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Introduction

Suppose that we are considering return histories {ri (d)}Dd=1 for assets
i = 1, · · · , N over a period of D trading days and assign day d a weight
w(d) > 0 such that the weights {w(d)}Dd=1 satisfy

D∑
d=1

w(d) = 1 .

Then the return means, variances, and covariances are given by

mi =
D∑

d=1
w(d) ri (d) ,

vij =
D∑

d=1
w(d)

(
ri (d)−mi

)(
rj(d)−mj

)
.

(1.1)
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Introduction
The return history can be expressed as {r(d)}Dd=1 where

r(d) =

 r1(d)
...

rN(d)

 .

The N-vector of return means m and the N×N-matrix of return variances
and covariances V then can be expressed as

m =

m1
...

mN

 =
D∑

d=1
w(d) r(d) ,

V =

v11 · · · v1N
... . . . ...

vN1 · · · vNN

 =
D∑

d=1
w(d)

(
r(d)−m

) (
r(d)−m

)T
.
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Introduction

We call V the covariance matrix. It also is called the variance/covariance
matrix or the variance matrix.
The most important properties of V:

it is always symmetric,
it is almost always positive definite.
it can be diagonalized.

These properties are taught in most elementary linear algebra courses, but
they are so important that they will be reviewed in the next two sections.
In subsequent sections these properties will be used to extract statistical
information from V.
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Symmetry and Definiteness (Review)
Here we review the notions of symmetric and definite matrices.
Definition 1. A real N×N-matrix A is said to be symmetric if AT = A,
where AT is the transpose of A. It is said to be nonnegative definite or
positive semidefinite if

xTAx ≥ 0 for every x ∈ RN .

It is said to be positive definite if

xTAx > 0 for every nonzero x ∈ RN .

Remarks. Clearly, every positive definite matrix is nonnegative definite. A
nonnegative definite matrix is positive definite if and only if

xTAx = 0 =⇒ x = 0 . (2.2)
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Symmetry and Definiteness (V Nonnegative Definite)

Fact 1. The covariance matrix V is symmetric.
Proof. It is clear from (1.1) that vij = vji , whereby V = VT. �

Fact 2. The covariance matrix V is nonegative definite.
Proof. Let x ∈ RN be arbitrary. Then

xTVx = xT
( D∑

d=1
w(d)

(
r(d)−m

) (
r(d)−m

)T) x

=
D∑

d=1
w(d) xT(r(d)−m

) (
r(d)−m

)Tx

=
D∑

d=1
w(d)

((
r(d)−m

)Tx
)2
≥ 0 .

�
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Symmetry and Definiteness (V Positive Definite)
Fact 3. The covariance matrix V is positive definite if and only if the
vectors {r(d)−m}Dd=1 span RN .
Proof. Because w(d) > 0, the calculation in the previous proof shows
that xTVx = 0 if and only if(

r(d)−m
)Tx = 0 for every d = 1, · · · , D . (2.3)

First, suppose that V is not positive definite. Then by (2.2) there exists an
x ∈ RN such that xTVx = 0 and x 6= 0. This implies by (2.3) that the
vectors {r(d)−m}Dd=1 lie in the hyperplane orthogonal (normal) to x.
Therefore the vectors {r(d)−m}Dd=1 do not span RN .
Conversely, suppose that the vectors {r(d)−m}Dd=1 do not span RN .
Then there must be a nonzero vector x that is orthogonal to their span.
This implies that x satisfies (2.3), whereby xTVx = 0. Therefore V is not
positive definite by (2.2). �
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Symmetry and Definiteness (Need D > N)

Remark. The set of vectors {r(d)−m}Dd=1 is linearly dependent because

D∑
d=1

w(d)
(
r(d)−m

)
=

D∑
d=1

w(d)r(d)−m
D∑

d=1
w(d) = 0 .

Therefore it can span RN only if D > N. Hence, we require that D > N.
Remark. In practice D will be much larger than N. In the homework and
projects for this course usually N ≤ 10 while D ≥ 42 (often D = 252).
When D is so much greater than N the covariance matrix V will almost
always be positive definite.
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Symmetry and Definiteness (Two Spanning Conditions)

Remark. If {r(d)−m}Dd=1 spans RN then {r(d)}Dd=1 also spans RN .
Indeed, if x ∈ Span{r(d)−m}Dd=1 then for some {a(d)}Dd=1 we have

x =
D∑

d=1
a(d)

(
r(d)−m

)
=

D∑
d=1

(
a(d)− w(d)

D∑
d ′=1

a(d ′)
)

r(d) .

Therefore x ∈ Span{r(d)}Dd=1. However, the converse need not hold. A
counterexample for N = 2 and any D > 2 can be constructed as follows.
Let {m,n} span R2. Let r(d) = m + h(d)n where h(d) 6= 0 and

D∑
d=1

w(d)h(d) = 0 .

Then {r(d)}Dd=1 spans R2 while {r(d)−m}Dd=1 does not span R2 because
every r(d)−m is proportional to n.
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Eigenpairs and Diagonalization (Eigenpairs)
Recall from linear algebra that an eigenpair (κ,q) of a real N×N matrix A
is a scalar κ (possibly complex) and a nonzero vector q (possibly with
complex entries) such that

Aq = κq . (3.4)
An eigenpair is called a real eigenpair when κ and every entry of q is real.
Recall too that if A is real and symmetric then it has N real eigenpairs

(κ1,q1) , (κ2,q2) , · · · (κN ,qN) , (3.5)

such that the eigenvectors {qi}Ni=1 are an orthonormal set. This means
that they satisfy the orthonormality conditions

qT
i qj = δij ≡

{
1 if i = j ,
0 if i 6= j .

(3.6)
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Eigenpairs and Diagonalization (Orthonormal Basis)

Because the {qi}Ni=1 satisfy the orthonormality conditions (3.6), they form
an orthonormal basis of RN . Every x ∈ RN can be expanded as

x = q1 qT
1x + q2 qT

2x + · · ·+ qN qT
Nx . (3.7)

The numbers {qT
i x}Ni=1 are called the coordinates of x for the orthonormal

basis {qi}Ni=1. By multiplying (3.7) on the left by xT we see that the
square of the Euclidean norm of x is given by

‖x‖2 = xTx =
(
qT

1x
)2 +

(
qT

2x
)2 + · · ·+

(
qT

Nx
)2
. (3.8)
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Eigenpairs and Diagonalization (Orthonormal Basis)

Because the {qi}Ni=1 are eigenvectors of A, we see from (3.7) that

Ax = Aq1 qT
1x + Aq2 qT

2x + · · ·+ AqN qT
Nx

= κ1 q1 qT
1x + κ2 q2 qT

2x + · · ·+ κN qN qT
Nx .

(3.9)

Hence, the {κi qT
i x}Ni=1 are the coordinates of Ax for the orthonormal

basis {qi}Ni=1. Therefore by (3.8) we have

‖Ax‖2 = κ 2
1
(
qT

1x
)2 + κ 2

2
(
qT

2x
)2 + · · ·+ κ 2

N
(
qT

Nx
)2
. (3.10)
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Eigenpairs and Diagonalization (Definiteness)

Fact 4. If A is a real symmetric matrix then the properties of nonnegative
definite and positive definite can be characterized as follows.

A is nonnegative definite if and only if its eigenvalues are all
nonnegative.
A is positive definite if and only if its eigenvalues are all positive.

Proof. The (=⇒) directions of these characterizations follow from the fact
that if (κ,q) is an eigenpair of A that is normalized so that qTq = 1 then

κ = κqTq = qT(κq) = qT(Aq) = qTAq .

Hence, if A is nonnegative definite then κ ≥ 0 and if A is positive definite
then κ > 0.
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Eigenpairs and Diagonalization (Definiteness)

The (⇐=) directions of these characterizations use the full power of the
orthonormality conditions (3.6) as embodied by expansion (3.9),

Ax = κ1q1 qT
1x + κ2q2 qT

2x + · · ·+ κNqN qT
Nx .

By taking the scalar product of this expansion with x we obtain

xTAx = κ1
(
qT

1x
)2 + κ2

(
qT

2x
)2 + · · ·+ κN

(
qT

Nx
)2
.

It is thereby clear that:
• if κi ≥ 0 for every i = 1, · · · , N then A is nonnegative definite;
• if κi > 0 for every i = 1, · · · , N then A is positive definite.
This proves the (⇐=) directions of the characterizations. �
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Eigenpairs and Diagonalization (Diagonalization)

Fact 5. Expansion (3.9) shows that if A is a real symmetric N×N matrix
then it can be expressed in the factored form

A = QDQT , (3.11)

where D and Q are the real N×N matrices constructed from the real
eigenpairs (3.5) as

D =


κ1 0 · · · 0
0 κ2

. . . ...
... . . . . . . 0
0 · · · 0 κN

 , Q =
(

q1 q2 · · · qN
)
. (3.12)

This factorization is called a diagonalization of A because D is a diagonal.
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Eigenpairs and Diagonalization (Q is Orthogonal)

The matrix Q constructed from the eigenvectors {qi}Ni=1 by (3.12)
satisfies the relations

QTQ = I = QQT . (3.13)

QTQ = I is a recasting of the orthonormality conditions (3.6).
I = QQT is equivalent to x = QQTx, which is a recasting of
expansion (3.7).
Relations (3.13) show that Q and QT are inverses of each other —
i.e. that Q−1 = QT and that Q−T = Q.
They imply that the factored form (3.11) is equivalent to AQ = QD.

Any matrix Q satisfying relations (3.13) is called an orthogonal matrix.
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Eigenpairs and Diagonalization (By Matlab)

The eigenpairs of a matrix A can be approximated numerically with the
Matlab command “eig”. Specifically, if the N×N matrix A is stored as A
then the command line

> [Q,D] = eig(A);

will return a diagonal matrix D of eigenvalues and an orthogonal matrix Q
whose columns are corresponding eigenvectors — i.e. so that AQ = QD.
Remark. The Matlab command “eig” computes eigenpairs of positive
definite matrices using the QR algorithm. This algorithm is often covered
in graduate courses on numerical methods. It will not be presented here.
However, significant errors in the smaller eigenvalues can arise when the
ratio of the largest to the smallest eigenvalue is large. This ratio is the
condition number of A.
Remark. The R command “eigen” is similar.
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Statistical Interpretation (N = 2 Examples)

In order to illustrate the statistical information contained in the return
mean vector m and return covariance matrix V, we consider the case
N = 2 and D = 21. Given the return history {(r1(d), r2(d))}21

d=1, the
vector m and matrix V computed with uniform weights are

m =
(

m1
m2

)
= 1

21

21∑
d=1

(
r1(d)
r2(d)

)
,

V =
(

v11 v12
v21 v22

)
= 1

21

21∑
d=1

(
r̃1(d)2 r̃1(d)r̃2(d)

r̃2(d)r̃1(d) r̃2(d)2

)
,

where r̃1(d) = r1(d)−m1 and r̃2(d) = r2(d)−m2.
Example 1. Suppose that when the return history {(r1(d), r2(d))}21

d=1 is
plotted as points in the r1r2-plane we obtain the plot on the next slide.
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Statistical Interpretation (N = 2 Examples)

r2

∗
∗

∗
∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗

∗
∗

∗ ∗

r1
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Statistical Interpretation (N = 2 Examples)

This so-called scatter plot shows a distribution of points clustered about
the origin in a way that favors the first and third quadrants.

The vector m gives the center of the cluster. It lies in the third
quadrant close to the origin.
The matrix V will have eigenvectors that are roughly parallel to ↗
and to ↖. The eigenvalue associated with ↗ will be greater than the
one associated with ↖. Their square roots give the spread of the
data from m in their respective eigendirections.

This is how m and V tell us that the points are clustered about the origin
in a way that favors the first and third quadrants.
Example 2. Now suppose that when the return history
{(r1(d), r2(d))}21

d=1 is plotted as points in the r1r2-plane we instead obtain
the scatter plot on the next slide.
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Statistical Interpretation (N = 2 Examples)

r2

∗
∗
∗

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗
∗

∗

r1
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Statistical Interpretation (N = 2 Examples)

In this scatter plot r1 and r2 are more highly correlated than in the first.
The vector m is almost the same as it was for the first scatter plot. It
lies in the third quadrant close to the origin.
The matrix V again has eigenvectors that are roughly parallel to ↗
and to ↖. However now the eigenvalue associated with ↗ is very
much greater than the one associated with ↖. Their square roots
give the spread of the data from m in their respective eigendirections.

Both the scatter plot and the analysis of m and V suggest that the points
{(r1(d), r2(d))}21

d=1 cluster along a line.
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Statistical Interpretation (One Dimensional Behavior)

If eigenvectors associated with the largest eigenvalue of V are proportional
to (1, b) then the points in the r1r2-plane are clustered along the line

r2 −m2 = b(r1 −m1) .

This suggests r2(d) could be modeled as

r2(d)−m2 = b
(
r1(d)−m1

)
+ z(d) ,

where z(d) are small random numbers that on average sum to zero.
Remark. Scatter plots become harder to visualize as N grows beyond 3.
However the eigenpair analysis of V can be carried out easily for much
larger N.
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Principal Component Analysis (Eigenpairs of V)

In statistics the eigenpair analysis of the covariance matrix V is called
Principal Component Analysis (PCA).
A principal component analysis of V yields N eigenpairs

(κ1,q1) , (κ2,q2) , · · · , (κN ,qN) . (5.14)

The eigenvalues will almost always be distinct, in which case we will order
them as

κ1 > κ2 > · · · > κN > 0 . (5.15)

In this case the eigenvectors will be unique up to a nonzero factor. If they
are normalized so that ‖qi‖ = 1 then they are unique up to a factor of ±1
and {qi}Ni=1 will be an orthonormal basis of RN .
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Principal Component Analysis (Components)

Let D and Q be the diagonal and orthogonal matrices constructed from
the eigenpairs (5.14) as in (3.12). Then V = QDQT and QTQ = QQT = I.
Then the underlying return history {r(d)}Dd=1 can be transformed into the
history {p(d)}Dd=1 where

p(d) = QTr(d) .

The entries of p(d) are called the principle components of r(d).
Their mean vector is given by

D∑
d=1

w(d)p(d) =
D∑

d=1
w(d)QTr(d) = QT

( D∑
d=1

w(d)r(d)
)

= QTm .
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Principal Component Analysis (Diagonal Covariance)

Similarly, their covariance matrix is given by

D∑
d=1

w(d)
(
p(d)−QTm

)(
p(d)−QTm

)T
= QT

( D∑
d=1

w(d)
(
r(d)−m

)(
r(d)−m

)T)Q

= QTVQ = QT(QDQT)Q =
(
QTQ

)
D
(
QTQ

)
= D .

Because the i th entry of p(d) is qT
i r(d), its variance is κi . Because D is a

diagonal matrix, the covariance of distinct entries of p(d) vanishes. Thus,
distinct principle components of the data are uncorrelated.
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Principal Component Analysis (Summary)

Therefore PCA can be viewed as an orthogonal coordinate transformation
that maps the data into new coordinates (the principal components) that
are uncorrelated and such that the first entry has the largest variance, the
second entry has the second largest variance, and so on.

Remark. The vectors qi are called the principal component coefficients
because they are the vectors whose scalar product with the data r(d) gives
the principle components. They are also called loadings.
Remark. Principal component analysis is related to a weighted singular
value decomposition (SVD) of the N × D matrix

R =
(

r(1)−m r(2)−m · · · r(D)−m
)
.

This is because V = RWRT where W is the D × D diagonal matrix with
the weights w(d) on the diagonal.
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Dimension of the Data (Introduction)

One application of PCA is to explore possible lower dimensional models
that capture the bulk of the variation in the data. The dimension of such
a model can be found by selecting a subset of the larger eigenvalues of V.
There are many ways in which this can be done.
For example, suppose that the eigenvalues of V are ordered as

κ1 ≥ κ2 ≥ · · · ≥ κN−1 ≥ κN > 0 ,

and that a plot of κi versus i looks like the figure on the next slide.

C. David Levermore (UMD) Covariance Matrices February 18, 2022



Intro Sym and Def Eigen and Diag Stat Interp PCA Data Dim

Dimension of the Data (Example Graph)

κi

5 -

4 -

3 -

2 -

1 -

0 -

∗
∗ ∗

∗

∗

∗ ∗
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1 2 3 4 5 6 7 8 9 · · · N i
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Dimension of the Data (Example Discussion)

This figure shows that the underlying data has four major dimensions and
that eigenvalues are negligible for i ≥ 8. It suggests that the data might
be captured well with a 4, 5, or 7 dimensional model.

A 4 dimensional model is suggested by the fact that the gap κ4 − κ5
is larger than the gap between any other pair of adjacent eigenvalues.
A 7 dimension model is suggested by the fact that the ratio κ7/κ8 is
larger than the ratio between any other pair of adjacent eigenvalues.
A 5 or 7 dimension model might be suggested by the fact that the
ratio κ6/κ1 is below .2 or the fact that the ratio κ8/κ1 is below .1.
The threshold chosen is arbitrary, but should be small.

Remark. Dimensions obtained by these methods may not be the actual
dimension of the data, which can be much lower when the data satisfies
an approximate nonlinear relationship. Such a relationship is illustrated on
the next slide for two dimensional data.
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Dimension of the Data (Nonlinear Dependence Example)

r2

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

r1
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Dimension of the Data (Summary)

This figure shows that the underlying data lies along a parabola-like curve,
whereby it is one dimensional. However, principle component analysis does
not see this because the 2× 2 matrix V has two comparable eigenvalues.
Remark. This use of PCA is called exploritory analysis. While it can show
that data behaves like its dimension is lower than N, it typically does not
give a unique value for the lower dimension. However, it usually does give
a small set of candidates for the lower dimension that can be evaluated by
other criteria.
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