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Mean-Variance Objectives (Introduction)

Here we address the maximization problem for a mean-variance objective Γ̂
defined over a convex set Π of Markowitz allocations. These objectives
have the general form

Γ̂ = G(σ̂, µ̂) , (1.1a)

where
σ̂ is the volatility estimator defined over Π,
µ̂ is the return mean estimator defined over Π,

and G(σ, µ) is defined over a set ΣG of the σµ-plane that satisfies

ΣG ⊃ Σ(Π) =
{

(σ̂, µ̂) : all allocations in Π
}
. (1.1b)

Additional requirements will be imposed upon both G(σ, µ) and ΣG in
order to solve the the maximization problem.
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Mean-Variance Objectives (Examples in M+)

Recall that:
σ̂ is convex function of the allocations;
µ̂ is an affine function of the allocations.

We illustrate this with examples.
When Π ⊂M+ we have

σ̂(f) =
√

fTV f , µ̂(f) = µrf + (m− µrf1)Tf , (1.2a)

Σ(Π) =
{

(σ̂(f), µ̂(f)) : f ∈ Π
}
. (1.2b)

Examples of such Π include:
M or M+, in which case the Σ(Π) are unbounded, convex sets;
Λ, Λ+, Π` or Π`

+, in which case the Σ(Π) are compact, nonconvex
sets.
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Mean-Variance Objectives (Examples in M2)

Similarly, when Π ⊂M2 we have

σ̂(f) =
√

fTV f ,

µ̂
(

f, f si, f cl
)

= mTf + µsif si + µclf cl ,
(1.3a)

Σ(Π) =
{(

σ̂(f) , µ̂
(

f, f si, f cl
))

:
(

f, f si, f cl
)
∈ Π

}
. (1.3b)

Examples of such Π include:
M2, in which case the Σ(Π) is an unbounded, convex set;
Π`

2, in which case the Σ(Π) is a compact, nonconvex set.

The fact that µ̂ is an affine function of the allocations should be clear.
A proof that σ̂ is a convex function of the allocations is given below.
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Mean-Variance Objectives (Convexity of σ̂)
Fact 1. σ̂(f) is a convex function over RN .
Proof. Let f0, f1 ∈ RN with f0 6= f1. The Cauchy inequality says that

|fT0 Vf1| ≤
√

fT0 V f0

√
fT1 V f1 .

Define ft = (1− t) f0 + t f1 for every t ∈ [0, 1]. Then by Cauchy

σ̂(ft) =
√

fTt V ft

=
√

(1− t)2fT0 V f0 + 2(1− t)t fT0 V f1 + t2fT1 V f1

≤
√

(1− t)2fT0 V f0 + 2(1− t)t
√

fT0 V f0

√
fT1 V f1 + t2fT1 V f1

= (1− t)
√

fT0 V f0 + t
√

fT1 V f1 = (1− t) σ̂(f0) + t σ̂(f1) .

This inequality proves Fact 1.
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Mean-Variance Objectives (Concavity of Γ̂)

Our first result about mean-variance objectives concerns their concavity.
Its proof uses the facts that σ̂ is convex over Π and µ̂ is affine over Π.
Fact 2. Let G(σ, µ) be a function over a convex set ΣG in the σµ-plane
such that

• G(σ, µ) is a decreasing function of σ over ΣG , (1.4a)
• G(σ, µ) is concave over ΣG . (1.4b)

Let Π be a convex set of allocations such that Σ(Π) satisfies

Σ(Π) ⊂ ΣG . (1.5)

Then Γ̂ = G(σ̂, µ̂) given by (1.1a) is a concave function over Π.
Remark. The convexity of ΣG and (1.5) imply that ΣG ⊃ Hull(Σ(Π)).
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Mean-Variance Objectives (Fact 2 Proof)
Proof. Let (σ̂0, µ̂0) and (σ̂1, µ̂1) be the values of the estimators σ̂ and µ̂
for two distinct allocations in Π.
For every t ∈ [0, 1] let (σ̂t , µ̂t) be the values σ̂ and µ̂ for the convex
combination of these allocations. Because Π is convex and satisfies (1.5),
we know that (σ̂t , µ̂t) ∈ ΣG . Because σ̂ is convex over Π by Fact 1, while
µ̂ is affine over Π, we have

σ̂t ≤ (1− t) σ̂0 + t σ̂1 , µ̂t = (1− t) µ̂0 + t µ̂1 .

Then the σ monotonicity (1.4a) followed by the concavity (1.4b) yield

G(σ̂t , µ̂t) ≥ G
(

(1− t) σ̂0 + t σ̂1 , (1− t) µ̂0 + t µ̂1
)

≥ (1− t) G(σ̂0, µ̂0) + t G(σ̂1, µ̂1) ,

Therefore Γ̂ = G(σ̂, µ̂) is concave over Π. This proves Fact 2.
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Efficient Frontier (Introduction)
A central part of our main result about the maximization problem for Γ̂
over Π is that its maximizer must be an efficient portfolio within Π. This
means that if the the efficient frontier for Π lies on the curve σ = σf(µ) in
the σµ-plane then we can introduce

Γf(µ) = G
(
σf(µ) , µ

)
, (2.6)

and reduce the problem of maximizing Γ̂ over Π to that of maximizing
Γf(µ) over some interval. This is a huge simplification!

If σf(µ) is known analytically and it and G(σ, µ) are sufficiently simple
then an analytic solution of the problem can be found.
If σf(µ) is known numerically then this reduction greatly simplifies the
numerical solution of the problem.

Before giving this result, we lay some groundwork about the efficient
frontier.
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Efficient Frontier (The Interval µ̂(Π))
The frontier of Π is define over the set µ̂(Π) ⊂ R given by

µ̂(Π) =
{
µ̂ : all allocations in Π

}
. (2.7)

Because Π is convex, it is connected. Because the continuous image of a
connected set is a connected set, the facts that Π is connected and that µ̂
is continuous over Π imply that µ̂(Π) is connected. But the connected
subsets of R are the intervals, so that µ̂(Π) is always an interval.

If Π is M, M+ or M2 then µ̂(Π) = R.
If Π = Λ then µ̂(Π) = [µmn, µmx].
If Π = Π` for some ` ≥ 0 then µ̂(Π) = [µ`mn, µ

`
mx], where

µ`mn = µmn − ` (µmx − µmn) , µ`mx = µmx + ` (µmx − µmn) .

If Π is Λ+, Π`
+ or Π`

2 for some ` ≥ 0 then µ̂(Π) is a bounded interval
that includes the risk-free rates and that can depend upon those rates.
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Efficient Frontier (The Function σf(µ))
Recall that the frontier of Σ(Π) in the σµ-plane is given by σ = σf(µ),
where σf(µ) is defined for every µ ∈ µ̂(Π) by

σf(µ) = min
{
σ̂ : all allocations in Π with µ̂ = µ

}
. (2.8)

The efficient frontier is simply the restriction of σf(µ) to efficient profolios.
We have analytic expressions for it when Π is M, M+ or M2.

When Π =M then the efficient Markowitz frontier is

σ = σmf(µ) =
√
σ 2

mv + (µ− µmv)2

ν 2
mv

for µ ∈ [µmv,∞) . (2.9)

When Π =M+ then the efficient Tobin frontier is

σ = σtf(µ) = µ− µrf
νrf

for µ ∈ [µrf ,∞) . (2.10)
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Efficient Frontier (Case M2)

When Π =M2 and µmv ≤ µsi < µcl then the efficient frontier is

σ = σf(µ) = µ−µsi
νsi

for µ ∈ [µsi,∞) . (2.11a)

When Π =M2 and µsi < µmv ≤ µcl then the efficient frontier is

σ = σf(µ) =

σmf(µ) for µ ∈ [µst,∞) ,
µ−µsi
νsi

for µ ∈ [µsi, µst) .
(2.11b)

When Π =M2 and µsi < µcl < µmv then the efficient frontier is

σ = σf(µ) =


µ−µcl
νcl

for µ ∈ [µct,∞) ,
σmf(µ) for µ ∈ [µst, µct) ,
µ−µsi
νsi

for µ ∈ [µsi, µst) .
(2.11c)
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Efficient Frontier (General Case)

In general the function σf(µ) has been approximated numerically at select
points in µ̂(Π) and is interpolated at other points in µ̂(Π).

If risk-free assets are excluded then Π ⊂M and the efficient frontier
restricts σf(µ) to the interval µ̂(Π) ∩ [µf

mv,∞), where µf
mv is the

minimizer of σf(µ).
If risk-free assets are included with the one-rate model then Π ⊂M+
and the efficient frontier restricts σf(µ) to the interval µ̂(Π)∩ [µrf ,∞).

If Π = Λ+ and µrf < µmx then the interval is [µrf , µmx].
If Π = Π`

+ and µmn < µrf < µmx then the interval is [µrf , µ
`
mx].

If risk-free assets are included with the two-rate model then Π ⊂M2
and the efficient frontier restricts σf(µ) to the interval µ̂(Π)∩ [µsi,∞).

If Π = Π`
2 and µmn < µcl and µsi < µmx then the interval is [µsi, µ

`
mx].

Below we prove that σf(µ) is always convex over µ̂(Π). More cannot be
expected because the Tobin frontier is not strictly convex.
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Efficient Frontier (Convexity of σf(µ))
Fact 3. The function σf(µ) is convex over µ̂(Π).
Remark. We give the proof for Π ⊂M+. The rest is left as an exercise.
Proof. Let µ0 and µ1 ∈ µ̂(Π) with µ0 < µ1. Let f0 ∈ Π with µ̂(f0) = µ0
and f1 ∈ Π with µ̂(f1) = µ1 be arbitrary. Fix t ∈ [0, 1] and set

µt = (1− t)µ0 + t µ1 , ft = (1− t) f0 + t f1 .

Because Π is convex and µ̂(f) is affine, we know ft ∈ Π and µ̂(ft) = µt .
Then definition (2.8) of σf(µ) and the convexity of σ̂(f) show

σf(µt) ≤ σ̂(ft) ≤ (1− t) σ̂(f0) + t σ̂(f1) .

Minimizing the right-hand side over the arbitrary f0 and f1, we obtain

σf(µt) ≤ (1− t)σf(µ0) + t σf(µ1) .

But t ∈ [0, 1] was arbitrary. Therefore Fact 3 is proved.
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Efficient Frontier (Maximizers are Frontier
Our first result abour maximizers says that they are frontier portfolios.
Fact 4. Let G(σ, µ) be a function over a convex set ΣG in the σµ-plane
such that

• G(σ, µ) is a decreasing function of σ over ΣG . (2.12)

Let Π be a convex set of allocations such that Σ(Π) satisfies

Σ(Π) ⊂ ΣG . (2.13)

Any maximizer of Γ̂ = G(σ̂, µ̂) over Π must be a frontier portfolio of Π.
Proof. Any allocation that is not a frontier portfolio of Π must satisfy
σf(µ̂) < σ̂. The monotonicity condition (2.12) then implies that

G(σf(µ̂) , µ̂) > G(σ̂ , µ̂) ,

whereby Γ̂ is larger for the frontier portfolio associated with (σf(µ̂) , µ̂).
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Efficient Frontier (Efficiency Monotonicity)
In our next result we replace the σ monotonicity condition (2.12) with a
stronger condition. Given any two points (σ0, µ0) and (σ1, µ1) in the
σµ-plane, we say that (σ1, µ1) is more efficient than (σ0, µ0), denoted
(σ1, µ1) � (σ0, µ0), when

σ1 ≤ σ0 , µ1 ≥ µ0 , (σ1, µ1) 6= (σ0, µ0) . (2.14)

Of course, this notion coincides with that of Markowitz efficiency when the
points represent the volatilities and return means of portfolios.
Definiton 1. We say that G(σ, µ) increases with efficiency over a subset
Σ of the σµ-plane when for every (σ0, µ0), (σ1, µ1) ∈ Σ we have

(σ1, µ1) � (σ0, µ0) =⇒ G(σ1, µ1) > G(σ0, µ0) . (2.15)

Remark. Because (σ1, µ) � (σ0, µ) if and only if σ1 < σ0, we see that if
(2.15) holds over Σ them G(σ, µ) is a decreasing function of σ over Σ.
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Efficient Frontier (Maximizers are Efficient)

We now replace the σ monotonicity condition (2.12) in Fact 4 with an
efficiency monotonicity condition as defined by (2.15). This will allow us
to conclude that maximizers are efficient.
Fact 5. Let G(σ, µ) be a function over a convex set ΣG in the σµ-plane
such that

• G(σ, µ) increases with efficiency over ΣG . (2.16)

Let Π be a convex set of allocations such that Σ(Π) satisfies

Σ(Π) ⊂ ΣG . (2.17)

Any maximizer of Γ̂ = G(σ̂, µ̂) over Π must be an efficient frontier
portfolio of Π.

C. David Levermore (UMD) Optimization of Mean-Variance Objectives April 24, 2022



Mean-Variance Objectives Eff. Frontier Level Sets Applications

Maximization Problem (Fact 5 Proof)

Proof of Fact 5. Let Γ̂mx be the maximum of Γ̂ = G(σ̂, µ̂) over Π.
Then Fact 4 says that any maximizer over Π is a frontier portfolio.
Let (σ̂0, µ̂0) ∈ Σ(Π) be the values of σ̂ and µ̂ at such a maximizer.
If the maximizer is not efficient in Π then there exists another allocation in
Π at which σ̂ and µ̂ have values (σ̂1, µ̂1) ∈ Σ(Π) such that

(σ̂1, µ̂1) � (σ̂0, µ̂0) .

Because Σ(Π) ⊂ ΣG by (2.17), we see from the efficiency monotonicity
(2.16) that

G(σ̂1, µ̂1) > G(σ̂0, µ̂0) = Γ̂mx .

This contradicts the fact that Γ̂mx is the maximum of Γ̂ over Π. Therefore
the maximizer must be efficient. This proves Fact 5.
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Level Sets and Convexity (Concavity of G)

The uniqueness of the maximizer will require two additional hypotheses.
The first hypothesis is that G(σ, µ) is concave over the convex set ΣG .
This means that for every (σ0, µ0), (σ1, µ1) ∈ ΣG and every t ∈ [0, 1] we
have

G
(

(1− t)σ0 + t σ1 , (1− t)µ0 + t µ1
)

≥ (1− t) G(σ0, µ0) + t G(σ1, µ1) .
This insures that for every Γ ∈ R

the set
{

(σ, µ) ∈ ΣG : G(σ, µ) ≥ Γ
}

is convex . (3.18)

This set in nonempty if and only if Γ is in the range of G over ΣG .
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Level Sets and Convexity (Level Sets)

The boundary of the set (3.18) is the level set{
(σ, µ) ∈ ΣG : G(σ, µ) = Γ

}
. (3.19)

If G(σ, µ) is twice continuously differentiable over ΣG and its gradient
never vanishes over ΣG then the Implicit Function Theorem says that
every level set is the union twice continuously differentiable curves in ΣG .
Definition 2. We say that these level set curves are curved if they have
nonzero curvature at every point.
The second hypothesis is that the level set curves are curved. Below we
derive conditions that imply this hypothesis. We will assume G(σ, µ) is
twice continuously differentiable and denote its partial derivatives with
subscripts.
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Level Sets and Convexity (Curved Level Sets)
If Gµ(σ, µ) > 0 over ΣG then the level curve associated with Γ can be
parameterized by σ. Let µ = µΓ(σ) be the unique solution of

G(σ, µ) = Γ . (3.20)
By taking the derivative of (3.20) with respect to σ we find

Gσ(σ, µ) + Gµ(σ, µ) ∂µ
∂σ

= 0 .

Because Gµ(σ, µ) > 0, this can be solved to obtain
∂µ

∂σ
= −Gσ(σ, µ)

Gµ(σ, µ) . (3.21a)

By taking the second derivative of (3.20) with respect to σ we find
∂2µ

∂σ2 = − 1
G 3
µ

(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
. (3.21b)
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Level Sets and Convexity (Curved Level Sets)
Alternatively, if Gσ(σ, µ) < 0 over ΣG then the level curve associated with
Γ can be parameterized by µ. Let σ = σΓ(µ) be the unique solution of
(3.20). By taking the derivative of (3.20) with respect to µ we find

Gσ(σ, µ) ∂σ
∂µ

+ Gµ(σ, µ) = 0 .

Because Gσ(σ, µ) < 0, this can be solved to obtain

∂σ

∂µ
= −Gµ(σ, µ)

Gσ(σ, µ) . (3.22a)

By taking the second derivative of with respect to µ we find

∂2σ

∂µ2 = − 1
G 3
σ

(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
. (3.22b)
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Level Sets and Convexity (Curved Level Sets)
The hypothesis that these level set curves are curved is satisfied when
either

∂2µΓ

∂σ2 > 0 or ∂2σΓ

∂µ2 < 0 . (3.23a)

It is clear from (3.21b) and (3.22b) that this

(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
< 0 over ΣG . (3.23b)

The hypothesis that G(σ, µ) is concave over ΣG and the hypothesis that
these level set curves are curved are both satisfied when(

Gσσ Gσµ
Gµσ Gµµ

)
is negative definite over ΣG . (3.24)
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Level Sets and Convexity (Uniqueness)

Our main result says the maximizer is also unique.
Fact 6. Let G(σ, µ) be a function over a convex set ΣG in the σµ-plane
such that

• G(σ, µ) is a decreasing function of σ over ΣG , (3.25a)
• G(σ, µ) is concave over ΣG , (3.25b)
• G(σ, µ) has curved level sets in ΣG . (3.25c)

Let Π be a convex set of allocations such that Σ(Π) satisfies

Σ(Π) ⊂ ΣG . (3.26)

Any maximizer of Γ̂ = G(σ̂, µ̂) over Π must be an efficient frontier
portfolio of Π and is unique.
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Maximization Problem (Fact 6 Proof)

Proof of Fact 6. Suppose that the maximum of Γ̂ over Π is Γ̂mx and that
there are two maximizers. At these maximizers let σ̂ and µ̂ have values

(σ̂0 , µ̂0) , (σ̂1 , µ̂1) . (3.27)

By Fact 4 these maximizers must be frontier portfolios. Because there is a
unique frontier portfolio for each µ ∈ µ̂(Π), we see that µ̂0 6= µ̂1.
Therefore the points in Σ(Π) given by (3.27) are distinct.
For every t ∈ (0, 1) let (σ̂t , µ̂t) be the values σ̂ and µ̂ for the convex
combination of these allocations. Because Π is convex and satisfies (3.26),
we know that (σ̂t , µ̂t) ∈ ΣG . Because σ̂ is convex over Π by Fact 1, while
µ̂ is affine over Π, we have

σ̂t ≤ (1− t) σ̂0 + t σ̂1 , µ̂t = (1− t) µ̂0 + t µ̂1 . (3.28)
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Maximization Problem (Fact 6 Proof)

The σ monotonicity (3.25a) and (3.28) followed by the combination of
the fact the points in Σ(Π) given by (3.27) are distinct,
the fact Σ(Π) ⊂ ΣG by (3.26),
the concavity (3.25b) of G(σ, µ) over ΣG ,

then yield

Γ̂mx ≥ G(σ̂t , µ̂t) ≥ G
(

(1− t) σ̂0 + t σ̂1 , (1− t) µ̂0 + t µ̂1
)

≥ (1− t) G(σ̂0, µ̂0) + t G(σ̂1, µ̂1) = Γ̂mx .

But this says the line segment connecting the points in ΣG given by (3.27)
is a level set, which contradicts (3.25c). Therefore there cannot be two
maximizers. This proves Fact 6.

C. David Levermore (UMD) Optimization of Mean-Variance Objectives April 24, 2022



Mean-Variance Objectives Eff. Frontier Level Sets Applications

Applications (Introduction)

In order to apply either Fact 4, Fact 5 or Fact 6 to a mean-variance
objective Γ̂ in the form

Γ̂ = G(σ̂, µ̂) , (4.29)

we must
1 identify a convex subset ΣG over which G(σ, µ) satisfies the

hypotheses in each fact,
2 identify convex sets of allocations Π that satisfy Σ(Π) ⊂ ΣG .

Here we will try to do this for the mean-variance estimators derived earlier.
We will see that this program can be completed for most of those
estimators, but not all. The ones where it fails to complete breakdowwn at
the first step. Later we will learn from these cases how the troublesome
hypotheses can be weakened without weakening the conclusions.
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Applications (Hypotheses)

The hypotheses on the convex set ΣG that appear in either Fact 4, Fact
5 or Fact 6 are

• G(σ, µ) is a decreasing function of σ over ΣG , (4.30a)
• G(σ, µ) increases with efficiency over ΣG , (4.30b)
• G(σ, µ) is concave over ΣG , (4.30c)
• G(σ, µ) has curved level sets in ΣG . (4.30d)

The G(σ, µ) for the mean-variance objectives derived earlier are all smooth
over their natural domains, so the above hypotheses can be verified by
taking partial derivatves.
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Applications (Partial Derivative Tests)
For example:

hypothesis (4.30a) holds over sets where Gσ < 0;
hypothesis (4.30b) holds over sets where Gσ < 0 and Gµ > 0;
hypothesis (4.30c) holds over sets where

the Hessian
(

Gσσ Gσµ
Gµσ Gµµ

)
is nonpositive definite ; (4.31a)

hypothesis (4.30d) holds over sets where the Hessian satisfies

(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
< 0 ; (4.31b)

hypotheses (4.30c) and (4.30d) both hold over sets where the Hessian
is negative definite.
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Applications (Some Examples)
If Γ̂ is Γ̂χp , Γ̂χq , Γ̂χr , Γ̂χs , Γ̂χt , or Γ̂χu for some χ ≥ 0 then

Gχ
p (σ, µ) = µ− 1

2σ
2 − χσ , (4.32a)

Gχ
q (σ, µ) = µ− 1

2µ
2 − 1

2σ
2 − χσ , (4.32b)

Gχ
r (σ, µ) = log(1 + µ)− 1

2 σ
2 − χσ , (4.32c)

Gχ
s (σ, µ) = log(1 + µ)− 1

2
σ2

1 + µ
− χσ , (4.32d)

Gχ
t (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χσ , (4.32e)

Gχ
u (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χ
σ

1 + µ
. (4.32f)

C. David Levermore (UMD) Optimization of Mean-Variance Objectives April 24, 2022



Mean-Variance Objectives Eff. Frontier Level Sets Applications

Applications (Natural Domains)
These are the parabolic, quadratic, reasonable, sensible, Taylor, and
ultimate estimators respectively. Their respective natural domains are

Σp =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
, (4.33a)

Σq =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
, (4.33b)

Σr =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
, (4.33c)

Σs =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
, (4.33d)

Σt =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
, (4.33e)

Σu =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
. (4.33f)

These natural domains are convex subsets of R2 that satisfy
Σp = Σq ⊃ Σr = Σs = Σt = Σu .

Our first goal is to identify subsets of these domains that can play the role
of ΣG in the hypotheses (4.30).
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Applications (Parabolic)

For the parabolic estimator we see from (4.32a) that

G(σ, µ) = µ− 1
2 σ

2 − χσ ,

and from (4.33a) that

Σp =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
.

Taking partial derivatives we find that

Gσ = −σ − χ , Gµ = 1 ,(
Gσσ Gσµ
Gµσ Gµµ

)
=
(
−1 0
0 0

)
.

(4.34)
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Applications (Parabolic)

We see from (4.34) that for every χ ≥ 0
G(σ, µ) increases with efficiency over Σp;
G(σ, µ) is convex over Σp, but it is not strictly convex over any
subset of Σp;
G(σ, µ) has curved level sets in ΣG because

(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)

=
(

1 σ + χ
)(−1 0

0 0

)(
1

σ + χ

)
= −1 < 0 .

Therefore we can apply either Fact 4, Fact 5 or Fact 6 with ΣG = Σp.
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Applications (Quadratic)

For the quadratic estimator we see from (4.32b) that

G(σ, µ) = µ− 1
2 µ

2 − 1
2 σ

2 − χσ ,

and from (4.33b) that

Σq =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
.

Taking partial derivatives we find that

Gσ = −σ − χ , Gµ = 1− µ ,(
Gσσ Gσµ
Gµσ Gµµ

)
=
(
−1 0
0 −1

)
.

(4.35)
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Applications (Quadratic)

We see from (4.35) that for every χ ≥ 0
G(σ, µ) is a decreasing function of σ over Σq,
G(σ, µ) increases with efficiency over the subset of Σq where µ ≤ 1,
G(σ, µ) is strictly convex over Σq.

Therefore we can apply either Fact 4 or Fact 6 with ΣG = Σq, and can
apply Fact 5 with

ΣG =
{

(σ, µ) ∈ Σq : µ ≤ 1
}
.

This suggests that when Π ⊂M+ it should satisfy Π ⊂ Ωq, where

Ωr =
{

f ∈M+ : µ̂(f) ≤ 1
}
,
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Applications (Reasonable)

For the reasonable estimator we see from (4.32c) that

G(σ, µ) = log(1 + µ)− 1
2 σ

2 − χσ ,

and from (4.33c) that

Σr =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
.

Taking partial derivatives we find that

Gσ = −σ − χ , Gµ = 1
1+µ ,(

Gσσ Gσµ
Gµσ Gµµ

)
=
(
−1 0
0 − 1

(1+µ)2

)
.

(4.36)
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Applications (Reasonable)

We see from (4.36) that for every χ ≥ 0
G(σ, µ) increases with efficiency over Σr,
G(σ, µ) is strictly convex over Σr.

Therefore we can apply either Fact 4, Fact 5 or Fact 6 with ΣG = Σr.
This suggests that when Π ⊂M+ it should satisfy Π ⊂ Ωr, where

Ωr =
{

f ∈M+ : 1 + µ̂(f) > 0
}
,

and when Π ⊂M2 it should satisfy Π ⊂ Ωr, where

Ωr =
{

(f, f si, f cl) ∈M2 : 1 + µ̂(f, f si, f cl) > 0
}
.
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Applications (Sensible)
For the sensible estimator we see from (4.32d) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

1 + µ
− χσ ,

and from (4.33d) that

Σs =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
.

Taking partial derivatives we find that

Gσ = − σ
1+µ − χ , Gµ = 1

1+µ + 1
2

σ2

(1+µ)2 ,(
Gσσ Gσµ
Gµσ Gµµ

)
=
(
− 1

1+µ
σ

(1+µ)2

σ
(1+µ)2 − 1

(1+µ)2 − σ2

(1+µ)3

)
.

(4.37)
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Applications (Sensible)

We see from (4.37) that

det
(

Gσσ Gσµ
Gµσ Gµµ

)
= 1

(1 + µ)3

and that for every χ ≥ 0
G(σ, µ) increases with efficiency over Σs,
G(σ, µ) is strictly convex over Σs.

Therefore we can apply either Fact 4, Fact 5 or Fact 6 with ΣG = Σs.
This suggests that when Π ⊂M+ it should satisfy Π ⊂ Ωs, where

Ωs =
{

f ∈M+ : 1 + µ̂(f) > 0
}
.
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Applications (Taylor)
For the Taylor estimator we see from (4.32e) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 − χσ ,

and from (4.33e) that

Σt =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
.

Taking partial derivatives we find that

Gσ = − σ
(1+µ)2 − χ , Gµ = 1

1+µ + σ2

(1+µ)3 ,(
Gσσ Gσµ
Gµσ Gµµ

)
=
(
− 1

(1+µ)2
2σ

(1+µ)3

2σ
(1+µ)3 − 1

(1+µ)2 − 3σ2

(1+µ)4

)
.

(4.38)
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Applications (Taylor)
We see from (4.38) that

det
(

Gσσ Gσµ
Gµσ Gµµ

)
= 1

(1 + µ)4

(
1− σ2

(1 + µ)2

)
,

and that for every χ ≥ 0
G(σ, µ) increases with efficiency over Σt,
G(σ, µ) is strictly convex over the subset of Σt where 1 + µ > σ.

Therefore we can apply either Fact 4 or Fact 5 with ΣG = Σt, and can
apply Fact 6 with

ΣG =
{

(σ, µ) ∈ Σt : 1 + µ > σ
}
.

This suggests that when Π ⊂M+ it should satisfy Π ⊂ Ωt, where

Ωt =
{

f ∈M+ : 1 + µ̂(f) > σ̂(f)
}
.
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Applications (Taylor)

When 1 + µ = σ the partial derivatives (4.38) become

Gσ = − 1
1 + µ

− χ , Gµ = 2
1 + µ

,(
Gσσ Gσµ
Gµσ Gµµ

)
= − 1

(1 + µ)2

(
1 −2
−2 4

)
,

whereby

(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
= − 4χ2

(1 + µ)2 .

So the curved level set hypothesis holds for χ > 0, but not for χ = 0.
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Applications (Ultimate)
For the ultimate estimator we see from (4.32f) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 − χ
σ

1 + µ
,

and from (4.33f) that

Σu =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
.

Taking partial derivatives we find that

Gσ = − σ
(1+µ)2 − χ

1+µ , Gµ = 1
1+µ + σ2

(1+µ)3 + χσ
(1+µ)2 ,(

Gσσ Gσµ
Gµσ Gµµ

)
=
(

− 1
(1+µ)2

2σ
(1+µ)3 + χ

(1+µ)2

2σ
(1+µ)3 + χ

(1+µ)2 − 1
(1+µ)2 − 3σ2

(1+µ)4 − 2χσ
(1+µ)3

)
.

(4.39)
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Applications (Ultimate)
We see from (4.39) that

det
(

Gσσ Gσµ
Gµσ Gµµ

)
= 1

(1 + µ)4

(
1−

(
σ

1 + µ
+ χ

)2
)
,

and that for every χ ∈ [0, 1)
G(σ, µ) increases with efficiency over Σu,
G(σ, µ) is strictly convex over the subset of Σu where 1 + µ > σ

1−χ .
Therefore we can apply either Fact 4 or Fact 5 with ΣG = Σu, and can
apply Fact 6 with

ΣG =
{

(σ, µ) ∈ Σu : (1− χ) (1 + µ) > σ
}
.

This suggests that when Π ⊂M+ it should satisfy Π ⊂ Ωχ
u , where

Ωχ
t =

{
f ∈M+ : (1− χ)

(
1 + µ̂(f)

)
> σ̂(f)

}
.
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Applications (Ultimate)

When (1− χ)(1 + µ) = σ the partial derivatives (4.39) become

Gσ = − 1
1 + µ

, Gµ = 2− χ
1 + µ

,(
Gσσ Gσµ
Gµσ Gµµ

)
= − 1

(1 + µ)2

(
1 −(2− χ)

−(2− χ) (2− χ)2

)
,

whereby (
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
= 0 .

So the curved level set hypothesis does not hold for any χ ∈ [0, 1).
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