3 it is the triangle with vertices

$$\mathbf{e}_1 = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}, \qquad \mathbf{e}_2 = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}, \qquad \mathbf{e}_3 = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}.$$

When N = 4 it is the tetrahedron with vertices

$$\mathbf{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \mathbf{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad \mathbf{e}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathbf{e}_{4} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

For general N it is the simplex with vertices at the vectors $\{\mathbf{e}_i\}_{i=1}^N$.

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
000000				

The Set Λ : Visualization for $\overline{N} = 4$ in \mathbb{R}^3

Remark. When N = 4 it is easy to check that the tetrahedron $\Lambda \subset \mathbb{R}^4$ is the image of the tetrahedron $\mathcal{T} \subset \mathbb{R}^3$ given by

$$\mathcal{T} = \left\{ \mathbf{z} \in \mathbb{R}^3 : \mathbf{w}_k \cdot \mathbf{z} \le 1 \text{ for } k = 1, 2, 3, 4 \right\},$$

where

$$\mathbf{w}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}, \quad \mathbf{w}_3 = \begin{pmatrix} -1\\1\\-1 \end{pmatrix}, \quad \mathbf{w}_4 = \begin{pmatrix} -1\\-1\\1 \end{pmatrix},$$

under the one-to-one affine mapping $\pmb{\Phi}:\mathbb{R}^3\to\mathbb{R}^4$ given by

C. David Levermore (UMD)

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
0000000				

The Set Λ : Closed, Bounded and Convex

Because Λ is the simplex with vertices at the vectors $\{\mathbf{e}_i\}_{i=1}^N$, it is a nonempty, convex, and bounded set. In addition, Λ is a closed set.

Proof. For any **f** in the closure of A there exists a sequence $\{\mathbf{f}_n\}_{n\in\mathbb{N}}\subset A$ such that

$$\mathbf{f} = \lim_{n \to \infty} \mathbf{f}_n$$
.

Because $\mathbf{f}_n \geq \mathbf{0}$ and $\mathbf{1}^{\mathrm{T}} \mathbf{f}_n = 1$ for every $n \in \mathbb{N}$, we see that

$$\mathbf{f} = \lim_{n \to \infty} \mathbf{f}_n \ge \mathbf{0}, \qquad \mathbf{1}^{\mathrm{T}} \mathbf{f} = \lim_{n \to \infty} \mathbf{1}^{\mathrm{T}} \mathbf{f}_n = 1.$$

Hence, $\mathbf{f} \in \Lambda$. Therefore Λ is a closed set.

Therefore Λ is a nonempty, closed, bounded, convex set.

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
0000000				

The Set Λ : Return Means Bounded

Because the set Λ is a bounded, its return means are bounded. Let

$$\mu_{\mathrm{mn}} = \min_{i} \{m_i\}, \qquad \mu_{\mathrm{mx}} = \max_{i} \{m_i\}.$$

Then because $f \geq 0$ and $\mathbf{1}^{\!\mathrm{T}} f = 1$, for every $f \in \Lambda$ we have

$$\mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \sum_{i=1}^{N} m_i f_i \ge \mu_{\mathrm{mn}} \sum_{i=1}^{N} f_i = \mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{\mathrm{mn}},$$
$$\mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \sum_{i=1}^{N} m_i f_i \le \mu_{\mathrm{mn}} \sum_{i=1}^{N} f_i = \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{\mathrm{mx}}.$$

Therefore the return mean μ of any $\mathbf{f} \in \Lambda$ satisfies

$$\mu_{\rm mn} \le \mu \le \mu_{\rm mx}$$
.

These bounds are sharp.

C. David Levermore (UMD)

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
000000				

The Set Λ : Bounded Volatilities

Because Λ is bounded, its return variances and volatilities are bounded. Let

$$\mathbf{v}_{\mathrm{mx}} = \max_{i} \{ \mathbf{v}_{ii} \}, \qquad \sigma_{\mathrm{mx}} = \sqrt{\mathbf{v}_{\mathrm{mx}}}.$$

Because $v_{ij} = c_{ij} \sqrt{v_{ii} v_{jj}}$ and $|c_{ij}| \le 1$ we see that

$$|v_{ij}| = |c_{ij}| \sqrt{v_{ii}v_{jj}} \le \sqrt{v_{ii}v_{jj}} \le v_{\mathrm{mx}}$$

Then because $\boldsymbol{f} \geq \boldsymbol{0}$ and $\boldsymbol{1}^{\!\mathrm{T}} \boldsymbol{f} = 1,$ for every $\boldsymbol{f} \in \boldsymbol{\Lambda}$ we have

$$\mathbf{v} = \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} = \sum_{i,j=1}^{N} f_i \mathbf{v}_{ij} f_j \leq \sum_{i,j=1}^{N} f_i |\mathbf{v}_{ij}| f_j \leq \mathbf{v}_{\mathrm{mx}} \sum_{i,j=1}^{N} f_i f_j = \mathbf{v}_{\mathrm{mx}} (\mathbf{1}^{\mathrm{T}} \mathbf{f})^2 = \mathbf{v}_{\mathrm{mx}}.$$

Therefore the return variance v and volatility σ of any $\mathbf{f} \in \Lambda$ satisfy

$$\mathbf{v}_{\mathrm{mv}} \leq \mathbf{v} \leq \mathbf{v}_{\mathrm{mx}} \,, \qquad \sigma_{\mathrm{mv}} \leq \sigma \leq \sigma_{\mathrm{mx}} \,.$$

These upper bounds are sharp. The lower bounds will be sharp only when $\mathbf{f}_{\mathrm{mv}} \in \Lambda$, which is generally not the case. They will be improved soon

C. David Levermore (UMD)

The Set Λ 0000000	Slices of ∧ ●000000	Long Frontiers	Two Assets	Three Assets
Slices of	A∙ The Slic	$ = \Lambda(u) $		

Let $\Lambda(\mu)$ be the set of all *long portfolio allocations with return mean* μ . This set is given by

$$\Lambda(\mu) = \left\{ \mathbf{f} \in \Lambda : \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mu \right\}.$$
(2.3)

Clearly $\Lambda(\mu) \subset \Lambda$ for every $\mu \in \mathbb{R}$. It is a *slice* of Λ . It is the intersection of the simplex Λ with the hyperplane { $\mathbf{f} \in \mathbb{R}^N : \mathbf{m}^T \mathbf{f} = \mu$ }.

We now characterize those μ for which $\Lambda(\mu)$ is nonempty.

Fact. The set $\Lambda(\mu)$ is nonempty if and only if $\mu \in [\mu_{mn}, \mu_{mx}]$.

Remark. Because we have assumed that **m** is not proportional to **1**, the return means $\{m_i\}_{i=1}^N$ are not identical. This implies that $\mu_{mn} < \mu_{mx}$, which implies that the interval $[\mu_{mn}, \mu_{mx}]$ does not reduce to a point.

The Set Λ	Slices of A	Long Frontiers	Two Assets	Three Assets
	000000			

Slices of Λ : Nonempty Characterization Proof

Proof. Because $\mathbf{f} \ge \mathbf{0}$ and $\mathbf{1}^T \mathbf{f} = 1$, for every $\mathbf{f} \in \Lambda(\mu)$ we have the inequalities

$$\mu_{\mathrm{mn}} = \mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{\mathrm{mn}} \sum_{i=1}^{N} f_{i} \leq \sum_{i=1}^{N} m_{i} f_{i} = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mu,$$

$$\mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \sum_{i=1}^{N} m_{i} f_{i} \leq \mu_{\mathrm{mx}} \sum_{i=1}^{N} f_{i} = \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{\mathrm{mx}}.$$

Therefore if $\Lambda(\mu)$ is nonempty then $\mu \in [\mu_{mn}, \mu_{mx}]$.

Conversely, first choose $\boldsymbol{e}_{\mathrm{mn}}$ and $\boldsymbol{e}_{\mathrm{mx}}$ so that

$$\begin{split} \mathbf{e}_{\mathrm{mn}} &= \mathbf{e}_i \quad \text{for any } i \text{ that satisfies } m_i = \mu_{\mathrm{mn}} \,, \\ \mathbf{e}_{\mathrm{mx}} &= \mathbf{e}_j \quad \text{for any } j \text{ that satisfies } m_j = \mu_{\mathrm{mx}} \,. \end{split}$$

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
	000000			

Slices of Λ : Nonempty Characterization Proof

Now let $\mu \in [\mu_{mn}, \mu_{mx}]$ and set

$$\label{eq:f} \begin{split} \mathbf{f} &= \frac{\mu_{mx} - \mu}{\mu_{mx} - \mu_{mn}} \, \mathbf{e}_{mn} + \frac{\mu - \mu_{mn}}{\mu_{mx} - \mu_{mn}} \, \mathbf{e}_{mx} \, . \end{split}$$
 Clearly $\mathbf{f} \geq \mathbf{0}.$ Because $\mathbf{1}^{T} \mathbf{e}_{mn} = \mathbf{1}^{T} \mathbf{e}_{mx} = 1$, $\mathbf{m}^{T} \mathbf{e}_{mn} = \mu_{mn}$, and $\mathbf{m}^{T} \mathbf{e}_{mx} = \mu_{mx}$, we see that

$$\mathbf{1}^{\mathrm{T}}\mathbf{f} = \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \mathbf{1}^{\mathrm{T}}\mathbf{e}_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \mathbf{1}^{\mathrm{T}}\mathbf{e}_{\mathrm{mx}}$$
$$= \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} = 1,$$
$$\mathbf{m}^{\mathrm{T}}\mathbf{f} = \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \mathbf{m}^{\mathrm{T}}\mathbf{e}_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \mathbf{m}^{\mathrm{T}}\mathbf{e}_{\mathrm{mx}}$$
$$= \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \mu_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \mu_{\mathrm{mx}} = \mu.$$

Hence, $\mathbf{f} \in \Lambda(\mu)$. Therefore if $\mu \in [\mu_{mn}, \mu_{mx}]$ then $\Lambda(\mu)$ is nonempty.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
	0000000			

Slices of A: $\Lambda(\mu)$ as a Polytope

For every $\mu \in [\mu_{mn}, \mu_{mx}]$ the set $\Lambda(\mu)$ is the nonempty intersection in \mathbb{R}^N of the N-1 dimensional simplex Λ with the N-1 dimensional hyperplane $\{\mathbf{f} \in \mathbb{R}^N : \mathbf{m}^T \mathbf{f} = \mu\}$. Therefore $\Lambda(\mu)$ will be a nonempty, closed, bounded, convex polytope of dimension at most N-2.

Remark. If there are

- *n* assets with $m_i > \mu$ and
- N n assets with $m_i < \mu$

then there are n(N - n) edges of Λ that cross the $\mathbf{m}^{\mathrm{T}}\mathbf{f} = \mu$ hyperplane, whereby $\Lambda(\mu)$ will have n(N - n) vertices. This means that $\Lambda(\mu)$ can have

- at most $\frac{1}{4}N^2$ vertices when N is even and
- at most $\frac{1}{4}(N^2-1)$ vertices when N is odd.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
	0000000			

Slices of Λ : Visualization for Small N

We can visualize the polytope $\Lambda(\mu)$ when N is small.

- When N = 2 it is a point because it is the intersection of the line segment Λ with a transverse line.
- When N = 3 it is either a point or line segment because it is the intersection of the triangle Λ with a transverse plane.
- When N = 4 it is either a point, line segment, triangle, or convex quadralateral because it is the intersection of the tetrahedron Λ with a transverse hyperplane.

The Set Λ 0000000	Slices of ∧ ○○○○○●○	Long Frontiers	Two Assets	Three Assets
CI			ч · т ъ ?	

Slices of A: Visualization for N = 4 in \mathbb{R}^3

Remark. Recall from an earlier remark that when N = 4 the set $\Lambda \subset \mathbb{R}^4$ is the image of the tetrahedron $\mathcal{T} \subset \mathbb{R}^3$ under the one-to-one affine mapping $\mathbf{\Phi} : \mathbb{R}^3 \to \mathbb{R}^4$ given there.

The set $\Lambda(\mu) \subset \mathbb{R}^4$ is thereby the image under Φ of the intersection of \mathcal{T} with the hyperplane H_{μ} given by

$$\mathcal{H}_{\mu} = \left\{ \mathsf{z} \in \mathbb{R}^3 \; ; \; \mathsf{m}^{\mathrm{T}} \mathbf{\Phi}(\mathsf{z}) = \mu \;
ight\} \; .$$

Hence, the set $\Lambda(\mu)$ in \mathbb{R}^4 can be visualized in \mathbb{R}^3 as the set $\mathcal{T}_{\mu} = \mathcal{T} \cap H_{\mu}$.

As Φ is one-to-one and **m** is arbitrary, H_{μ} can be any hyperplane in \mathbb{R}^3 . Therefore \mathcal{T}_{μ} can be the intersection of the tetrahedron \mathcal{T} with any hyperplane in \mathbb{R}^3 .

The Set Λ 0000000	Slices of ∧ ○○○○○●	Long Frontiers	Two Assets	Three Assets
Slices of	Λ: Visualiz	ation for $N =$	4	

When such an intersection is nonempty it can be either

- 1. a point that is a vertex of \mathcal{T} ,
- 2. a line segment that is an edge of \mathcal{T} ,
- 3. a triangle with vertices on edges of \mathcal{T} ,
- 4. a convex quadrilateral with vertices on edges of \mathcal{T} .

These are each convex polytopes of dimension at most 2.

- The first and second cases arise only when $\mu = \mu_{mn}$ or $\mu = \mu_{mx}$. The second case is extremely rare.
- Either the third or fourth case arises for every $\mu \in (\mu_{mn}, \mu_{mx})$.

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		••••••		

Long Frontiers: $\Sigma(\Lambda)$ in the $\sigma\mu$ -Plane

The set Λ in \mathbb{R}^N of all long portfolios is associated with the set $\Sigma(\Lambda)$ in the $\sigma\mu$ -plane of volatilities and return means given by

$$\boldsymbol{\Sigma}(\boldsymbol{\Lambda}) = \left\{ (\boldsymbol{\sigma}, \boldsymbol{\mu}) \in \mathbb{R}^2 : \boldsymbol{\sigma} = \sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}}, \ \boldsymbol{\mu} = \mathbf{m}^{\mathrm{T}} \mathbf{f}, \ \mathbf{f} \in \boldsymbol{\Lambda} \right\}.$$
(3.4)

The set $\Sigma(\Lambda)$ is the image in \mathbb{R}^2 of the simplex Λ in \mathbb{R}^N under the mapping $\mathbf{f} \mapsto (\sigma, \mu)$. Because the set Λ is compact (closed and bounded) and the mapping $\mathbf{f} \mapsto (\sigma, \mu)$ is continuous, the set $\Sigma(\Lambda)$ is compact.

We have seen that the set $\Lambda(\mu)$ of all long portfolios with return mean μ is nonempty if and only if $\mu \in [\mu_{mn}, \mu_{mx}]$. Hence, $\Sigma(\Lambda)$ can be expressed as

$$\Sigma(\Lambda) = \left\{ \left(\sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}} \,, \, \mu \right) \, : \, \mu \in [\mu_{\mathrm{mn}}, \mu_{\mathrm{mx}}] \,, \, \mathbf{f} \in \Lambda(\mu) \, \right\} \,.$$

The points on the boundary of $\Sigma(\Lambda)$ that correspond to those long portfolios that have less volatility than every other long portfolio with the same return mean is called the *long frontier*.

C. David Levermore (UMD)

Long Frontiers: Definition of $\sigma_{\rm lf}(\mu)$

The *long frontier* is the curve in the $\sigma\mu$ -plane given by the equation

$$\sigma = \sigma_{\rm lf}(\mu) \quad \text{over} \quad \mu \in [\mu_{\rm mn}, \mu_{\rm mx}], \tag{3.5}$$

where the value of $\sigma_{lf}(\mu)$ is obtained for each $\mu \in [\mu_{mn}, \mu_{mx}]$ by solving the constrained minimization problem

$$\sigma_{\rm lf}(\mu)^2 = \min\left\{ \ \sigma^2 \ : \ (\sigma,\mu) \in \Sigma(\Lambda) \ \right\} = \min\left\{ \ \mathbf{f}^{\rm T} \mathbf{V} \mathbf{f} \ : \ \mathbf{f} \in \Lambda(\mu) \ \right\} \ .$$

Because the function $\mathbf{f} \mapsto \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ is continuous over the compact set $\Lambda(\mu)$, a minimizer exists.

Because **V** is positive definite, the function $\mathbf{f} \mapsto \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ is strictly convex over the convex set $\Lambda(\mu)$, whereby the minimizer is unique.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		0000000000		

Long Frontiers: Definition of $\mathbf{f}_{\rm lf}(\mu)$

If we denote this unique minimizer by $\mathbf{f}_{lf}(\mu)$ then for every $\mu \in [\mu_{mn}, \mu_{mx}]$ the function $\sigma_{lf}(\mu)$ is given by

$$\sigma_{\rm lf}(\mu) = \sqrt{\mathbf{f}_{\rm lf}(\mu)^{\rm T} \mathbf{V} \mathbf{f}_{\rm lf}(\mu)}, \qquad (3.6)$$

where $\mathbf{f}_{\mathrm{lf}}(\mu)$ can be expressed as

$$\mathbf{f}_{\rm lf}(\mu) = \arg\min\left\{ \ \tfrac{1}{2}\mathbf{f}^{\rm T}\mathbf{V}\mathbf{f} \ : \ \mathbf{f} \in \mathbb{R}^N \,, \ \mathbf{f} \geq \mathbf{0} \,, \ \mathbf{1}^{\rm T}\mathbf{f} = \mathbf{1} \,, \ \mathbf{m}^{\rm T}\mathbf{f} = \mu \right\} \,.$$

Here $\arg \min$ is read "the argument that minimizes". It means that $\mathbf{f}_{lf}(\mu)$ is the minimizer of the function $\mathbf{f} \mapsto \frac{1}{2} \mathbf{f}^T \mathbf{V} \mathbf{f}$ subject to the constraints.

Remark. This problem can not be solved by Lagrange multipliers because of the inequality constraints $\mathbf{f} \ge \mathbf{0}$ associated with the set $\Lambda(\mu)$. It is harder to solve analytically than the analogous minimization problem for portfolios with unlimited leverage. Therefore we will first present a numerical approach that can generally be applied.

C. David Levermore (UMD)

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		0000000000		

Long Frontiers: Quadratic Programming

Because the function being minimized is quadratic in **f** while the constraints are linear in **f**, this is called a *quadratic programming problem*. It can be solved for a particular **V**, **m**, and μ by using either the Matlab command "quadprog" or an equivalent command in some other language.

The Matlab command $quadprog(A, b, C, d, C_{eq}, d_{eq})$ returns the solution of a quadratic programming problem in the *standard form*

$$rgmin\left\{ \ rac{1}{2} {f x}^{\mathrm{T}} {f A} {f x} + {f b}^{\mathrm{T}} {f x} \ : \ {f x} \in \mathbb{R}^M \, , \ {f C} {f x} \leq {f d} \, , \ {f C}_{\mathrm{eq}} {f x} = {f d}_{\mathrm{eq}} \,
ight\} \, ,$$

where $\mathbf{A} \in \mathbb{R}^{M \times M}$ is nonnegative definite, $\mathbf{b} \in \mathbb{R}^{M}$, $\mathbf{C} \in \mathbb{R}^{K \times M}$, $\mathbf{d} \in \mathbb{R}^{K}$, $\mathbf{C}_{eq} \in \mathbb{R}^{K_{eq} \times M}$, and $\mathbf{d}_{eq} \in \mathbb{R}^{K_{eq}}$. Here K and K_{eq} are the number of inequality and equality constraints respectively.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		0000000000		

Long Frontiers: Converting to the Standard Form

Given V, m, and $\mu\in[\mu_{mn},\mu_{mx}]$, the problem that we want to solve to obtain ${\bf f}_{\rm lf}(\mu)$ is

$$rgmin\left\{ \ rac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f} \ : \ \mathbf{f}\in\mathbb{R}^{N} \,, \ \mathbf{f}\geq\mathbf{0} \,, \ \mathbf{1}^{\mathrm{T}}\mathbf{f}=1 \,, \ \mathbf{m}^{\mathrm{T}}\mathbf{f}=\mu \
ight\} \,.$$

We can put this into the standard form given on the previous slide by setting $\mathbf{x} = \mathbf{f}$ then M = N, K = N, $K_{eq} = 2$, and

$$\mathbf{A} = \mathbf{V}, \quad \mathbf{b} = \mathbf{0}, \quad \mathbf{C} = -\mathbf{I}, \quad \mathbf{d} = \mathbf{0}, \quad \mathbf{C}_{eq} = \begin{pmatrix} \mathbf{1}^{T} \\ \mathbf{m}^{T} \end{pmatrix}, \quad \mathbf{d}_{eq} = \begin{pmatrix} 1 \\ \mu \end{pmatrix},$$

where I is the $N \times N$ identity. Notice that

•
$$M = N$$
 because $\mathbf{x} = \mathbf{f} \in \mathbb{R}^N$

- K = N because $\mathbf{f} \ge \mathbf{0}$ gives N inequality constraints,
- $K_{eq} = 2$ because $\mathbf{1}^{T} \mathbf{f} = 1$ and $\mathbf{m}^{T} \mathbf{f} = \mu$ are two equality constraints.

Long Frontiers: Matlab "quadprog" Command

Therefore $\mathbf{f}_{lf}(\mu)$ can be obtained as the output f of a quadprog command that is formated as

$$f = quadprog(V, z, -I, z, Ceq, deq),$$

where the matrices V, I, and Ceq, and vectors z and deq are given by

$$V = \mathbf{V}, \quad z = \mathbf{0}, \quad I = \mathbf{I}, \quad Ceq = \begin{pmatrix} \mathbf{1}^T \\ \mathbf{m}^T \end{pmatrix}, \quad deq = \begin{pmatrix} 1 \\ \mu \end{pmatrix}$$

Remark. There are other ways to use quadprog to obtain $\mathbf{f}_{lf}(\mu)$. Documentation for this command is easy to find on the web. The similar command in R is also called "quadprog".

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		00000000000		

Long Frontiers: Properties of $\sigma_{\rm lf}(\mu)$

When computing a long frontier, it helps to know some general properties of the function $\sigma_{lf}(\mu)$. These include:

- $\sigma_{\rm lf}(\mu)$ is continuous over $[\mu_{\rm mn},\mu_{\rm mx}];$
- $\sigma_{\rm lf}(\mu)$ is strictly convex over $[\mu_{\rm mn},\mu_{\rm mx}];$
- $\sigma_{\rm lf}(\mu)$ is piecewise hyperbolic over $[\mu_{\rm mn}, \mu_{\rm mx}]$.

This means that $\sigma_{\rm lf}(\mu)$ is built up from segments of hyperbolas that are connected at a finite number of *nodes* that correspond to points in the interval $(\mu_{\rm mn}, \mu_{\rm mx})$ where $\sigma_{\rm lf}(\mu)$ has either

- a jump discontinuity in its first derivative, or
- a jump discontinuity in its second derivative.

Guided by these facts we now show how a long frontier can be approximated numerically with the Matlab command quadprog.

ヘロア ヘロア ヘビア ヘビア

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		00000000000		

Long Frontiers: Approximating $\sigma_{\rm lf}(\mu)$

First, partition the interval $[\mu_{\mathrm{mn}},\mu_{\mathrm{mx}}]$ as

$$\mu_{\rm mn} = \mu_0 < \mu_1 < \cdots < \mu_{n-1} < \mu_n = \mu_{\rm mx}$$
.

For example, set $\mu_k = \mu_{mn} + k(\mu_{mx} - \mu_{mn})/n$ for a uniform partition. Pick *n* large enough to resolve all the features of the long frontier. There should be at most one node in each subinterval $[\mu_{k-1}, \mu_k]$.

Second, for every $k = 1, \dots, n-1$ use quadprog to compute $\mathbf{f}_{lf}(\mu_k)$. (This computation will not be exact, but we will speak as if it is.) The allocations $\{\mathbf{f}_{lf}(\mu_k)\}_{k=0}^n$ should be saved.

Third, for every $k = 1, \dots, n-1$ compute σ_k by

$$\sigma_k = \sigma_{\rm lf}(\mu_k) = \sqrt{\mathbf{f}_{\rm lf}(\mu_k)^{\rm T} \mathbf{V} \mathbf{f}_{\rm lf}(\mu_k)}.$$

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		00000000000		

Long Frontiers: Linear Interpolation in the $\sigma\mu$ -Plane

Fourth, there is typically a unique m_i such that $\mu_{mn} = m_i$, in which case we set

$$\mathbf{f}_{\mathrm{lf}}(\mu_0) = \mathbf{e}_i \,, \qquad \sigma_0 = \sqrt{\mathbf{v}_{ii}} \,.$$

Similarly, there is typically a unique m_j such that $\mu_{mx} = m_j$, in which case we set

$$\mathbf{f}_{\mathrm{lf}}(\mu_n) = \mathbf{e}_j, \qquad \sigma_n = \sqrt{v_{jj}}.$$

Finally, we "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ to build an approximation to the long frontier. This can be done by linear interpolation in the $\sigma\mu$ -plane. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$ilde{\sigma}_{
m lf}(\mu) = rac{\mu_k - \mu}{\mu_k - \mu_{k-1}} \, \sigma_{k-1} + rac{\mu - \mu_{k-1}}{\mu_k - \mu_{k-1}} \, \sigma_k \, .$$

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		00000000000		

Long Frontiers: Linear Interpolation in Λ

A better way to "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ that is motivated by the two-fund property is to use linear interpolation in Λ . Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$\mathbf{\tilde{f}}_{\mathrm{lf}}(\mu) = \frac{\mu_{k} - \mu}{\mu_{k} - \mu_{k-1}} \, \mathbf{f}_{\mathrm{lf}}(\mu_{k-1}) + \frac{\mu - \mu_{k-1}}{\mu_{k} - \mu_{k-1}} \, \mathbf{f}_{\mathrm{lf}}(\mu_{k}) \,,$$

and then set

$$\tilde{\sigma}_{\mathrm{lf}}(\mu) = \sqrt{\mathbf{\tilde{f}}_{\mathrm{lf}}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{\tilde{f}}_{\mathrm{lf}}(\mu)}.$$

Remark. This will be a very good approximation if *n* is large enough. Over each interval (μ_{k-1}, μ_k) it approximates $\sigma_{lf}(\mu)$ with a hyperbola rather than with a line.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
		0000000000		

Long Frontiers: Linear Interpolation in Λ

Remark. Because $\mathbf{f}_{lf}(\mu_k) \in \Lambda(\mu_k)$ and $\mathbf{f}_{lf}(\mu_{k-1}) \in \Lambda(\mu_{k-1})$, we can show that

$$\mathbf{ ilde{f}}_{\mathrm{lf}}(\mu)\in \mathsf{\Lambda}(\mu) \hspace{1em} ext{for every} \hspace{1em} \mu\in \left(\mu_{k-1},\mu_k
ight).$$

Therefore $\tilde{\sigma}_{lf}(\mu)$ gives an approximation to the long frontier that lies on or to the right of the long frontier in the $\sigma\mu$ -plane.

Remark. When there are no nodes in the interval (μ_{k-1}, μ_k) then we can use the two-fund property to show that $\tilde{\sigma}_{lf}(\mu) = \sigma_{lf}(\mu)$.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
			••	

General Portfolio with Two Risky Assets: Λ

Recall the portfolio of two risky assets with mean vector ${\bf m}$ and covarience matrix ${\bf V}$ given by

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \qquad \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} \\ v_{12} & v_{22} \end{pmatrix}$$

Without loss of generality we can assume that $m_1 < m_2$. Then $\mu_{mn} = m_1$ and $\mu_{mx} = m_2$. Recall that for every $\mu \in \mathbb{R}$ the unique portfolio that satisfies the constraints $\mathbf{1}^T \mathbf{f} = 1$ and $\mathbf{m}^T \mathbf{f} = \mu$ is

$$\mathbf{f} = \mathbf{f}(\mu) = \frac{1}{m_2 - m_1} \begin{pmatrix} m_2 - \mu \\ \mu - m_1 \end{pmatrix}$$

Clearly $\mathbf{f}(\mu) \ge \mathbf{0}$ if and only if $\mu \in [m_1, m_2] = [\mu_{mn}, \mu_{mx}]$. Therefore the set Λ of long portfolios is given by

$$\Lambda = \left\{ \mathbf{f}(\mu) : \mu \in [m_1, m_2] \right\}.$$

General Portfolio with Two Risky Assets: $\sigma_{\rm lf}(\mu)$

In other words, the line segment Λ in \mathbb{R}^2 is the image of the interval $[m_1, m_2]$ under the affine mapping $\mu \mapsto \mathbf{f}(\mu)$.

Because for every $\mu \in [m_1, m_2]$ the set $\Lambda(\mu)$ consists of the single portfolio $\mathbf{f}(\mu)$, the minimizer of $\mathbf{f}^T \mathbf{V} \mathbf{f}$ over $\Lambda(\mu)$ is $\mathbf{f}(\mu)$. Therefore the long frontier portfolios are

$$\mathbf{f}_{\mathrm{lf}}(\mu) = \mathbf{f}(\mu) \qquad ext{for } \mu \in \left[\textit{m}_1, \textit{m}_2
ight],$$

and the long frontier is given by

$$\sigma = \sigma_{ ext{lf}}(\mu) = \sqrt{\mathbf{f}(\mu)^{ ext{T}} \mathbf{V} \, \mathbf{f}(\mu)} \qquad ext{for } \mu \in [m_1,m_2] \,.$$

Hence, the long frontier is simply a segment of the frontier hyperbola. It has no nodes.

Recall the portfolio of three risky assets with mean vector ${\boldsymbol{m}}$ and covarience matrix ${\boldsymbol{V}}$ given by

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}, \qquad \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{12} & v_{22} & v_{23} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$$

Without loss of generality we can assume that

$$m_1 \leq m_2 \leq m_3 \,, \qquad m_1 < m_3 \,.$$

Then $\mu_{\rm mn} = m_1$ and $\mu_{\rm mx} = m_3$.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
0000000				000000000000000000000000000000000000000

General Portfolio with Three Risky Assets: $f(\mu, \phi)$

Recall that for every $\mu \in \mathbb{R}$ the portfolio allocations that satisfies the constraints $\mathbf{1}^{\mathrm{T}}\mathbf{f} = 1$ and $\mathbf{m}^{\mathrm{T}}\mathbf{f} = \mu$ are

$$\mathbf{f} = \mathbf{f}(\mu, \phi) = \mathbf{f}_{13}(\mu) + \phi \, \mathbf{n} \,, \qquad ext{for some } \phi \in \mathbb{R} \,, \qquad (5.7a)$$

where

$$\mathbf{f}_{13}(\mu) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu \\ 0 \\ \mu - m_1 \end{pmatrix}, \qquad \mathbf{n} = \frac{1}{m_3 - m_1} \begin{pmatrix} m_2 - m_3 \\ m_3 - m_1 \\ m_1 - m_2 \end{pmatrix}.$$
 (5.7b)

Here $f_{13}(\mu)$ is the two-asset allocation for assets 1 and 3 that satisfies

$$\mathbf{1}^{\mathrm{T}}\mathbf{f}_{13}(\mu) = 1, \qquad \mathbf{m}^{\mathrm{T}}\mathbf{f}_{13}(\mu) = \mu,$$

while **n** satisfies $\mathbf{1}^{\mathrm{T}}\mathbf{n} = 0$ and $\mathbf{m}^{\mathrm{T}}\mathbf{n} = 0$.

The Set Λ	Slices of Λ	Long Frontiers	Two Assets	Three Assets
				000000000000000000000000000000000000000

General Portfolio with Three Risky Assets: $\mathbf{f}(\mu, \phi) \geq \mathbf{0}$

Because

$$\mathbf{f}(\mu,\phi) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu - \phi (m_3 - m_2) \\ \phi (m_3 - m_1) \\ \mu - m_1 - \phi (m_2 - m_1) \end{pmatrix},$$

we see that $\mathbf{f}(\mu, \phi) \geq \mathbf{0}$ if and only if

• $\mu \in [m_1, m_3] = [\mu_{mn}, \mu_{mx}]$, and • $\phi \in [0, \phi_{mx}(\mu)]$, where $\phi_{mx}(\mu) = \begin{cases} \frac{m_3 - \mu}{m_3 - m_1} & \text{if } m_2 = m_1, \\ \frac{\mu - m_1}{m_3 - m_1} & \text{if } m_2 = m_3, \\ \min\left\{\frac{m_3 - \mu}{m_3 - m_2}, \frac{\mu - m_1}{m_2 - m_1}\right\} & \text{if } m_2 \in (m_1, m_3). \end{cases}$ (5.8)

General Portfolio with Three Risky Assets: Λ and \mathcal{T}_{Λ}

Then the set Λ of long portfolios is given by

$$\Lambda = \left\{ \mathbf{f}(\mu, \phi) : (\mu, \phi) \in \mathcal{T}_{\Lambda} \right\},$$
(5.9)

where \mathcal{T}_{Λ} is the triangle in the $\mu\phi$ -plane given by

$$\mathcal{T}_{\Lambda} = \left\{ (\mu, \phi) \in \mathbb{R}^2 : \mu \in [m_1, m_3], \, 0 \le \phi \le \phi_{\mathrm{mx}}(\mu) \right\}.$$
(5.10)

- The base of \mathcal{T}_{Λ} is the interval $[m_1, m_3]$ on the μ -axis.
- The peak of \mathcal{T}_{Λ} is at the point $(m_2, 1)$.
- The height of \mathcal{T}_{Λ} is 1.

General Portfolio with Three Risky Assets: $\Lambda \& \Lambda(\mu)$

Therefore the sets Λ and $\Lambda(\mu)$ in \mathbb{R}^3 can be visualized as follows.

- The set Λ is the triangle in \mathbb{R}^3 that is the image of the triangle \mathcal{T}_{Λ} under the affine mapping $(\mu, \phi) \mapsto \mathbf{f}(\mu, \phi)$.
- For every $\mu \in [m_1, m_3]$ the set $\Lambda(\mu)$ is given by

$$\Lambda(\mu) = \left\{ \mathbf{f}(\mu, \phi) : \mathbf{0} \le \phi \le \phi_{\mathrm{mx}}(\mu) \right\}.$$
(5.11)

Therefore the set $\Lambda(\mu)$ is the line segment in \mathbb{R}^3 that is the image of the interval $[0, \phi_{mx}(\mu)]$ under the affine mapping $\phi \mapsto \mathbf{f}(\mu, \phi)$.

General Portfolio with Three Risky Assets: $\phi_{\rm mf}(\mu)$

Hence, the point on the long frontier associated with $\mu \in [\mu_{mn}, \mu_{mx}]$ is $(\sigma_{lf}(\mu), \mu)$ where $\sigma_{lf}(\mu)$ solves the constrained minimization problem

$$\begin{split} \sigma_{\mathrm{lf}}(\mu)^2 &= \min \left\{ \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} \ : \ \mathbf{f} \in \Lambda(\mu) \right\} \\ &= \min \left\{ \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) \ : \ \mathbf{0} \leq \phi \leq \phi_{\mathrm{mx}}(\mu) \right\} \end{split}$$

Because the objective function

$$\mathbf{f}(\mu,\phi)^{\mathrm{T}}\mathbf{V}\mathbf{f}(\mu,\phi) = \mathbf{f}_{13}(\mu)^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + 2\phi\,\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + \phi^{2}\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{n}$$

is a quadratic in ϕ and $\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{n} > 0$, it has a unique global minimizer at

$$\phi = \phi_{\rm mf}(\mu) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(\mu)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} \,. \tag{5.12}$$

Then the Markowitz frontier allocation is $\mathbf{f}_{mf}(\mu) = \mathbf{f}(\mu \phi_{mf}(\mu))$.

General Portfolio with Three Risky Assets: The Minimizers

The global minimizer $\phi_{\rm mf}(\mu)$ will be the minimizer of our constrained minimization problem for the long frontier if and only if it satifies the constraints $0 \le \phi_{\rm mf}(\mu) \le \phi_{\rm mx}(\mu)$.

Because the derivative of the objective function with respect to ϕ can be written as

$$\partial_{\phi} \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) = 2 \mathbf{n}^{\mathrm{T}} \mathbf{V} \mathbf{n} \left(\phi - \phi_{\mathrm{mf}}(\mu) \right),$$

we can read off the following.

- If $\phi_{mf}(\mu) \leq 0$ then the objective function is increasing over $[0, \phi_{mx}(\mu)]$, whereby its minimizer is $\phi = 0$.
- If $\phi_{mx}(\mu) \leq \phi_{mf}(\mu)$ then the objective function is decreasing over $[0, \phi_{mx}(\mu)]$, whereby its minimizer is $\phi = \phi_{mx}(\mu)$.

Hence, the minimizer $\phi_{\rm lf}(\mu)$ of our constrained minimization problem is

$$\phi_{\rm lf}(\mu) = \begin{cases}
0 & \text{if } \phi_{\rm mf}(\mu) \leq 0 \\
\phi_{\rm mf}(\mu) & \text{if } 0 < \phi_{\rm mf}(\mu) < \phi_{\rm mx}(\mu) \\
\phi_{\rm mx}(\mu) & \text{if } \phi_{\rm mx}(\mu) \leq \phi_{\rm mf}(\mu) \\
= \max\{0, \min\{\phi_{\rm mf}(\mu), \phi_{\rm mx}(\mu)\}\} \\
= \min\{\max\{0, \phi_{\rm mf}(\mu)\}, \phi_{\rm mx}(\mu)\}.$$
(5.13)

Therefore the long frontier is given by

$$\sigma_{\rm lf}(\mu) = \sqrt{\mathbf{f}(\mu, \phi_{\rm lf}(\mu))^{\rm T} \mathbf{V} \mathbf{f}(\mu, \phi_{\rm lf}(\mu))}.$$
(5.14)

General Portfolio with Three Risky Assets: \mathcal{T}_{Λ} & \mathcal{L}_{mf}

Understanding the long frontier thereby reduces to understanding $\phi_{\rm lf}(\mu)$. This can be visualized in the $\mu\phi$ -plane by considering the intersection of the triangle \mathcal{T}_{Λ} and the line $\mathcal{L}_{\rm mf}$ given by

$$\mathcal{L}_{\mathrm{mf}} = \left\{ (\mu, \phi) : \phi = \phi_{\mathrm{mf}}(\mu) \right\}.$$
(5.15)

Because

$$\mathbf{f}_{13}(m_1) = \mathbf{e}_1$$
, $\mathbf{f}_{13}(m_2) = \mathbf{e}_2 - \mathbf{n}$, and $\mathbf{f}_{13}(m_3) = \mathbf{e}_3$,

we see that

$$\phi_{\rm mf}(m_1) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(m_1)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{e}_1}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}},$$

$$\phi_{\rm mf}(m_2) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(m_2)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} = 1 - \frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{e}_2}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}},$$

$$\phi_{\rm mf}(m_3) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(m_3)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{e}_3}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}}.$$

General Portfolio with Three Risky Assets: \mathcal{T}_{Λ} & \mathcal{L}_{mf}

Some geometry can thereby be read off from the signs of the entries of Vn.

 $\mathcal{L}_{mf} \text{ is below vertex } (m_1, 0) \text{ of } \mathcal{T}_{\Lambda} \text{ iff } \phi_{mf}(m_1) < 0 \quad \text{iff } \mathbf{e}_1^T \mathbf{Vn} > 0; \\ \mathcal{L}_{mf} \text{ is above vertex } (m_1, 0) \text{ of } \mathcal{T}_{\Lambda} \text{ iff } \phi_{mf}(m_1) > 0 \quad \text{iff } \mathbf{e}_1^T \mathbf{Vn} < 0; \\ \mathcal{L}_{mf} \text{ is below vertex } (m_2, 1) \text{ of } \mathcal{T}_{\Lambda} \text{ iff } \phi_{mf}(m_2) < 1 \quad \text{iff } \mathbf{e}_2^T \mathbf{Vn} > 0; \\ \mathcal{L}_{mf} \text{ is above vertex } (m_2, 1) \text{ of } \mathcal{T}_{\Lambda} \text{ iff } \phi_{mf}(m_2) > 1 \quad \text{iff } \mathbf{e}_2^T \mathbf{Vn} < 0; \\ \mathcal{L}_{mf} \text{ is above vertex } (m_3, 0) \text{ of } \mathcal{T}_{\Lambda} \text{ iff } \phi_{mf}(m_3) < 0 \quad \text{iff } \mathbf{e}_3^T \mathbf{Vn} > 0; \\ \mathcal{L}_{mf} \text{ is above vertex } (m_3, 0) \text{ of } \mathcal{T}_{\Lambda} \text{ iff } \phi_{mf}(m_3) > 0 \quad \text{iff } \mathbf{e}_3^T \mathbf{Vn} < 0. \end{cases}$

By combining this information about each vertex of the triangle \mathcal{T}_{λ} we can work out its intersection with the line \mathcal{L}_{mf} .

くロ と く 同 と く ヨ と 一

Below we list all nine cases that arise when $m_1 < m_2 < m_3$.

a
$$\phi_{mf}(m_1) \leq 0$$
 and $\phi_{mf}(m_3) \leq 0$ (whereby $\phi_{mf}(m_2) \leq 0 < 1$).
a $\phi_{mf}(m_1) \geq 0$, $\phi_{mf}(m_2) \geq 1$ and $\phi_{mf}(m_3) \geq 0$.
a $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) < 1$ and $\phi_{mf}(m_3) > 0$.
a $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) < 1$ and $\phi_{mf}(m_3) = 0$.
a $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) < 1$ and $\phi_{mf}(m_3) > 0$.
a $\phi_{mf}(m_1) < 0$, $\phi_{mf}(m_2) \leq 1$ and $\phi_{mf}(m_3) > 0$.
b $\phi_{mf}(m_1) < 0$, $\phi_{mf}(m_2) \leq 1$ and $\phi_{mf}(m_3) > 0$.
b $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) \leq 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) < 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) > 0$.
b $\phi_{mf}(m_1) < 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) > 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) > 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 1$ and $\phi_{mf}(m_3) < 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 0$.
b $\phi_{mf}(m_1) = 0$, $\phi_{mf}(m_2) = 0$.
b $\phi_{mf}(m_$

Case 1. By (5.16) the line $\mathcal{L}_{\mathrm{mf}}$ lies below the interior of \mathcal{T}_{Λ} if and only if

$$\mathbf{e}_1^{\mathrm{T}} \mathbf{V} \mathbf{n} \geq 0$$
 and $\mathbf{e}_3^{\mathrm{T}} \mathbf{V} \mathbf{n} \geq 0$.

Then $\phi_{\mathrm{lf}}(\mu)=$ 0 for every $\mu\in[m_1,m_3]$ and the long frontier is

$$\sigma = \sigma_{\mathrm{lf}}(\mu) = \sqrt{\mathbf{f}_{13}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{13}(\mu)}.$$

This is the long frontier built from assets 1 and 3. It has no nodes and is smooth.

Case 2. By (5.16) the line \mathcal{L}_{mf} lies above the interior of \mathcal{T}_{Λ} if and only if

$$\mathbf{e}_1^{\mathrm{T}} \mathbf{V} \mathbf{n} \leq 0 \,, \qquad \mathbf{e}_2^{\mathrm{T}} \mathbf{V} \mathbf{n} \leq 0 \,, \quad \text{and} \quad \mathbf{e}_3^{\mathrm{T}} \mathbf{V} \mathbf{n} \leq 0 \,.$$

Then $\phi_{\mathrm{lf}}(\mu)=\phi_{\mathrm{mx}}(\mu)$ for every $\mu\in[m_1,m_3]$ and the long frontier is

$$\sigma = \sigma_{\mathrm{lf}}(\mu) = \begin{cases} \sqrt{\mathbf{f}_{12}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{12}(\mu)} & \text{for } \mu \in [m_1, m_2] \,, \\ \sqrt{\mathbf{f}_{23}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{23}(\mu)} & \text{for } \mu \in [m_2, m_3] \,. \end{cases}$$

This patches the long frontier built from assets 1 and 2 with the long frontier built from assets 2 and 3. It generally has a jump discontinuity in its first derivative at the node $\mu = m_2$.

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
				00000000000000000

Case 5. By (5.16) the line $\mathcal{L}_{\mathrm{mf}}$ lies above the base of \mathcal{T}_{Λ} but intersects the interior of \mathcal{T}_{Λ} if and only if

$$\mathbf{e}_1^{\mathrm{T}} \mathbf{V} \mathbf{n} < 0\,, \qquad \mathbf{e}_2^{\mathrm{T}} \mathbf{V} \mathbf{n} > 0\,, \quad \text{and} \quad \mathbf{e}_3^{\mathrm{T}} \mathbf{V} \mathbf{n} < 0\,.$$

Then there exists

•
$$\mu_1 \in [m_1, m_2]$$
 where $\phi_{\rm mf}(\mu)$ intersects $\frac{\mu - m_1}{m_2 - m_1}$, and
• $\mu_2 \in [m_2, m_3]$ where $\phi_{\rm mf}(\mu)$ intersects $\frac{m_3 - \mu}{m_3 - m_2}$.

Then

$$\phi_{\rm lf}(\mu) = \begin{cases} \frac{\mu - m_1}{m_2 - m_1} & \text{for } \mu \in [m_1, \mu_1] \,, \\ \phi_{\rm mf}(\mu) & \text{for } \mu \in (\mu_1, \mu_2) \,, \\ \frac{m_3 - \mu}{m_3 - m_2} & \text{for } \mu \in [\mu_2, m_3] \,. \end{cases}$$

The Set ∧	Slices of Λ	Long Frontiers	Two Assets	Three Assets
				000000000000000

The long frontier for this case is

$$\sigma = \sigma_{\mathrm{lf}}(\mu) = \begin{cases} \sqrt{\mathbf{f}_{12}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{12}(\mu)} & \text{for } \mu \in [m_1, \mu_1] \,, \\ \\ \sigma_{\mathrm{mf}}(\mu) & \text{for } \mu \in (\mu_1, \mu_2) \,, \\ \\ \sqrt{\mathbf{f}_{23}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{23}(\mu)} & \text{for } \mu \in [\mu_2, m_3] \,. \end{cases}$$

Because

$$\begin{split} &\sigma_{\rm mf}(\mu) \leq \sqrt{\mathbf{f}_{12}(\mu)^{\rm T} \mathbf{V} \mathbf{f}_{12}(\mu)} & \text{ for every } \mu \in \mathbb{R} \,, \\ &\sigma_{\rm mf}(\mu) \leq \sqrt{\mathbf{f}_{23}(\mu)^{\rm T} \mathbf{V} \mathbf{f}_{12}(\mu)} & \text{ for every } \mu \in \mathbb{R} \,, \end{split}$$

with equaility at $\mu = \mu_1$ and $\mu = \mu_2$ respectively, we see that the first derivative of $\sigma_{lf}(\mu)$ is continuous at the nodes $\mu = \mu_1$ and $\mu = \mu_2$, but its second derivative will generally have jump discontinuities at those points.