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Weighted Least Squares Fitting: Introduction

We will work in the univariate setting in which we are given data{
(xj , yj )

}n
j=1 ,

where the xj are distinct points within a bounded domain X ⊂ Rd and
the yj lie in R.
We will consider linear statistical models generated by a basis
{fi (x)}mi=1 where each fi (x) is defined over X and takes values in R.
These models have the form

f (x;β1, · · · , βm) =
m∑

i=1

βi fi (x) ,

where β1, · · · , βm are real parameters.
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Weighted Least Squares Fitting: Fitting Problem

Recall the fitting problem for such models cast in terms of vectors.
Define the m-vector ββ, the n-vector y, and the n×m-matrix F by

ββ =

β1
...
βm

 , y =

y1
...

yn

 , F =

f1(x1) · · · fm(x1)
...

...
...

f1(xn) · · · fm(xn)

 .

We will assume the matrix F has rank m. The fitting problem is that of
finding a value of ββ that minimizes the size of the residual vector

r(ββ) = y− Fββ =

y1 − f (x1;β1, · · · , βm)
...

yn − f (x1;β1, · · · , βm)

 =

r1(ββ)
...

r1(ββ)

 .

But what does “size” mean?
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Weighted Least Squares Fitting: Weights

Euclidean least squares fitting measured the size of r by its Euclidean
norm. The Euclidean norm treats every entry of r the same way. This
is often a natural thing to do. But there are also times when it is natural
to do other things. For example, if the points xj are not uniformly
distributed over the domain X then we might want to give each xj a
positive weight wj proportional to the volume of the subset of X that it
represents. In that case we can choose to minimize

q(ββ) = 1
2

n∑
j=1

wj rj (ββ)2 .

If W is the diagonal matrix whose j th diagonal entry is weight wj then

q(ββ) = 1
2r(ββ)TWr(ββ) = 1

2 (y− Fββ)TW(y− Fββ)

= 1
2yTWy− ββTFTWy + 1

2ββTFTWFββ .
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Weighted Least Squares Fitting: Minimizer

Because q(ββ) is a quadratic function of ββ, we can use multivariable
calculus to minimize it just as was done for the Euclidean case. The
gradient and Hessian of q(ββ) are found to be

∂
ββ

q(ββ) = FTWFββ − FTWy , ∂
ββββ

q(ββ) = FTWF .

Because F has rank m, the matrix FTWF is positive definite. The
function q(ββ) is thereby strictly convex, whereby its minimizer is
unique. It is found by setting the gradient of q(ββ) equal to zero, yielding

∂
ββ

q(ββ) = FTWFββ − FTWy = 0 .

Because FTWF is positive definite, it is invertible, whereby the above
equation can be solved. The minimizer is found to be ββ = β̂̂β where

β̂̂β = (FTWF)−1FTWy .
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Weighted Least Squares Fitting: Uniqueness

The fact that β̂̂β is the unique global minimizer is seen by using the fact
that FTWy = FTWFβ̂̂β to obtain the identity

q(ββ) = 1
2yTWy− ββTFTWy + 1

2ββTFTWFββ

= 1
2yTWy− ββTFTWFββ + 1

2ββTFTWFββ

= 1
2yTWy− 1

2 β̂̂β
T
FTWFβ̂̂β + 1

2 (ββ − β̂̂β)TFTWF(ββ − β̂̂β)

= q(β̂̂β) + 1
2 (ββ − β̂̂β)TFTWF(ββ − β̂̂β) .

Then the fact FTWF is positive definite implies that

q(ββ) ≥ q(β̂̂β) for every ββ ∈ Rm ,

q(ββ) = q(β̂̂β) ⇐⇒ ββ = β̂̂β .

Balan, Hunt, Levermore (UMD) Least Squares Fitting February 2, 2021



Weighted Least Sqrs Uni Poly Models Fitting with Ortho

Weighted Least Squares Fitting: Geometric View

The weighted least squares fit has a geometric interpretation in Rn

equipped with the scalar product associated with the weight matrix W

(p |q)W = pTWq .

Recall that the range of F is given by

Range(F) =
{
Fγγγ : γγγ ∈ Rm} .

Define r̂ = r(β̂̂β) = y− Fβ̂̂β. For every γγγ ∈ Rm we have(
Fγγγ | r̂

)
W

= (Fγγγ)TWr̂ = γγγTFTWr̂ = γγγTFTW
(
y− Fβ̂̂β

)
= γγγT(FTWy− FTWFβ̂̂β

)
= γγγT0 = 0 .

Therefore r̂ is W-orthogonal to Range(F).
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Weighted Least Squares Fitting: Geometric View

We will express the fact that r̂ is W-orthogonal to Range(F) as either

r̂ ⊥ Range(F) or r̂ ∈ Range(F)⊥ .

Let ŷ = Fβ̂̂β. Then y = ŷ + r̂ is the orthogonal decomposition of y ∈ Rn

into ŷ = Fβ̂̂β ∈ Range(F) plus r̂ ∈ Range(F)⊥. Because ŷ and r̂ are
W-orthogonal we have the Pythagorean relation

‖y‖ 2
W

= (y |y)W =
(
ŷ + r̂ | ŷ + r̂

)
W

=
(
ŷ | ŷ

)
W

+
(
r̂ | r̂
)

W
=
∥∥ŷ∥∥ 2

W
+
∥∥r̂∥∥ 2

W
,

where ‖ · ‖W is the norm associated with the scalar product ( · | · )W .
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Weighted Least Squares Fitting: Geometric View

Remark. Because β̂̂β = (FTWF)−1FTWy, the components of the
orthogonal decomposition y = ŷ + r̂ can be expressed as

ŷ = Fβ̂̂β = Py , r̂ = y− Fβ̂̂β = (I− P)y ,

where P = F(FTWF)−1FTW and I is the n×n identity matrix. It is easy to
check that the n×n matrix P satisfies

P2 = P , PTW = WP , PF = F .

These properties can be used to show that:
P is the W-orthogonal projection onto Range(F);
I− P is the W-orthogonal projection onto Range(F)⊥.
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Weighted Least Squares Fitting: Statistical View

The weighted least squares fit also has a statistical interpretation that
is related to these geometric relations. If we normalize the weights so
that

∑n
j=1 wj = 1, then the weighted average of any sample {zj}nj=1 is

defined by

〈z〉 =
n∑

j=1

zjwj .

This weighted average is related to the W-scalar product by

〈y z〉 =
n∑

j=1

yjzjwj = yTWz = (y | z)W .

The orthogonality and Pythagoean relations can then be recast as〈
ŷ r̂
〉

= 0 ,
〈
y2〉 =

〈
ŷ2〉 +

〈
r̂2〉 .

Balan, Hunt, Levermore (UMD) Least Squares Fitting February 2, 2021



Weighted Least Sqrs Uni Poly Models Fitting with Ortho

Weighted Least Squares Fitting: Statistical View

If the constant function 1 is in the span of the basis for the model then r̂
will be orthogonal to the vector that has every entry equal to 1. It
follows that

〈r̂〉 = 0 , 〈ŷ〉 = 〈y〉 = ȳ .

These formulas have the statistical interpretations that r̂ has mean
zero while ŷ and y have the same mean. In that case the orthogonality
and Pythagorean relations are equivalent to〈

(ŷ − ȳ ) r̂
〉

= 0 ,
〈
(y − ȳ )2〉 =

〈
(ŷ − ȳ )2〉 +

〈
r̂2〉 .

These formulas have the statistical interpretations that

Covs(ŷ , r̂ ) = 0 , Vars(y ) = Vars(ŷ ) + Vars(r̂ ) ,

where Covs and Vars denote sample covariance and sample variance
respectively. In particular, ŷ and r̂ are uncorrelated.
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Weighted Least Squares Fitting: Statistical View

This statistical interpretation of the weighted least squares fit leads to a
measure for the quality of the fit that is among the most commonly
used. Specifically, the coefficient of determination R2 is defined by

R2 =
Vars(ŷ )
Vars(y )

=
〈
(ŷ − ȳ )2〉〈
(y − ȳ )2

〉 = 1−
〈
r̂2〉〈

(y − ȳ )2
〉 = 1− Vars(r̂ )

Vars(y )
.

Because Vars(y ) = Vars(ŷ ) + Vars(r̂ ), we see that R2 is simply the
fraction of Vars(y ) that is captured by the fit. In particular, we see that

0 ≤ R2 ≤ 1 .

Fits are considered to be better when R2 is closer to 1. While R2 is a
reasonable measure of the quality of a fit when being used to compare
how well the same model fits different data, it should not be used to
compare how well different models fit the same data. It is commonly
misused in this way simply because it is easy to use.
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Fitting for Univariate Polynomial Models: Introduction

The family of all polynomials with degree at most ` can be written as

f (t ;β0, · · · , β`) =
∑̀
k=0

βk tk .

The index k runs from 0 to ` so that it matches the degree of each
term. We will fit this linear model to data {(tj , yj )}nj=1 using weighted
least squares with weights {wj}nj=1 normalized so that

n∑
j=1

wj = 1 .

Then the weighted average of any sample {zj}nj=1 is given by

〈z〉 =
n∑

j=1

zjwj .
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Fitting for Univariate Polynomial Models: New Basis

Rather than use the monomials {tk}`k=0 as the basis for this model, we
use the following algorithm to construct a new basis {pk (t)}`i=0 that is
orthogonal with respect to the scalar product

(p |q) = 〈p(t) q(t)〉 =
n∑

j=1

p(tj ) q(tj ) wj ,

and such that each pk (t) is a monic polynomial of degree k .
We set t̄ = 〈t〉 and initialize

p0(t) = 1 , σ 2
0 =

〈
p0(t)2〉 = 〈1〉 = 1 ,

p1(t) = t − t̄ , σ 2
1 =

〈
p1(t)2〉 =

〈
(t − t̄ )2〉 = σ 2 .
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Fitting for Univariate Polynomial Models: New Basis

Given pk−2(t), pk−1(t), σ 2
k−2, and σ 2

k−1 for some k ≥ 2 we then set

ηk−1 =
〈
(t − t̄ )pk−1(t)2〉 ,

pk (t) =

(
t − t̄ − ηk−1

σ 2
k−1

)
pk−1(t)−

σ 2
k−1

σ 2
k−2

pk−2(t) ,

σ 2
k =

〈
pk (t)2〉 .

We stop when k = ` and set

f̂ (t) =
∑̀
k=0

β̂kpk (t) , where β̂k =
1
σ 2

k
〈pk (t)y〉 .
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Fitting for Univariate Polynomial Models: Orthogonality

Remark. The polynomials pk (t) satisfy the orthogonality relations

〈pk (t) pk ′(t)〉 = δkk ′ σ 2
k for every k , k ′ = 0, · · · , ` ,

where δkk ′ is the Kronecker delta. Then the matrix FTWF is diagonal
with diagonal entries σ 2

k while the vector FTWy has entries 〈pk (t)y〉.
The equation FTWFββ = FTWy thereby becomes simply

σ 2
k βk = 〈pk (t) y〉 , for k = 0, · · · .` ,

which yields the expression for β̂k given on the previous slide.
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Fitting for Univariate Polynomial Models: Orthogonality

Remark. If we set ŷj = f̂ (tj ) for every j = 1, · · · , n then another
consequence of the polynomial orthogonality relations is the fact that

〈
(y − ȳ )2〉 =

〈
(ŷ − ȳ )2〉 +

〈
r̂2〉 =

∑̀
k=1

〈
pk (t) (y − ȳ )

〉2
σ 2

k
+
〈
r̂2〉 .

This shows exactly how much
〈
r̂2〉 will be reduced as ` is increased.

Remark. One criterion for when to stop enlarging the model is when
the addition of another basis function does not significantly reduce the
residual variance

〈
r̂2〉. For example, we could stop at ` if〈

p`+1(t) (y − ȳ )
〉2

σ 2
`+1

< 1
4
〈
r̂2〉 .
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Fitting for Univariate Polynomial Models: Example

Example. If we want to find the least squares fit of the data to a
polynomial of degree at most 2 then our algorithm yields

p0(t) = 1 , σ 2
0 = 1 ,

p1(t) = t − t̄ , σ 2
1 = σ2 ,

η1 =
〈
(t − t̄ )p1(t)2〉 =

〈
(t − t̄ )3〉 = τ3 ,

p2(t) =

(
t − t̄ − η1

σ 2
1

)
p1(t)− σ 2

1
σ 2

0
p0(t)

=

(
t − t̄ − τ3

σ2

)
(t − t̄ )− σ2 = (t − t̄ )2 − τ3

σ2 (t − t̄ )− σ2 ,

where t̄ , σ, and τ are given by the weighted averages

t̄ = 〈t〉 , σ2 =
〈
(t − t̄ )2〉 , τ3 =

〈
(t − t̄ )3〉 .
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Fitting for Univariate Polynomial Models: Example

Moreover, we have

σ 2
2 =

〈
p2(t)2〉 =

〈
(t − t̄ )2p2(t)

〉
=
〈
(t − t̄ )4〉− τ3

σ2

〈
(t − t̄ )3〉− σ2〈(t − t̄ )2〉

=
〈
(t − t̄ )4〉− τ6

σ2 − σ
4 .

and
〈p0(t) y〉 = 〈y〉 = ȳ ,
〈p1(t) y〉 = 〈(t − t̄ ) y〉 = 〈(t − t̄ ) (y − ȳ )〉 ,

〈p2(t) y〉 =
〈
(t − t̄ )2y

〉
− τ3

σ2 〈(t − t̄ ) y〉 − σ2ȳ

= 〈(t − t̄ )2(y − ȳ )〉 − τ3

σ2 〈(t − t̄ ) (y − ȳ )〉 .
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Fitting for Univariate Polynomial Models: Example

Therefore the weighted least squares fit is

f̂ (t) = β̂0 p0(t) + β̂1 p1(t) + β̂2 p2(t)

= ȳ + β̂1 (t − t̄ ) + β̂2

(
(t − t̄ )2 − τ3

σ2 (t − t̄ )− σ2

)
,

where

β̂1 =
〈p1(t) y〉
σ 2

1
=
〈(t − t̄ ) (y − ȳ )〉

σ2 ,

β̂2 =
〈p2(t) y〉
σ 2

2
=
〈(t − t̄ )2(y − ȳ )〉 − τ3

σ2 〈(t − t̄ ) (y − ȳ )〉

〈
(t − t̄ )4

〉
− τ6

σ2 − σ
4

.
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Fitting for Univariate Polynomial Models: Example

Remark. As the above example suggests, the pk (t) grow in complexity
as k increases. This construction is seldom carried out for ` > 3 due to
both this growing complexity and the fact that polynomials of higher
degree are rarely good statistical models for data sets.
Remark. Notice that we never had to explicitly solve a linear algebraic
system in our solution of the above example. This contrasts with our
solution (given earlier) of the simpler problem of fitting to the affine
model f (t ;α, β) = α + βt . In fact, the solution of that earlier problem is
contained within the solution of the above problem. This contrast
shows there is value in constructing an orthogonal basis for a model.
We will extend this idea in the next section.
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Fitting with Orthogonalization: Introduction

We can generalize what we did for polynomial models to any linear
model. Let {fi (x)}mi=1 be a basis for some linear model. We can then
use a variant of the Gram-Schmidt algorithm to construct a new basis
{gi (x)}mi=1 that is orthogonal with respect to the scalar product

(g |h) = 〈g(x) h(x)〉 .
The fact that F has rank m implies that (· | ·) is an scalar product over
the range of the model. We set g1(x) = f1(x) and for i ≥ 2 compute

gi (x) = fi (x)−
i−1∑
i ′=1

〈fi (x) gi ′(x)〉
〈gi ′(x)2〉

gi ′(x) .

We stop when i = m and set

f̂ (x) =
m∑

i=1

β̂igi (x) , where β̂i =
〈gi (x) y〉
〈gi (x)2〉

.
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Fitting with Orthogonalization: Orthogonality

Remark. This algorithm for generating the basis {gi (x)}mi=1 seems
more complicated than the algorithm we used to generate the basis
{pi (t)}m−1

i=0 for univariate polynomial models. This is because the
structure of those polynomial models simplifies the more general
algorithm.
Remark. If we set ŷj = f̂ (xj ) for every j = 1, · · · , n then the
orthogonality relations satisfied by {gi (x)}mi=1 imply

〈
(y − ȳ )2〉 =

〈
(ŷ − ȳ )2〉 +

〈
r̂2〉 =

m∑
i=1

〈gi (x) (y − ȳ )〉2

〈gi (x)2〉
+
〈

r̂2
〉
.

This shows exactly how much
〈
r̂2〉 will be reduced as m is increased.

Remark. Reducing
〈

r̂2
〉

does not always make the fit better. Indeed,
sometimes the fit can get worse, which is the phenomenon of
overfitting.
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Further Questions

We have seen how to use weighted least squares to fit linear statistical
models with m parameters to data sets containing n pairs when
m� n. Among the questions that arise are the following.

How do we pick a basis that is well suited to the given data?
(Use ones that effectively reduce the residual variance.)
How can we avoid overfitting?
(By keeping m� n and being careful.)
Do these methods extended to nonlinear statistical models?
(Minimization can become extremely difficult.)
Can we use other notions of smallness of the residual?
(Yes, but none are as easy to implement as least squares.)
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