Discovery Thread: Project 2

In this project you will apply the techniques for random graphs model se-
lection and community detection on a specific data set.
The following files are assigned to your team:

e sgb128Nodes*to*_coord.txt : Coordinates of a set of 40 points (cities)
taken from SGB128 dataset; This text file has the following format:

First line: X(1) Y(1) Z(1)
Second line: X(2) Y(2) Z(2)

Last line: X(n) Y(m) Z(n)

Note: all Z coordinates are 0. You can discard them.

e sgh128Nodes*to* _weight.txt : A symmetric matrix of weights defined by
V(i,j) = exp(—6dist(i,j)/maxD), for i # j, where dist(i,j) is the Eu-
clidean distance between city ¢ and city j, and maxD = mazx; ;d(i,j) is
the largest distance in the graph. This text file has the following format:

First line: n

Second line: V(1,1) V(1,2) V(1,3) ... V(1,n)
Third line: V(2,1) V(2,2) V(2,3) ... V(2,n)
Line n+1: V(n,1) V(@,2) V(@®,3) ... V(n,n)

e sgb128Nodes*to* _weight20.txt : a weight matrix W obtained by threshld-
ing V to 20% of its maximum entry. Thus, if V(i,5) > 0.2maxz(V) then
W(i,j) = V(i,j); otherwise W (i,j) = 0. Note: there are abut 40-45%
non-zero entries. This text file has the following format:

First line: nm

Second line: W(1,1) WwW(1,2) w(,3) ... W{,n)
Third line: W(2,1) W(2,2) WwW(2,3) ... W(2,n)
Line n+1: W(n,1) W@m,2) Wm,3) ... W(,n)

e sgb128Nodes*to*_adj20.txt : The adjacency matrix A associated to W:
A(i,j) = 1 iff W(i,j) > 0. Note: the number of edges is equal to the
number of non-zero entries in the upper traingle of W; This text file has
the following format:

First line: nm

Second line: A(1,1) A(1,2) A(Q1,3) ... A(l,n)
Third line: A(2,1) A(2,2) A(2,3) ... A(2,n)
Line n+1: A(n,1) A(,2) A(,3) ... A(n,n)



e sgb128 name.txt: List of names from the SGB128 file. Your cities are
NodeX to NodeY where X and Y are taken from the file: sgh128NodesXtoY _coord.txt.
Note: there are 128 names; your city names are only city X to city Y

On this dataset perform the following three tasks:
I. Random graph model testing: For this task use the full weight matrix V.

1. Order edges according to their weight. For this, create a matrix E of size
n(n—1)/2 x 2 that contains the ordered list of edges so that (E(1,1),E(1,2))
is an edge with the largest weight;

2. Loop over k from 2 to n(n — 1)/2 and for the set of edges E(1: k,1:2):

(a) compute the actual number of 3-cliques ¢3(k) and 4-cliques ¢4(k);

(b) Under the Erdos-Renyi random graph model, estimate the parameter
p. Compute the estimated number of 3-cliques and 4-cliques (under
the Erdos-Renyi model), say FR3(k) and ERA(k);

(¢) Under the SSBM random graph model, estimate the parameters a
and b based on the number of vertices, edges, and 3-cliques, using
the Modified Constrained Moment Matching Algorithm 2. Compute
the estimated number of 3-cliques and 4-cliques (under the SSBM
model), say SSBM3(k) and SSBM4(k);

3. Plot ¢3, ER3 and SSBM3 on the same plot. Estimate the amplitude
C and exponent r from the power law y(k) ~ Ck" by a linear fit in the
log-log plot, after you discard the first, say 10 entries. Call Cs gr, 73, ER
and C3 ssBum, T3,5sBMm the respective parameters.

4. Plot log(¢3), log(ER3) and log(Cs gr) + r3.zrlog(k) on same figure over
the range of k utilized to estimate the exponent.

5. Plot log(q3), log(SSBM3) and log(Cs sspm) + r3.sspmlog(k) on same
figure over the range of k utilized to estimate the exponent.

6. Plot ¢4, FR4 and SSBM4 on the same plot. Estimate the exponent r
from the power law y(k) ~ Ck™ by a linear fit in the log-log plot, after you
discard, say 100 first entries. Call Cy gRr, r4,gr and Cs s5BM, T4,5SBM
the respective parameters.

7. Plot log(q4), log(ER4) and log(Ca,gr) + r4,rlog(k) on same figure over
the range of k utilized to estimate the exponent.

8. Plot log(q4), log(SSBM4) and log(Cy,sspm) + ra,ssBMmlog(k) on same
figure over the range of k utilized to estimate the exponent.

Which of the two random graph model fits better the data? Why do you think
I recommend to discard the first 10 or 100 entries?

IT. Community detection: For this task use the weight matrix W and the
adjacency matrix A.



Implement the six community discovery algorithms (partition algorithms)
and run them on your project data set.
Specifically, implement:

e Spectral methods using: W, A, and A

e SDP relaxation algorithms using: W, A, and A

1. For each of the six algorithms above, determine sets S and S = {1,2,...,n}\
S.

2. Compute the agreement matrix between these partitions: The output
whould be a 6 x 6 matrix Agr so that Agr(k,[) represents the partition
agreement between method k and method [, 1 < k,l < 6, the 6 methods
above.

3. For visualization, for each of the six algorithms, map the two communities
using two colors, say red and blue, using the coordinates (X,Y) from from
the coordinate file assigned to your project. For each algorithm produce
two figures as follows:

(a) Draw edges according to the adjacency matrix A, each edge with
same color and same width;

(b) Draw edges according to the weight matrix W, each edge with same
color and but different width, the larger the weight, the thicker the
edge.

ITI. Data Embedding For this task use the weight matrix W.

Implement the Laplacian Eigenmap and the Local Linear Embeding (LLE)
algorithms using the weight matrix W, and run them on your project data set.

Specifically, implement and run:

1. Laplacian Eigenmap data embedding for target dimension d = 2;
2. LLE dimension reduction after Laplacian Eigenmap data embedding:
(a) First run the Laplacian Eigenmap data embedding algorithm to cre-
ate a geometric graph {z1,...,z,} C RV with N = 10;

(b) Then implement and run the dimension reduction LLE algorithm
with non-negativity constraints on the this geometric graph to reduce
dimension to d = 2; use K = 2d = 4.

Plot both embeddings in two different figures, and then on the same figure
using different colors.



