Portfolios that Contain Risky Assets 4.1. Long Portfolios and Their Frontiers

C. David Levermore

University of Maryland, College Park, MD

Math 420: Mathematical Modeling March 15, 2022 version © 2022 Charles David Levermore

K ロ K K 優 K K 활 K K 활 K … 활

 299

Portfolios that Contain Risky Assets Part I: Portfolio Models

- 1. Preliminary Topics
- 2. Markowitz Portfolio Model
- 3. Models for Portfolios with Risk-Free Assets

(ロ) (御) (唐) (唐) (唐) 2000

- 4. Models for Long Portfolios
- 5. Models for Limited-Leverage Portfolios

Portfolios that Contain Risky Assets Part I: Portfolio Models

4. Models for Long Portfolios

- 4.1. Long Portfolios and Their Frontiers
- 4.2. Long Portfolios with a Safe Investment

(ロ) (御) (君) (君) (君) 君 のぬの

4.3. Metrics for Long Portfolios

Long Portfolios and Their Frontiers

3 [Long Frontiers](#page-18-0)

- **4** [General Portfolio with Two Risky Assets](#page-29-0)
- **5** [General Portfolio with Three Risky Assets](#page-31-0)

4日下

つへへ

Because the value of any portfolio with short positions can become negative, many investors will not hold a short position in any risky asset. Portfolios that hold no short positions are called *long portfolios*.

A Markowitz portfolio with allocation **f** is long if and only if $f_i > 0$ for every *i*. This can be expressed compactly as

$$
f\geq 0, \qquad (1.1)
$$

where **0** denotes the N-vector with each entry equal to 0 and the inequality is understood entrywise. Therefore the set of all *long Markowitz* allocations Λ is given by

$$
\Lambda = \left\{ \mathbf{f} \in \mathbb{R}^N : \mathbf{1}^T \mathbf{f} = 1, \, \mathbf{f} \ge \mathbf{0} \right\}. \tag{1.2}
$$

つくい

The Set Λ: Convex Combinations

Let \mathbf{e}_i denote the vector whose i^{th} entry is 1 while every other entry is 0 . For every **f** ∈ Λ we have \mathbf{M}

$$
\mathbf{f}=\sum_{i=1}^n f_i \mathbf{e}_i\,,
$$

where $f_i \geq 0$ for every $i = 1, \dots, N$ and

$$
\sum_{i=1}^N f_i = \mathbf{1}^{\mathrm{T}} \mathbf{f} = 1.
$$

This shows that Λ is just all convex combinations of the vectors $\{\mathbf{e}_i\}_{i=1}^N.$ We can visualize Λ when N is small.

When $N = 2$ it is the line segment with vertices

$$
\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \,, \qquad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

.

The Set Λ : Visualization for $N=3$ and $N=4$

When $N = 3$ it is the triangle with vertices

$$
\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , \qquad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} , \qquad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$

When $N = 4$ it is the tetrahedron with vertices

$$
\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \,, \qquad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \,, \qquad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \,, \qquad \mathbf{e}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}
$$

For general N it is the simplex with vertices at the vectors $\{\mathbf{e}_i\}_{i=1}^N.$

 2990

.

The Set Λ : Visualization for $N=4$ in \mathbb{R}^3

Remark. When $N=4$ it is easy to check that the tetrahedron $\Lambda \subset \mathbb{R}^4$ is the image of the tetrahedron $\mathcal{T} \subset \mathbb{R}^3$ given by

$$
\mathcal{T} = \left\{ \mathbf{z} \in \mathbb{R}^3 \; : \; \mathbf{w}_k \cdot \mathbf{z} \leq 1 \; \text{ for } k = 1, 2, 3, 4 \; \right\} \, ,
$$

where

$$
\textbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \,, \quad \textbf{w}_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \,, \quad \textbf{w}_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \,, \quad \textbf{w}_4 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \,,
$$

under the one-to-one affine mapping $\mathbf{\Phi}:\mathbb{R}^3\to\mathbb{R}^4$ given by

$$
\Phi(z) = \frac{1}{4} \begin{pmatrix} 1 - w_1 \cdot z \\ 1 - w_2 \cdot z \\ 1 - w_3 \cdot z \\ 1 - w_4 \cdot z \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -z_1 \\ -z_2 \\ -z_3 \end{pmatrix}
$$

.

The Set Λ: Closed, Bounded and Convex

Because Λ is the simplex with vertices at the vectors $\{\mathbf{e}_i\}_{i=1}^N$, it is a nonempty, convex, and bounded set. In addition, Λ is a closed set.

Proof. For any **f** in the closure of Λ there exists a sequence $\{f_n\}_{n\in\mathbb{N}} \subset \Lambda$ such that

$$
\mathbf{f}=\lim_{n\to\infty}\mathbf{f}_n.
$$

Because $\mathbf{f}_n \geq \mathbf{0}$ and $\mathbf{1}^\mathrm{T} \mathbf{f}_n = 1$ for every $n \in \mathbb{N}$, we see that

$$
\mathbf{f} = \lim_{n \to \infty} \mathbf{f}_n \ge \mathbf{0}, \qquad \mathbf{1}^{\mathrm{T}} \mathbf{f} = \lim_{n \to \infty} \mathbf{1}^{\mathrm{T}} \mathbf{f}_n = 1.
$$

Hence, $f \in \Lambda$. Therefore Λ is a closed set.

Therefore Λ is a nonempty, closed, bounded, convex set.

The Set Λ: Return Means Bounded

Because the set Λ is a bounded, its return means are bounded. Let

$$
\mu_{mn} = \min_i \{m_i\}, \qquad \mu_{mx} = \max_i \{m_i\}.
$$

 T hen because $\mathsf{f} \geq \mathsf{0}$ and $\mathbf{1}^\mathrm{T} \mathsf{f} = 1$, for every $\mathsf{f} \in \Lambda$ we have

$$
\mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \sum_{i=1}^{N} m_i f_i \ge \mu_{\mathrm{mn}} \sum_{i=1}^{N} f_i = \mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{\mathrm{mn}},
$$

$$
\mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \sum_{i=1}^{N} m_i f_i \le \mu_{\mathrm{mn}} \sum_{i=1}^{N} f_i = \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{\mathrm{mx}}.
$$

Therefore the return mean *µ* of any **f** ∈ Λ satisfies

$$
\mu_{mn}\leq \mu\leq \mu_{mx}\,.
$$

These bounds are sharp.

つくい

The Set Λ: Bounded Volatilities

Because Λ is bounded, its return variances and volatilities are bounded. Let

$$
v_{\text{mx}} = \max_{i} \{ v_{ii} \}, \qquad \sigma_{\text{mx}} = \sqrt{v_{\text{mx}}}.
$$

Because $v_{ij} = c_{ij}\sqrt{v_{ii}v_{ij}}$ and $|c_{ii}| \leq 1$ we see that $|v_{ij}| = |c_{ij}| \sqrt{v_{ii} v_{jj}} \le \sqrt{v_{ii} v_{jj}} \le v_{\text{max}}$.

 T hen because $\mathsf{f} \geq \mathsf{0}$ and $\mathbf{1}^\mathrm{T} \mathsf{f} = 1$, for every $\mathsf{f} \in \Lambda$ we have

$$
v = \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} = \sum_{i,j=1}^{N} f_{i} v_{ij} f_{j} \leq \sum_{i,j=1}^{N} f_{i} |v_{ij}| f_{j} \leq v_{\mathrm{mx}} \sum_{i,j=1}^{N} f_{i} f_{j} = v_{\mathrm{mx}} (\mathbf{1}^{\mathrm{T}} \mathbf{f})^{2} = v_{\mathrm{mx}}.
$$

Therefore the return variance v and volatility σ of any $f \in \Lambda$ satisfy

$$
\text{v}_{\rm mv} \leq \text{v} \leq \text{v}_{\rm mx} \,, \qquad \sigma_{\rm mv} \leq \sigma \leq \sigma_{\rm mx} \,.
$$

These upper bounds are sharp. The lower bounds will be sharp only when $f_{\text{mv}} \in \Lambda$ $f_{\text{mv}} \in \Lambda$, which is generally not the case. They [will](#page-9-0) [b](#page-11-0)e [im](#page-10-0)[p](#page-11-0)[r](#page-3-0)[o](#page-4-0)ved[s](#page-10-0)[oo](#page-11-0)[n.](#page-0-0)

Let $\Lambda(\mu)$ be the set of all *long portfolio allocations with return mean* μ . This set is given by

$$
\Lambda(\mu) = \left\{ \mathbf{f} \in \Lambda : \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mu \right\}. \tag{2.3}
$$

Clearly $Λ(μ)$ ⊂ Λ for every $μ ∈ ℝ$. It is a *slice* of Λ. It is the intersection of the simplex Λ with the hyperplane $\{ \mathbf{f} \in \mathbb{R}^N \, : \, \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mu \}.$

We now characterize those μ for which $\Lambda(\mu)$ is nonempty.

Fact. The set $\Lambda(\mu)$ is nonempty if and only if $\mu \in [\mu_{mn}, \mu_{mn}]$.

Remark. Because we have assumed that **m** is not proportional to **1**, the return means $\{m_i\}_{i=1}^N$ are not identical. This implies that $\mu_{\rm mn} < \mu_{\rm mx}$, which implies that the interval $[\mu_{mn}, \mu_{mx}]$ does not reduce to a point.

つくへ

Slices of Λ: Nonempty Characterization Proof

 $\mathsf{Proof.}$ Because $\mathsf{f}\geq \mathsf{0}$ and $\mathbf{1}^\mathrm{T}\mathsf{f}=1$, for every $\mathsf{f}\in\mathsf{\Lambda}(\mu)$ we have the inequalities

$$
\mu_{mn} = \mu_{mn} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{mn} \sum_{i=1}^{N} f_i \le \sum_{i=1}^{N} m_i f_i = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mu ,
$$

$$
\mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} = \sum_{i=1}^{N} m_i f_i \le \mu_{mx} \sum_{i=1}^{N} f_i = \mu_{mx} \mathbf{1}^{\mathrm{T}} \mathbf{f} = \mu_{mx} .
$$

Therefore if $\Lambda(\mu)$ is nonempty then $\mu \in [\mu_{mn}, \mu_{mx}]$.

Conversely, first choose \mathbf{e}_{mn} and \mathbf{e}_{mx} so that

$$
\begin{aligned}\n\mathbf{e}_{mn} &= \mathbf{e}_i \quad \text{for any } i \text{ that satisfies } m_i = \mu_{mn} \,, \\
\mathbf{e}_{mx} &= \mathbf{e}_j \quad \text{for any } j \text{ that satisfies } m_j = \mu_{mx} \,. \n\end{aligned}
$$

つくへ

Slices of Λ: Nonempty Characterization Proof

Now let $\mu \in [\mu_{mn}, \mu_{mx}]$ and set

$$
\mathbf{f} = \frac{\mu_{\rm mx} - \mu}{\mu_{\rm mx} - \mu_{\rm mn}} \,\mathbf{e}_{\rm mn} + \frac{\mu - \mu_{\rm mn}}{\mu_{\rm mx} - \mu_{\rm mn}} \,\mathbf{e}_{\rm mx}\,.
$$

 C learly $\mathbf{f} \geq \mathbf{0}$. Because $\mathbf{1}^{\mathrm{T}} \mathbf{e}_{\mathrm{mn}} = \mathbf{1}^{\mathrm{T}} \mathbf{e}_{\mathrm{mx}} = 1$, $\mathbf{m}^{\mathrm{T}} \mathbf{e}_{\mathrm{mn}} = \mu_{\mathrm{mn}}$, and **, we see that**

$$
\begin{aligned} \mathbf{1}^{\text{T}}\mathbf{f} & = \tfrac{\mu_{\text{mx}}-\mu}{\mu_{\text{mx}}-\mu_{\text{mn}}} \, \mathbf{1}^{\text{T}}\mathbf{e}_{\text{mn}} + \tfrac{\mu-\mu_{\text{mn}}}{\mu_{\text{mx}}-\mu_{\text{mn}}} \, \mathbf{1}^{\text{T}}\mathbf{e}_{\text{mx}} \\ & = \tfrac{\mu_{\text{mx}}-\mu}{\mu_{\text{mx}}-\mu_{\text{mn}}} + \tfrac{\mu-\mu_{\text{mn}}}{\mu_{\text{mx}}-\mu_{\text{mn}}} = 1 \, , \\ \mathbf{m}^{\text{T}}\mathbf{f} & = \tfrac{\mu_{\text{mx}}-\mu}{\mu_{\text{mx}}-\mu_{\text{mn}}} \, \mathbf{m}^{\text{T}}\mathbf{e}_{\text{mn}} + \tfrac{\mu-\mu_{\text{mn}}}{\mu_{\text{mx}}-\mu_{\text{mn}}} \, \mathbf{m}^{\text{T}}\mathbf{e}_{\text{mx}} \\ & = \tfrac{\mu_{\text{mx}}-\mu}{\mu_{\text{mx}}-\mu_{\text{mn}}} \, \mu_{\text{mn}} + \tfrac{\mu-\mu_{\text{mn}}}{\mu_{\text{mx}}-\mu_{\text{mn}}} \, \mu_{\text{mx}} = \mu \, . \end{aligned}
$$

H[en](#page-12-0)c[e](#page-10-0), $f \in \Lambda(\mu)$ $f \in \Lambda(\mu)$. Therefore [i](#page-14-0)f $\mu \in [\mu_{mn}, \mu_{mx}]$ then $\Lambda(\mu)$ i[s](#page-10-0) [n](#page-11-0)[o](#page-17-0)nem[p](#page-18-0)[ty.](#page-0-0)

Slices of Λ : $\Lambda(\mu)$ as a Polytope

For every $\mu \in [\mu_{\rm mn}, \mu_{\rm mx}]$ the set $\Lambda(\mu)$ is the nonempty intersection in \mathbb{R}^{N} of the $N-1$ dimensional simplex Λ with the $N-1$ dimensional hyperplane $\{ \mathbf{f} \in \mathbb{R}^N : \mathbf{m}^T \mathbf{f} = \mu \}.$ Therefore $\Lambda(\mu)$ will be a nonempty, closed, bounded, convex polytope of dimension at most $N - 2$.

Remark. If there are

- *n* assets with $m_i > \mu$ and
- \bullet N n assets with $m_i < \mu$

then there are $n(N - n)$ edges of Λ that cross the $\mathbf{m}^T\mathbf{f} = \mu$ hyperplane, whereby $\Lambda(\mu)$ will have $n(N - n)$ vertices. This means that $\Lambda(\mu)$ can have

- at most $\frac{1}{4}N^2$ vertices when N is even and
- at most $\frac{1}{4}(N^2-1)$ vertices when N is odd.

 Ω

We can visualize the polytope $\Lambda(\mu)$ when N is small.

- When $N = 2$ it is a point because it is the intersection of the line segment Λ with a transverse line.
- When $N = 3$ it is either a point or line segment because it is the intersection of the triangle Λ with a transverse plane.
- When $N = 4$ it is either a point, line segment, triangle, or convex quadralateral because it is the intersection of the tetrahedron Λ with a transverse hyperplane.

 ${\sf Remark.}$ Recall from an earlier remark that when ${\sf N}=4$ the set $\sf \Lambda \subset \mathbb{R}^4$ is the image of the tetrahedron $\mathcal{T} \subset \mathbb{R}^3$ under the one-to-one affine mapping $\mathbf{\Phi}:\mathbb{R}^3\to\mathbb{R}^4$ given there.

The set $\Lambda(\mu) \subset \mathbb{R}^4$ is thereby the image under $\boldsymbol{\Phi}$ of the intersection of $\mathcal T$ with the hyperplane H*^µ* given by

$$
H_{\mu} = \left\{ \mathbf{z} \in \mathbb{R}^3 ; \ \mathbf{m}^{\mathrm{T}} \mathbf{\Phi}(\mathbf{z}) = \mu \right\} .
$$

Hence, the set $\Lambda(\mu)$ in \mathbb{R}^4 can be visualized in \mathbb{R}^3 as the set $\mathcal{T}_\mu = \mathcal{T} \cap H_\mu.$

As $\boldsymbol{\Phi}$ is one-to-one and $\boldsymbol{\mathsf{m}}$ is arbitrary, H_μ can be any hyperplane in \mathbb{R}^3 . Therefore \mathcal{T}_{μ} can be the intersection of the tetrahedron $\mathcal T$ with any hyperplane in \mathbb{R}^3 .

When such an intersection is nonempty it can be either

- 1. a point that is a vertex of \mathcal{T} ,
- 2. a line segment that is an edge of $\mathcal T$,
- 3. a triangle with vertices on edges of $\mathcal T$,
- 4*.* a convex quadrilateral with vertices on edges of T *.*

These are each convex polytopes of dimension at most 2.

- The first and second cases arise only when $\mu = \mu_{mn}$ or $\mu = \mu_{mx}$. The second case is extremely rare.
- Either the third or fourth case arises for every $\mu \in (\mu_{mn}, \mu_{mx})$.

Long Frontiers: Σ(Λ) in the *σµ*-Plane

The set Λ in \mathbb{R}^N of all long portfolios is associated with the set $\Sigma(\Lambda)$ in the *σµ*-plane of volatilities and return means given by

$$
\Sigma(\Lambda) = \left\{ (\sigma, \mu) \in \mathbb{R}^2 \; : \; \sigma = \sqrt{\mathbf{f}^T \mathbf{V} \mathbf{f}}, \; \mu = \mathbf{m}^T \mathbf{f}, \; \mathbf{f} \in \Lambda \right\}.
$$
 (3.4)

The set $\Sigma(\Lambda)$ is the image in \mathbb{R}^2 of the simplex Λ in \mathbb{R}^N under the mapping $f \mapsto (\sigma, \mu)$. Because the set Λ is compact (closed and bounded) and the mapping $f \mapsto (\sigma, \mu)$ is continuous, the set $\Sigma(\Lambda)$ is compact.

We have seen that the set $\Lambda(\mu)$ of all long portfolios with return mean μ is nonempty if and only if $\mu \in [\mu_{mn}, \mu_{mx}]$. Hence, $\Sigma(\Lambda)$ can be expressed as

$$
\Sigma(\Lambda) = \left\{ \left(\sqrt{\mathbf{f}^T \mathbf{V} \mathbf{f}} \, , \, \mu \right) \, : \, \mu \in [\mu_{mn}, \mu_{mx}], \, \mathbf{f} \in \Lambda(\mu) \, \right\} \, .
$$

The points on the boundary of $\Sigma(\Lambda)$ that correspond to those long portfolios that have less volatility than every other long portfolio with the same return mean is called the *long frontier*. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 2990

The *long frontier* is the curve in the $\sigma\mu$ -plane given by the equation

$$
\sigma = \sigma_{\text{lf}}(\mu) \quad \text{over} \quad \mu \in [\mu_{\text{mn}}, \mu_{\text{mx}}], \tag{3.5}
$$

where the value of $\sigma_{\text{lf}}(\mu)$ is obtained for each $\mu \in [\mu_{mn}, \mu_{mx}]$ by solving the constrained minimization problem

$$
\sigma_{\! \mathrm{lf}}(\mu)^2 = \min \Bigl\{ \; \sigma^2 \; : \; (\sigma,\mu) \in \Sigma(\Lambda) \; \Bigr\} = \min \Bigl\{ \; \mathbf{f}^T \mathbf{V} \mathbf{f} \; : \; \mathbf{f} \in \Lambda(\mu) \; \Bigr\} \; .
$$

Because the function $\mathbf{f} \mapsto \mathbf{f}^\mathrm{T} \mathbf{V} \mathbf{f}$ is continuous over the compact set $\Lambda(\mu)$, a minimizer exists.

Because $\bm{\mathsf{V}}$ is positive definite, the function $\bm{\mathsf{f}} \mapsto \bm{\mathsf{f}}^\text{T} \bm{\mathsf{V}} \bm{\mathsf{f}}$ is strictly convex over the convex set $\Lambda(\mu)$, whereby the minimizer is unique.

 2990

Long Frontiers: Definition of $f_{1f}(\mu)$

If we denote this unique minimizer by $\mathbf{f}_{\rm lf}(\mu)$ then for every $\mu \in [\mu_{\rm mn}, \mu_{\rm mx}]$ the function $\sigma_{1f}(\mu)$ is given by

$$
\sigma_{\text{lf}}(\mu) = \sqrt{\mathbf{f}_{\text{lf}}(\mu)^{\text{T}} \mathbf{V} \mathbf{f}_{\text{lf}}(\mu)}, \qquad (3.6)
$$

where $\mathbf{f}_\mathrm{lf}(\mu)$ can be expressed as

$$
f_{lf}(\mu) = \arg\min \left\{ \; \tfrac{1}{2} f^T V f \; : \; f \in \mathbb{R}^N \, , \; f \geq 0 \, , \; \mathbf{1}^T f = 1 \, , \; m^T f = \mu \; \right\} \, .
$$

Here arg min is read "the argument that minimizes". It means that $f_{lf}(μ)$ is the minimizer of the function $f \mapsto \frac{1}{2} f^T \mathsf{V} f$ subject to the constraints.

Remark. This problem can not be solved by Lagrange multipliers because of the inequality constraints **f** \geq 0 associated with the set $\Lambda(\mu)$. It is harder to solve analytically than the analogous minimization problem for portfolios with unlimited leverage. Therefore we will first present a numerical approach that can generally be applie[d.](#page-19-0) 2990

Long Frontiers: Quadratic Programming

Because the function being minimized is quadratic in **f** while the constraints are linear in **f**, this is called a quadratic programming problem. It can be solved for a particular **V**, **m**, and μ by using either the Matlab command "quadprog" or an equivalent command in some other language.

The Matlab command quadprog($\bf{A}, \bf{b}, \bf{C}, \bf{d}, \bf{C}_{eq}, \bf{d}_{eq}$) returns the solution of a quadratic programming problem in the *standard form*

$$
\arg\min\left\{\;\tfrac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x}+\mathbf{b}^T\mathbf{x}\;:\;\mathbf{x}\in\mathbb{R}^M\,,\;\mathbf{C}\mathbf{x}\leq\mathbf{d}\,,\;\mathbf{C}_{\text{eq}}\mathbf{x}=\mathbf{d}_{\text{eq}}\;\right\}\,,
$$

where $\mathbf{A}\in\mathbb{R}^{M\times M}$ is nonnegative definite, $\mathbf{b}\in\mathbb{R}^M$, $\mathbf{C}\in\mathbb{R}^{K\times M}$, $\mathbf{d}\in\mathbb{R}^K$, $\mathbf{C}_{\mathrm{eq}}\in\mathbb{R}^{K_{\mathrm{eq}}\times M}$, and $\mathbf{d}_{\mathrm{eq}}\in\mathbb{R}^{K_{\mathrm{eq}}}$. Here K and K_{eq} are the number of inequality and equality constraints respectively.

Long Frontiers: Converting to the Standard Form

Given **V**, **m**, and $\mu \in [\mu_{mn}, \mu_{mx}]$, the problem that we want to solve to obtain $\textbf{f}_\text{lf}(\mu)$ is

$$
\arg\min\left\{\;\tfrac{1}{2}\mathbf{f}^T\mathbf{V}\mathbf{f}\;:\;\mathbf{f}\in\mathbb{R}^N\,,\;\mathbf{f}\geq \mathbf{0}\,,\;\mathbf{1}^T\mathbf{f}=1\,,\;\mathbf{m}^T\mathbf{f}=\mu\;\right\}\,.
$$

We can put this into the standard form given on the previous slide by setting $x = f$ then $M = N$, $K = N$, $K_{eq} = 2$, and

$$
\textbf{A}=\textbf{V}\,,\quad \textbf{b}=\textbf{0}\,,\quad \textbf{C}=-\textbf{I}\,,\quad \textbf{d}=\textbf{0}\,,\quad \textbf{C}_{\rm eq}=\begin{pmatrix}\textbf{1}^{\rm T}\\ \textbf{m}^{\rm T}\end{pmatrix},\quad \textbf{d}_{\rm eq}=\begin{pmatrix}1\\ \mu\end{pmatrix},
$$

where **I** is the $N \times N$ identity. Notice that

•
$$
M = N
$$
 because $\mathbf{x} = \mathbf{f} \in \mathbb{R}^N$,

• $K = N$ because $f \ge 0$ gives N inequality constraints,

•
$$
K_{\text{eq}} = 2
$$
 because $\mathbf{1}^{\text{T}} \mathbf{f} = 1$ and $\mathbf{m}^{\text{T}} \mathbf{f} = \mu$ are two equality constraints.

Therefore $f_{\text{lf}}(\mu)$ can be obtained as the output f of a quadprog command that is formated as

$$
f = \mathsf{quadprog}(V, z, -I, z, Ceq, deq),
$$

where the matrices V, I, and C_{eq} , and vectors z and deq are given by

$$
V = V, \quad z = 0, \quad I = I, \quad Ceq = \begin{pmatrix} I^{T} \\ m^{T} \end{pmatrix}, \quad \deg = \begin{pmatrix} 1 \\ \mu \end{pmatrix}.
$$

Remark. There are other ways to use quadprog to obtain $f_{\text{lf}}(\mu)$. Documentation for this command is easy to find on the web. The similar command in R is also called "quadprog".

 200

Long Frontiers: Properties of σ _{*ε*}(*μ*)

When computing a long frontier, it helps to know some general properties of the function $\sigma_{\text{lf}}(\mu)$. These include:

- \bullet $\sigma_{\rm lf}(\mu)$ is continuous over $[\mu_{\rm mn}, \mu_{\rm mn}]$;
- \bullet $\sigma_{\rm lf}(\mu)$ is strictly convex over $[\mu_{\rm mn}, \mu_{\rm mx}]$;
- \bullet $\sigma_{\text{lf}}(\mu)$ is piecewise hyperbolic over $[\mu_{mn}, \mu_{mx}]$.

This means that $\sigma_{\text{lf}}(\mu)$ is built up from segments of hyperbolas that are connected at a finite number of nodes that correspond to points in the interval (μ_{mn}, μ_{mx}) where $\sigma_{\text{lf}}(\mu)$ has either

- a jump discontinuity in its first derivative, or
- a jump discontinuity in its second derivative.

Guided by these facts we now show how a long frontier can be approximated numerically with the Matlab command quadprog.

 2990

(ロ) (御) (目) (美)

Long Frontiers: Approximating σ _{If}(*μ*)

First, partition the interval $[\mu_{mn}, \mu_{mx}]$ as

$$
\mu_{mn} = \mu_0 < \mu_1 < \cdots < \mu_{n-1} < \mu_n = \mu_{mx}.
$$

For example, set $\mu_k = \mu_{mn} + k(\mu_{mx} - \mu_{mn})/n$ for a uniform partition. Pick n large enough to resolve all the features of the long frontier. There should be at most one node in each subinterval $[\mu_{k-1}, \mu_k]$.

Second, for every $k = 1, \dots, n - 1$ use quadprog to compute $f_{\text{lf}}(\mu_k)$. (This computation will not be exact, but we will speak as if it is.) The allocations $\{\mathsf{f}_{\rm lf}(\mu_k)\}_{k=0}^n$ should be saved.

Third, for every $k = 1, \dots, n-1$ compute σ_k by

$$
\sigma_k = \sigma_{\text{lf}}(\mu_k) = \sqrt{\mathbf{f}_{\text{lf}}(\mu_k)^T \mathbf{V} \mathbf{f}_{\text{lf}}(\mu_k)}.
$$

 200

モニ メモレメミ メモト エコト

Long Frontiers: Linear Interpolation in the *σµ*-Plane

Fourth, there is typically a unique m_i such that $\mu_{mn} = m_i$, in which case we set

$$
\mathbf{f}_\text{lf}(\mu_0) = \mathbf{e}_i, \qquad \sigma_0 = \sqrt{v_{ii}}.
$$

Similarly, there is typically a unique m_j such that $\mu_{\rm mx} = m_j$, in which case we set

$$
\mathbf{f}_{\rm lf}(\mu_n)=\mathbf{e}_j\,,\qquad \sigma_n=\sqrt{\mathbf{v}_{jj}}\,.
$$

Finally, we "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ to build an approximation to the long frontier. This can be done by linear interpolation in the $\sigma\mu$ -plane. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$
\tilde{\sigma}_{\rm lf}(\mu) = \frac{\mu_k - \mu}{\mu_k - \mu_{k-1}} \, \sigma_{k-1} + \frac{\mu - \mu_{k-1}}{\mu_k - \mu_{k-1}} \, \sigma_k \, .
$$

つくい

Long Frontiers: Linear Interpolation in Λ

A better way to "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ that is motivated by the two-fund property is to use linear interpolation in Λ. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$
\tilde{\mathbf{f}}_{\rm If}(\mu) = \frac{\mu_k - \mu}{\mu_k - \mu_{k-1}} \, \mathbf{f}_{\rm If}(\mu_{k-1}) + \frac{\mu - \mu_{k-1}}{\mu_k - \mu_{k-1}} \, \mathbf{f}_{\rm If}(\mu_k) \,,
$$

and then set

$$
\tilde{\sigma}_{\mathrm{lf}}(\mu) = \sqrt{\tilde{\mathbf{f}}_{\mathrm{lf}}(\mu)^{\mathrm{T}} \mathbf{V} \tilde{\mathbf{f}}_{\mathrm{lf}}(\mu)}.
$$

Remark. This will be a very good approximation if *n* is large enough. Over each interval (μ_{k-1}, μ_k) it approximates $\sigma_{if}(\mu)$ with a hyperbola rather than with a line.

つくい

Long Frontiers: Linear Interpolation in Λ

 $\bf{Remark.}$ Because $\bf{f}_{\rm lf}(\mu_k) \in \Lambda(\mu_k)$ and $\bf{f}_{\rm lf}(\mu_{k-1}) \in \Lambda(\mu_{k-1}),$ we can show that

$$
\tilde{\mathbf{f}}_{\mathrm{lf}}(\mu) \in \Lambda(\mu) \quad \text{for every } \mu \in (\mu_{k-1}, \mu_k).
$$

Therefore $\tilde{\sigma}_{\text{lf}}(\mu)$ gives an approximation to the long frontier that lies on or to the right of the long frontier in the *σµ*-plane.

Remark. When there are no nodes in the interval (μ_{k-1}, μ_k) then we can use the two-fund property to show that $\tilde{\sigma}_{\text{lf}}(\mu) = \sigma_{\text{lf}}(\mu)$.

 200

General Portfolio with Two Risky Assets: Λ

Recall the portfolio of two risky assets with mean vector **m** and covarience matrix **V** given by

$$
\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} , \qquad \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} \\ v_{12} & v_{22} \end{pmatrix} .
$$

Without loss of generality we can assume that $m_1 < m_2$. Then $\mu_{mn} = m_1$ and $\mu_{\text{mx}} = m_2$. Recall that for every $\mu \in \mathbb{R}$ the unique portfolio that satisfies the constraints $\mathbf{1}^\mathrm{T}\mathbf{f}=1$ and $\mathbf{m}^\mathrm{T}\mathbf{f}=\mu$ is

$$
\mathbf{f} = \mathbf{f}(\mu) = \frac{1}{m_2 - m_1} \begin{pmatrix} m_2 - \mu \\ \mu - m_1 \end{pmatrix}
$$

.

Clearly $f(\mu) \ge 0$ if and only if $\mu \in [m_1, m_2] = [\mu_{mn}, \mu_{mx}]$. Therefore the set Λ of long portfolios is given by

$$
\Lambda = \left\{ \mathbf{f}(\mu) \,:\, \mu \in [m_1, m_2] \right\}.
$$

In other words, the line segment Λ in \mathbb{R}^2 is the image of the interval $[m_1, m_2]$ under the affine mapping $\mu \mapsto f(\mu)$.

Because for every $\mu \in [m_1, m_2]$ the set $\Lambda(\mu)$ consists of the single portfolio $\mathbf{f}(\mu)$, the minimizer of $\mathbf{f}^\mathrm{T}\mathbf{V}\mathbf{f}$ over $\Lambda(\mu)$ is $\mathbf{f}(\mu).$ Therefore the long frontier portfolios are

$$
\mathbf{f}_{\mathrm{lf}}(\mu) = \mathbf{f}(\mu) \qquad \text{for } \mu \in [m_1, m_2],
$$

and the long frontier is given by

$$
\sigma = \sigma_{\mathrm{lf}}(\mu) = \sqrt{\mathbf{f}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu)} \qquad \text{for } \mu \in [m_1, m_2] \, .
$$

Hence, the long frontier is simply a segment of the frontier hyperbola. It has no nodes.

 200

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Recall the portfolio of three risky assets with mean vector **m** and covarience matrix **V** given by

$$
\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}, \qquad \mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{12} & v_{22} & v_{23} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}.
$$

Without loss of generality we can assume that

$$
m_1\leq m_2\leq m_3\,,\qquad m_1
$$

Then $\mu_{mn} = m_1$ and $\mu_{mx} = m_3$.

 Ω

General Portfolio with Three Risky Assets: **f**(*µ, φ*)

Recall that for every $\mu \in \mathbb{R}$ the portfolio allocations that satisfies the \mathbf{t} constraints $\mathbf{1}^\mathrm{T}\mathbf{f} = 1$ and $\mathbf{m}^\mathrm{T}\mathbf{f} = \mu$ are

$$
\mathbf{f} = \mathbf{f}(\mu, \phi) = \mathbf{f}_{13}(\mu) + \phi \, \mathbf{n} \,, \qquad \text{for some } \phi \in \mathbb{R} \,, \tag{5.7a}
$$

K ロ ▶ K 倒 ▶

where

$$
\mathbf{f}_{13}(\mu) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu \\ 0 \\ \mu - m_1 \end{pmatrix}, \qquad \mathbf{n} = \frac{1}{m_3 - m_1} \begin{pmatrix} m_2 - m_3 \\ m_3 - m_1 \\ m_1 - m_2 \end{pmatrix}.
$$
 (5.7b)

Here $f_{13}(\mu)$ is the two-asset allocation for assets 1 and 3 that satisfies

$$
\mathbf{1}^{\mathrm{T}}\mathbf{f}_{13}(\mu) = 1\,, \qquad \mathbf{m}^{\mathrm{T}}\mathbf{f}_{13}(\mu) = \mu\,,
$$

while \textbf{n} satisfies $\textbf{1}^\text{T}\textbf{n}=0$ and $\textbf{m}^\text{T}\textbf{n}=0.$

 2990

General Portfolio with Three Risky Assets: $f(\mu, \phi) \ge 0$

Because

$$
\mathbf{f}(\mu,\phi) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu - \phi(m_3 - m_2) \\ \phi(m_3 - m_1) \\ \mu - m_1 - \phi(m_2 - m_1) \end{pmatrix},
$$

we see that $f(\mu, \phi) \ge 0$ if and only if

•
$$
\mu \in [m_1, m_3] = [\mu_{mn}, \mu_{mx}]
$$
, and
\n• $\phi \in [0, \phi_{mx}(\mu)]$, where
\n
$$
\phi_{mx}(\mu) = \begin{cases}\n\frac{m_3 - \mu}{m_3 - m_1} & \text{if } m_2 = m_1, \\
\frac{\mu - m_1}{m_3 - m_1} & \text{if } m_2 = m_3, \\
\min\left\{\frac{m_3 - \mu}{m_3 - m_2}, \frac{\mu - m_1}{m_2 - m_1}\right\} & \text{if } m_2 \in (m_1, m_3).\n\end{cases}
$$
\n(5.8)

4 F F

つくい

General Portfolio with Three Risky Assets: Λ and \mathcal{T}_{Λ}

Then the set Λ of long portfolios is given by

$$
\Lambda = \left\{ \mathbf{f}(\mu, \phi) : (\mu, \phi) \in \mathcal{T}_{\Lambda} \right\},\tag{5.9}
$$

4日下

where \mathcal{T}_A is the triangle in the $\mu\phi$ -plane given by

$$
\mathcal{T}_{\Lambda} = \left\{ (\mu, \phi) \in \mathbb{R}^2 \, : \, \mu \in [m_1, m_3], \, 0 \leq \phi \leq \phi_{\text{mx}}(\mu) \right\}. \tag{5.10}
$$

- The base of \mathcal{T}_Λ is the interval $[m_1, m_3]$ on the μ -axis.
- The peak of $\mathcal{T}_{\mathsf{\Lambda}}$ is at the point $(m_2,1)$.
- The height of \mathcal{T}_A is 1.

 200

Therefore the sets Λ and $\Lambda(\mu)$ in \mathbb{R}^3 can be visualized as follows.

- The set Λ is the triangle in \mathbb{R}^3 that is the image of the triangle \mathcal{T}_Λ under the affine mapping $(\mu, \phi) \mapsto f(\mu, \phi)$.
- For every $\mu \in [m_1, m_3]$ the set $\Lambda(\mu)$ is given by

$$
\Lambda(\mu) = \left\{ \mathbf{f}(\mu, \phi) \, : \, 0 \le \phi \le \phi_{\text{mx}}(\mu) \right\}. \tag{5.11}
$$

Therefore the set $\Lambda(\mu)$ is the line segment in \mathbb{R}^3 that is the image of the interval $[0, \phi_{mx}(\mu)]$ under the affine mapping $\phi \mapsto f(\mu, \phi)$.

 Ω

General Portfolio with Three Risky Assets: $\phi_{\text{mf}}(\mu)$

Hence, the point on the long frontier associated with $\mu \in [\mu_{mn}, \mu_{mx}]$ is $(\sigma_{\text{lf}}(\mu), \mu)$ where $\sigma_{\text{lf}}(\mu)$ solves the constrained minimization problem

$$
\sigma_{\mathrm{lf}}(\mu)^2 = \min \left\{ \begin{array}{l} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} \; : \; \mathbf{f} \in \Lambda(\mu) \end{array} \right\} \n= \min \left\{ \begin{array}{l} \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) \; : \; 0 \leq \phi \leq \phi_{\mathrm{mx}}(\mu) \end{array} \right\}.
$$

Because the objective function

$$
\mathbf{f}(\mu,\phi)^{\mathrm{T}}\mathbf{V}\mathbf{f}(\mu,\phi) = \mathbf{f}_{13}(\mu)^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + 2\phi \,\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + \phi^2 \mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{n}
$$

is a quadratic in *φ* and **n** ^T**Vn** *>* 0, it has a unique global minimizer at

$$
\phi = \phi_{\rm mf}(\mu) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(\mu)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}}.
$$
 (5.12)

Then the Markowitz frontier allocation is $f_{\text{mf}}(\mu) = f(\mu, \phi_{\text{mf}}(\mu))$ $f_{\text{mf}}(\mu) = f(\mu, \phi_{\text{mf}}(\mu))$ [.](#page-31-0)

 Ω

General Portfolio with Three Risky Assets: The Minimizers

The global minimizer $\phi_{\rm mf}(\mu)$ will be the minimizer of our constrained minimization problem for the long frontier if and only if it satifies the constraints $0 \leq \phi_{\rm mf}(\mu) \leq \phi_{\rm mx}(\mu)$.

Because the derivative of the objective function with respect to *φ* can be written as

$$
\partial_{\phi} \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) = 2 \mathbf{n}^{\mathrm{T}} \mathbf{V} \mathbf{n} (\phi - \phi_{\mathrm{mf}}(\mu)) ,
$$

we can read off the following.

- **•** If $\phi_{\text{mf}}(\mu) \leq 0$ then the objective function is increasing over $[0, \phi_{\text{mx}}(\mu)]$, whereby its minimizer is $\phi = 0$.
- **If** $\phi_{mx}(\mu) \leq \phi_{mf}(\mu)$ then the objective function is decreasing over $[0, \phi_{mx}(\mu)]$, whereby its minimizer is $\phi = \phi_{mx}(\mu)$.

 2990

(ロ) (御) (目) (美)

Hence, the minimizer $\phi_{\text{lf}}(\mu)$ of our constrained minimization problem is

$$
\phi_{\text{If}}(\mu) = \begin{cases}\n0 & \text{if } \phi_{\text{mf}}(\mu) \le 0 \\
\phi_{\text{mf}}(\mu) & \text{if } 0 < \phi_{\text{mf}}(\mu) < \phi_{\text{mx}}(\mu) \\
\phi_{\text{mx}}(\mu) & \text{if } \phi_{\text{mx}}(\mu) \le \phi_{\text{mf}}(\mu) \\
= \max\{0, \min\{\phi_{\text{mf}}(\mu), \phi_{\text{mx}}(\mu)\}\} \\
= \min\{\max\{0, \phi_{\text{mf}}(\mu)\}, \phi_{\text{mx}}(\mu)\} \n\end{cases}
$$
\n(5.13)

Therefore the long frontier is given by

$$
\sigma_{\text{lf}}(\mu) = \sqrt{\mathbf{f}(\mu, \phi_{\text{lf}}(\mu))^{\text{T}} \mathbf{V} \mathbf{f}(\mu, \phi_{\text{lf}}(\mu))}. \tag{5.14}
$$

◆ ロ ▶ → 何

 2990

General Portfolio with Three Risky Assets: \mathcal{T}_{Λ} & $\mathcal{L}_{\mathrm{mf}}$

Understanding the long frontier thereby reduces to understanding $\phi_{\text{lf}}(\mu)$. This can be visualized in the *µφ*-plane by considering the intersection of the triangle $\mathcal{T}_\mathsf{\Lambda}$ and the line \mathcal{L}_mf given by

$$
\mathcal{L}_{\rm mf} = \left\{ (\mu, \phi) \, : \, \phi = \phi_{\rm mf}(\mu) \right\}.
$$
 (5.15)

Because

$$
\mathbf{f}_{13}(m_1) = \mathbf{e}_1, \quad \mathbf{f}_{13}(m_2) = \mathbf{e}_2 - \mathbf{n}, \quad \text{and} \quad \mathbf{f}_{13}(m_3) = \mathbf{e}_3,
$$

we see that

$$
\phi_{\rm mf}(m_1) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(m_1)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{e}_1}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}},
$$
\n
$$
\phi_{\rm mf}(m_2) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(m_2)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} = 1 - \frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{e}_2}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}},
$$
\n
$$
\phi_{\rm mf}(m_3) = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{f}_{13}(m_3)}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}} = -\frac{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{e}_3}{\mathbf{n}^{\rm T} \mathbf{V} \mathbf{n}}.
$$

Some geometry can thereby be read off from the signs of the entries of **Vn**.

 \mathcal{L}_{mf} is below vertex $(m_1,0)$ of \mathcal{T}_Λ iff $\phi_{\text{mf}}(m_1) < 0$ $\,$ iff $\,$ **e** $\mathbf{F}_1^{\mathrm{T}}\mathbf{V}\mathbf{n} > 0$; \mathcal{L}_{mf} is above vertex $(m_1,0)$ of \mathcal{T}_A iff $\phi_{\text{mf}}(m_1) > 0$ $\,$ iff $\,$ \mathbf{e} $\mathbf{F}_{1}^{\mathrm{T}}\mathbf{V}\mathbf{n}<0$; $\mathcal{L}_{\rm mf}$ is below vertex $(m_2,1)$ of \mathcal{T}_Λ iff $\phi_{\rm mf}(m_2) < 1$ $\,$ iff ${\bf e}$ $\mathcal{F}_2^{\mathrm{T}}$ Vn >0 ; $\mathcal{L}_{\mathrm{mf}}$ is above vertex $(m_2,1)$ of \mathcal{T}_A iff $\phi_{\mathrm{mf}}(m_2)>1$ $\,$ iff \mathbf{e} $\mathbf{Z}_2^{\mathrm{T}}\mathbf{V}\mathbf{n}<0$; \mathcal{L}_{mf} is below vertex $(m_3,0)$ of \mathcal{T}_Λ iff $\phi_{\text{mf}}(m_3) < 0$ $\,$ iff $\,$ \mathbf{e} $\mathbf{J}_3^{\mathrm{T}}\mathbf{V}$ n >0 ; $\mathcal{L}_{\rm mf}$ is above vertex $(m_3,0)$ of \mathcal{T}_A iff $\phi_{\rm mf}(m_3)>0$ $\,$ iff $\,$ ${\bf e}$ $\frac{1}{3}$ Vn < 0 . (5.16)

By combining this information about each vertex of the triangle \mathcal{T}_{λ} we can work out its intersection with the line \mathcal{L}_{mf} .

 Ω

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

General Portfolio with Three Risky Assets: Nine Cases

Below we list all nine cases that arise when $m_1 < m_2 < m_3$.

\n- \n
$$
\phi_{\rm mf}(m_1) \leq 0
$$
 and $\phi_{\rm mf}(m_3) \leq 0$ (whereby $\phi_{\rm mf}(m_2) \leq 0 < 1$).\n
\n- \n $\phi_{\rm mf}(m_1) \geq 0$, $\phi_{\rm mf}(m_2) \geq 1$ and $\phi_{\rm mf}(m_3) \geq 0$.\n
\n- \n $\phi_{\rm mf}(m_1) = 0$, $\phi_{\rm mf}(m_2) < 1$ and $\phi_{\rm mf}(m_3) > 0$.\n
\n- \n $\phi_{\rm mf}(m_1) > 0$, $\phi_{\rm mf}(m_2) < 1$ and $\phi_{\rm mf}(m_3) = 0$.\n
\n- \n $\phi_{\rm mf}(m_1) > 0$, $\phi_{\rm mf}(m_2) < 1$ and $\phi_{\rm mf}(m_3) > 0$.\n
\n- \n $\phi_{\rm mf}(m_1) < 0$, $\phi_{\rm mf}(m_2) \leq 1$ and $\phi_{\rm mf}(m_3) > 0$.\n
\n- \n $\phi_{\rm mf}(m_1) > 0$, $\phi_{\rm mf}(m_2) > 1$ and $\phi_{\rm mf}(m_3) < 0$.\n
\n- \n $\phi_{\rm mf}(m_1) > 0$, $\phi_{\rm mf}(m_2) > 1$ and $\phi_{\rm mf}(m_3) < 0$.\n
\n- \n $\phi_{\rm mf}(m_1) > 0$, $\phi_{\rm mf}(m_2) > 1$ and $\phi_{\rm mf}(m_3) < 0$. We present some of these nine cases below. Another ten cases arise when either $$

4日 8

 QQ

Case 1. By [\(5.16\)](#page-40-1) the line \mathcal{L}_{mf} lies below the interior of \mathcal{T}_{Λ} if and only if $\mathbf{e}_1^{\mathrm{T}}\mathbf{V}\mathbf{n} \ge 0$ and $\mathbf{e}_3^{\mathrm{T}}\mathbf{V}\mathbf{n} \ge 0$.

Then $\phi_{\text{lf}}(\mu) = 0$ for every $\mu \in [m_1, m_3]$ and the long frontier is

$$
\sigma = \sigma_{\mathrm{lf}}(\mu) = \sqrt{\mathbf{f}_{13}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{13}(\mu)}.
$$

This is the long frontier built from assets 1 and 3. It has no nodes and is smooth.

 200

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

General Portfolio with Three Risky Assets: Case 2

Case 2. By [\(5.16\)](#page-40-1) the line \mathcal{L}_{mf} lies above the interior of \mathcal{T}_{Λ} if and only if

$$
\textbf{e}_1^T\textbf{Vn}\leq 0\,,\qquad \textbf{e}_2^T\textbf{Vn}\leq 0\,,\quad \text{and}\quad \textbf{e}_3^T\textbf{Vn}\leq 0\,.
$$

Then $\phi_{1f}(\mu) = \phi_{mx}(\mu)$ for every $\mu \in [m_1, m_3]$ and the long frontier is

$$
\sigma = \sigma_{\mathrm{lf}}(\mu) = \begin{cases} \sqrt{\mathbf{f}_{12}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{12}(\mu)} & \text{for } \mu \in [m_1, m_2], \\ \sqrt{\mathbf{f}_{23}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{23}(\mu)} & \text{for } \mu \in [m_2, m_3]. \end{cases}
$$

This patches the long frontier built from assets 1 and 2 with the long frontier built from assets 2 and 3. It generally has a jump discontinuity in its first derivative at the node $\mu = m_2$.

 200

General Portfolio with Three Risky Assets: Case 5

Case 5. By [\(5.16\)](#page-40-1) the line \mathcal{L}_{mf} lies above the base of \mathcal{T}_{Λ} but intersects the interior of $\mathcal{T}_\mathsf{\Lambda}$ if and only if

$$
\textbf{e}_1^T\textbf{V}\textbf{n}<0\,,\qquad \textbf{e}_2^T\textbf{V}\textbf{n}>0\,,\quad \text{and}\quad \textbf{e}_3^T\textbf{V}\textbf{n}<0\,.
$$

Then there exists

\n- •
$$
\mu_1 \in [m_1, m_2]
$$
 where $\phi_{\rm mf}(\mu)$ intersects $\frac{\mu - m_1}{m_2 - m_1}$, and
\n- • $\mu_2 \in [m_2, m_3]$ where $\phi_{\rm mf}(\mu)$ intersects $\frac{m_3 - \mu}{m_3 - m_2}$.
\n

Then

$$
\phi_{\text{If}}(\mu) = \begin{cases}\n\frac{\mu - m_1}{m_2 - m_1} & \text{for } \mu \in [m_1, \mu_1], \\
\phi_{\text{inf}}(\mu) & \text{for } \mu \in (\mu_1, \mu_2), \\
\frac{m_3 - \mu}{m_3 - m_2} & \text{for } \mu \in [\mu_2, m_3].\n\end{cases}
$$

つくい

General Portfolio with Three Risky Assets: Case 5

The long frontier for this case is

$$
\sigma = \sigma_{\mathrm{lf}}(\mu) = \begin{cases} \sqrt{\mathbf{f}_{12}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{12}(\mu)} & \text{for } \mu \in [m_1, \mu_1], \\ \sigma_{\mathrm{mf}}(\mu) & \text{for } \mu \in (\mu_1, \mu_2), \\ \sqrt{\mathbf{f}_{23}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{23}(\mu)} & \text{for } \mu \in [\mu_2, m_3]. \end{cases}
$$

Because

$$
\sigma_{\rm mf}(\mu) \leq \sqrt{\mathbf{f}_{12}(\mu)^{\rm T} \mathbf{V} \mathbf{f}_{12}(\mu)} \qquad \text{for every } \mu \in \mathbb{R} \,,
$$

$$
\sigma_{\rm mf}(\mu) \leq \sqrt{\mathbf{f}_{23}(\mu)^{\rm T} \mathbf{V} \mathbf{f}_{12}(\mu)} \qquad \text{for every } \mu \in \mathbb{R} \,,
$$

with equaility at $\mu = \mu_1$ and $\mu = \mu_2$ respectively, we see that the first derivative of $\sigma_{\text{lf}}(\mu)$ is continuous at the nodes $\mu = \mu_1$ and $\mu = \mu_2$, but its second derivative will generally have jump discontinuities at those points.

つくへ