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Intro Estimators Properties

Introduction (Means and Volatilities)
Consider portfolios built from N risky assets and possibly some risk-free
assets. Given a return history {r(d)}Dd=1 of the risky assets and positive
weights {wd}Dd=1 that sum to 1, define the return sample mean m and
sample variance V by

m =
D∑

d=1
wd r(d) , V =

D∑
d=1

wd
(
r(d)−m

) (
r(d)−m

)T
. (1.1)

A Markowitz portfolio with a risk-free return rrf and a risky asset
allocation f has the return mean and volatility estimators

µ̂ = rrf + mTf , σ̂ =
√

fTV f . (1.2)

Remark. The formulas for m and µ̂ are unbiased IID estimators, while
those for V and σ̂ are biased IID estimators. These biased estimators are
what arise naturally in what follows.
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Intro Estimators Properties

Introduction (Solvency)

A Markowitz portfolio with a risk-free return rrf and a risky asset
allocation f is said to be solvent if

1 + rrf + r(d)Tf > 0 ∀d . (1.3a)

Recall that rrf is given in terms of the allocations of any risk-free assets by

rrf =


0 when f ∈M ,

µrf f rf when (f, f rf) ∈M1 ,

µsif si + µclf cl when (f, f si, f cl) ∈M2 .

(1.3b)
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Intro Estimators Properties

Introduction (Cautious Objectives)

For every solvent Markowitz portfolio a cautious objective has the form

Γ̂χ = γ̂ − χ
√
θ̂ , (1.4a)

where χ ≥ 0 is the caution coefficient, γ̂ is the growth rate estimator

γ̂ =
D∑

d=1
wd log

(
1 + rrf + r(d)Tf

)
. (1.4b)

and θ̂ is the growth rate variance estimator

θ̂ =
D∑

d=1
wd

(
log
(

1 + rrf + r(d)Tf
)
− γ̂

)2
. (1.4c)
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Intro Estimators Properties

Introduction (Strategy)

The cautious objective strategy is to maximize Γ̂χ over a convex subset Π
of all solvent Markowitz allocations. This maximizer can be found
numerically by convex optimization methods that are typically covered in
graduate courses.
Rather than seek the maximizer of Γ̂χ over Π, our strategy will be to
replace the estimator Γ̂χ with a new estimator for which finding the
maximizer is easier. The hope is that the maximizer of Γ̂χ and that of the
new estimator will be close.
This strategy rests upon the fact that Γ̂χ is itself an approximation. The
uncertainties associated with it will translate into uncertainities about its
maximizer. The hope is that the difference between the maximizer of Γ̂χ

and that of the new estimator will be within these uncertainties.
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Intro Estimators Properties

Introduction (Mean-Variance Estimators)

We will derive some mean-variance estimators for Γχ in the form

Γ̂χ = G(σ̂, µ̂) , (1.5a)

where σ̂ and µ̂ are given by (1.2) and G(σ, µ) is a function that is defined
over a convex subset Σ of the σµ-plane over which

• G(σ, µ) is a strictly decreasing function of σ,
• G(σ, µ) is a strictly increasing function of µ,
• G(σ, µ) is a concave function of (σ, µ).

(1.5b)

The monotonicity properties insure that Γ̂χ is larger for more efficient
portfolios, which implies that its maximizer over Π, if it exists, will lie on
the efficient frontier of Π.
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Intro Estimators Properties

Mean-Variance Estimators (Introduction)
The portfolio with risk-free return rrf and risky asset allocation f has the
return history {r(d)}Dd=1 with

r(d) = µ̂(f) + r̃(d)Tf ,

where r̃(d) = r(d)−m. In words, r̃(d) is the deviation of r(d) from its
sample mean m. Then we can write

log(1 + r(d)) = log(1 + µ̂) + r̃(d)Tf
1 + µ̂

−
(

r̃(d)Tf
1 + µ̂

− log
(

1 + r̃(d)Tf
1 + µ̂

))
.

(2.6)

Notice that the last term on the first line has sample mean zero while the
concavity of the function r 7→ log(1 + r) implies that r − log(1 + r) ≥ 0,
which implies that the term on the second line is nonpositive.
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Intro Estimators Properties

Mean-Variance Estimators (γ Estimators)
When we studied Kelly objectives this expression was used to derive
estimators of γ̂. Here it will be used to derive estimators of θ̂.
More specifically, earlier we used the second-order Taylor approximation
log(1 + z) ≈ z − 1

2z2 in the last term of (2.6) to obtain

log(1 + r(d)) ≈ log
(
1 + µ̂(f)

)
+ r̃(d)Tf

1 + µ̂(f) −
1
2

(
r̃(d)Tf

1 + µ̂(f)

)2

.

This led to the Taylor estimator

γ̂t(f) = log
(
1 + µ̂(f)

)
− 1

2
fTVf

(1 + µ̂(f))2 .

This estimator was not well-behaved, so from it we derived the sensible,
reasonable, quadratic, and parabolic estimators, γ̂s, γ̂r, γ̂q, and γ̂p, all of
which behave better.
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Intro Estimators Properties

Mean-Variance Estimators (θ Estimators)
Here we use the first-order Taylor approximation log(1 + z) ≈ z in the last
term of (2.6), which makes it vanish, to obtain

log(1 + r(d)) ≈ log(1 + µ̂) + r̃(d)Tf
1 + µ̂

. (2.7)

When this is placed into definition (1.4c) of θ̂ we obtain

θ̂ =
D∑

d=1
wd
(

log(1 + r(d))− γ̂
)2
≈ fTVf

(1 + µ̂)2 ,

which leads to the Taylor variance estimator

θ̂t = fTVf
(1 + µ̂)2 = σ̂2

(1 + µ̂)2 . (2.8)

Like the Taylor estimator γ̂t, this is not well-behaved.
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Intro Estimators Properties

Mean-Variance Estimators (Parabolic)
The simplest thing to do is drop the µ̂ term in the denominator of θ̂t,
which leads to the quadratic variance estimator

θ̂q = fTVf = σ̂2 . (2.9)

When the quadratic variance estimator θ̂q given by (2.9) is combined with
the parabolic estimator γ̂p to estimate the cautious objective Γ̂χ given by
(1.4a), then we obtain the parabolic estimator

Γ̂χ
p = µ̂− 1

2 σ̂
2 − χ σ̂ . (2.10a)

This has the mean-variance form (1.5a) with
Gχ

p (σ, µ) = µ− 1
2 σ

2 − χσ , (2.10b)
which for every χ ≥ 0 has all the properties (1.5b) over the set

Σp =
{

(σ, µ) : σ ≥ 0
}
. (2.10c)
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Intro Estimators Properties

Mean-Variance Estimators (Quadratic)

When the quadratic variance estimator θ̂q given by (2.9) is combined with
the quadratic estimator γ̂q to estimate the cautious objective Γ̂χ given by
(1.4a), then we obtain the quadratic estimator

Γ̂χ
q = µ̂− 1

2 µ̂
2 − 1

2 σ̂
2 − χ σ̂ . (2.11a)

This has the mean-variance form (1.5a) with

Gχ
q (σ, µ) = µ− 1

2 µ
2 − 1

2 σ
2 − χσ , (2.11b)

which for every χ ≥ 0 has all the properties (1.5b) over the set

Σq =
{

(σ, µ) : σ ≥ 0 , µ ≤ 1
}
. (2.11c)
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Intro Estimators Properties

Mean-Variance Estimators (Reasonable)

When the quadratic variance estimator θ̂q given by (2.9) is combined with
the reasonable estimator γ̂r to estimate the cautious objective Γ̂χ given by
(1.4a), then we obtain the reasonable estimator

Γ̂χ
r = log(1 + µ̂)− 1

2 σ̂
2 − χ σ̂ . (2.12a)

This has the mean-variance form (1.5a) with

Gχ
r (σ, µ) = log(1 + µ)− 1

2 σ
2 − χσ , (2.12b)

which for every χ ≥ 0 has all the properties (1.5b) over the set

Σr =
{

(σ, µ) : σ ≥ 0 , 1 + µ > 0
}
. (2.12c)
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Intro Estimators Properties

Mean-Variance Estimators (Sensible)
When the quadratic variance estimator θ̂q given by (2.9) is combined with
the sensible estimator γ̂s to estimate the cautious objective Γ̂χ given by
(1.4a), then we obtain the sensible estimator

Γ̂χ
s = log(1 + µ̂)− 1

2
σ̂2

1 + µ̂
− χ σ̂ . (2.13a)

This has the mean-variance form (1.5a) with

Gχ
s (σ, µ) = log(1 + µ)− 1

2
σ2

1 + µ
− χσ , (2.13b)

which for every χ ≥ 0 has all the properties (1.5b) over the set

Σs =
{

(σ, µ) : σ ≥ 0 , 1 + µ > 0
}
. (2.13c)
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Intro Estimators Properties

Mean-Variance Estimators (Taylor)
When the quadratic variance estimator θ̂q given by (2.9) is combined with
the Taylor estimator γ̂t to estimate the cautious objective Γ̂χ given by
(1.4a), then we obtain the Taylor estimator

Γ̂χ
t = log(1 + µ̂)− 1

2
σ̂2

(1 + µ̂)2 − χ σ̂ . (2.14a)

This has the mean-variance form (1.5a) with

Gχ
t (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χσ , (2.14b)

which for every χ ≥ 0 has all the properties (1.5b) over the set

Σt =
{

(σ, µ) : 1 + µ ≥ σ ≥ 0 , 1 + µ > 0
}
. (2.14c)
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Intro Estimators Properties

Mean-Variance Estimators (Ultimate)
Finally, when the Taylor variance estimator θ̂t given by (2.8) is combined
with the Taylor estimator γ̂t to estimate the cautious objective Γ̂χ given by
(1.4a), then we obtain the ultimate estimator

Γ̂χ
u = log(1 + µ̂)− 1

2
σ̂2

(1 + µ̂)2 − χ
σ̂

1 + µ̂
. (2.15a)

This has the mean-variance form (1.5a) with

Gχ
u (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χ
σ

1 + µ
, (2.15b)

which for every χ ∈ [0, 1) has all the properties (1.5b) over the set

Σχ
u =

{
(σ, µ) : 1 + µ ≥ σ

1− χ ≥ 0 , 1 + µ > 0
}
. (2.15c)

Remark. Here “ultimate” means “last” rather than “best”!
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Intro Estimators Properties

Properties of the Estimators (Introduction)
The mean-variance estimators that we have derived all have the form

Γ̂χ = G(σ̂, µ̂) , (3.16)

where σ̂ and µ̂ are given by (1.2). Here we show that each G(σ, µ) is a
function that is defined over a convex subset Σ of the σµ-plane over which

• G(σ, µ) is a strictly decreasing function of σ,
• G(σ, µ) is a strictly increasing function of µ,
• G(σ, µ) is a concave function of (σ, µ).

(3.17)

Specifically, we verify these properties for

Γ̂χ
p , Γ̂χ

q , Γ̂χ
r , Γ̂χ

s , Γ̂χ
t , Γ̂χ

u ,

that are the parabolic, quadratic, reasonable, sensible, Taylor and ultimate
estimators given by (2.10a), (2.11a), (2.12a), (2.13a), (2.14a) and (2.15a)
respectively.
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Intro Estimators Properties

Properties of the Estimators (Functions G(σ, µ))
If Γ̂ is Γ̂χ

p , Γ̂χ
q , Γ̂χ

r , Γ̂χ
s , Γ̂χ

t , or Γ̂χ
u for some χ ≥ 0 then

Gχ
p (σ, µ) = µ− 1

2σ
2 − χσ , (3.18a)

Gχ
q (σ, µ) = µ− 1

2µ
2 − 1

2σ
2 − χσ , (3.18b)

Gχ
r (σ, µ) = log(1 + µ)− 1

2 σ
2 − χσ , (3.18c)

Gχ
s (σ, µ) = log(1 + µ)− 1

2
σ2

1 + µ
− χσ , (3.18d)

Gχ
t (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χσ , (3.18e)

Gχ
u (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χ
σ

1 + µ
if χ ∈ [0, 1) . (3.18f)
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Intro Estimators Properties

Properties of the Estimators (Sets Σ)
These are the parabolic, quadratic, reasonable, sensible, Taylor, and
ultimate estimators respectively. They are considered over the sets

Σp =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
, (3.19a)

Σq =
{

(σ, µ) ∈ Σp : µ ≤ 1
}
, (3.19b)

Σr =
{

(σ, µ) ∈ Σp : 1 + µ > 0
}
, (3.19c)

Σs =
{

(σ, µ) ∈ Σp : 1 + µ > 0
}
, (3.19d)

Σt =
{

(σ, µ) ∈ Σr : 1 + µ ≥ σ
}
, (3.19e)

Σχ
u =

{
(σ, µ) ∈ Σr : 1 + µ ≥ σ

1−χ

}
if χ ∈ [0, 1) . (3.19f)

These are convex subsets of R2 that satisfy Σχ
u ⊂ Σt ⊂ Σs = Σr ⊂ Σp and

Σq ⊂ Σp with Σχ
u = Σt when χ = 0.
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Intro Estimators Properties

Properties of the Estimators (Derivatives)
It is evident that each G(σ, µ) given in (3.18) is infinitely differentiable
over the convex set Σ that is respectively given in (3.19). We will examine
the following properties of G(σ, µ) over Σ:

• G(σ, µ) is a strictly decreasing function of σ over Σ , (3.20a)
• G(σ, µ) is a strictly increasing function of µ over Σ , (3.20b)
• G(σ, µ) is concave over Σ . (3.20c)
• G(σ, µ) is strictly concave over the interior of Σ . (3.20d)

Recall that
property (3.20a) holds when Gσ < 0 over the interior of Σ,
property (3.20b) holds when Gµ > 0 over the interior of Σ,
property (3.20c) holds where the Hessian is nonpositive definite,
property (3.20d) holds where the Hessian is negative definite.
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Intro Estimators Properties

Properties of the Estimators (Parabolic)

We now check properties (3.20) for the parabolic, quadratic, reasonable,
sensible, Taylor, and ultimate estimators.
For the parabolic estimator we see from (3.18a) that

G(σ, µ) = µ− 1
2 σ

2 − χσ ,

whereby
Gσ = −σ − χ , Gµ = 1 ,(

Gσσ Gσµ

Gµσ Gµµ

)
=
(
−1 0
0 0

)
.

Because χ ≥ 0, properties (3.20a-c) hold over the set Σp given by (3.19a).
Here G(σ, µ) is not strictly concave anywhere in Σp, so property (3.20d)
does not hold.
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Intro Estimators Properties

Properties of the Estimators (Quadratic)

For the quadratic estimator we see from (3.18b) that

G(σ, µ) = µ− 1
2 µ

2 − 1
2 σ

2 − χσ ,

whereby
Gσ = −σ − χ , Gµ = 1− µ ,(

Gσσ Gσµ

Gµσ Gµµ

)
=
(
−1 0
0 −1

)
.

Because χ ≥ 0, properties (3.20) hold over the set Σq given by (3.19b).
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Intro Estimators Properties

Properties of the Estimators (Reasonable)

For the reasonable estimator we see from (3.18c) that

G(σ, µ) = log(1 + µ)− 1
2 σ

2 − χσ ,

whereby
Gσ = −σ − χ , Gµ = 1

1 + µ
,(

Gσσ Gσµ

Gµσ Gµµ

)
=

−1 0
0 − 1

(1 + µ)2

 .

Because χ ≥ 0, properties (3.20) hold over the set Σr given by (3.19c).
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Intro Estimators Properties

Properties of the Estimators (Sensible)
For the sensible estimator we see from (3.18d) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

1 + µ
− χσ ,

whereby

Gσ = − σ

1 + µ
− χ , Gµ = 1

1 + µ
+ 1

2
σ2

(1 + µ)2 ,

(
Gσσ Gσµ

Gµσ Gµµ

)
=

−
1

1 + µ

σ

(1 + µ)2

σ

(1 + µ)2 − 1
(1 + µ)2 −

σ2

(1 + µ)3

 ,

det
(

Gσσ Gσµ

Gµσ Gµµ

)
= 1

(1 + µ)3 .

Because χ ≥ 0, properties (3.20) hold over the set Σs given by (3.19d).
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Intro Estimators Properties

Properties of the Estimators (Taylor)
For the Taylor estimator we see from (3.18e) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 − χσ ,

whereby

Gσ = − σ

(1 + µ)2 − χ , Gµ = 1
1 + µ

+ σ2

(1 + µ)3 ,

(
Gσσ Gσµ

Gµσ Gµµ

)
=

−
1

(1 + µ)2
2σ

(1 + µ)3

2σ
(1 + µ)3 − 1

(1 + µ)2 −
3σ2

(1 + µ)4

 .

det
(

Gσσ Gσµ

Gµσ Gµµ

)
= 1

(1 + µ)4

(
1− σ2

(1 + µ)2

)
.

Because χ ≥ 0, properties (3.20) hold over the set Σt given by (3.19e).
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Intro Estimators Properties

Properties of the Estimators (Ultimate)

If χ < 1 then for the ultimate estimator we see from (3.18f) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 −
χσ

1 + µ
,

whereby

Gσ = − σ
(1+µ)2 − χ

1+µ , Gµ = 1
1+µ + σ2

(1+µ)3 + χ σ
(1+µ)2 ,(

Gσσ Gσµ

Gµσ Gµµ

)
=
(

− 1
(1+µ)2

2σ
(1+µ)3 + χ

(1+µ)2

2σ
(1+µ)3 + χ

(1+µ)2 − 1
(1+µ)2 − 3σ2

(1+µ)4 − 2χ σ
(1+µ)3

)
.

det
(

Gσσ Gσµ

Gµσ Gµµ

)
= 1

(1 + µ)4

(
1−

(
σ

(1 + µ) + χ

)2
)
.

Because χ ∈ [0, 1), properties (3.20) hold over the set Σχ
u given by (3.19f).
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