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Linear Statistical Models: Introduction

In modeling we are often faced with the problem of fitting data with
some analytic expression. Suppose that we are studying a
phenomenon that evolves over time and are given n distinct times
{tj}nj=1 and a measurement yj of the phenomenon at each time tj . We
represent this data as the set of ordered pairs{

(tj , yj )
}n

j=1 .

Each yj might be a single number, which is the univariate case, or a
vector of numbers, which is the multivariate case. We will treat the
simpler univariate case first.
The basic problem we will examine is the following.
How can we use this data set to make a reasonable guess about what
a measurment of this phenomenon might yield at other times?
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Linear Statistical Models: Overfitting

Of course, you can always find functions f (t) such that yj = f (tj ) for
every j = 1, · · · , n. For example, you can use Lagrange interpolation to
construct a unique polynomial of degree at most n − 1 that does this.
However, such a polynomial often exhibits wild oscillations that make it
a useless fit. This problem is called overfitting.
Reasons that the problem of overfitting might arise include:

the assumed form of f (t) is ill-suited to matching the behavior of
the phenomenon over the time interval being considered;
the times tj and measurements yj are subject to error, so finding a
function that fits the data exactly is not a good strategy even when
the assumed form of f (t) is well-suited to matching the behavior of
the phenomenon over the time interval being considered.
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Linear Statistical Models: Residuals

A strategy to help avoid these difficulties is to draw f (t) from a family of
suitable functions. Such a family is called a model in statistics. If we
denote this model by f (t ;β1, · · · , βm) where m� n then the idea is to
find values of β1, · · · , βm such that the graph of f (t ;β1, · · · , βm) best fits
the data. More precisely, we define the residuals rj (β1, · · · , βm) by

yj = f (tj ;β1, · · · , βm) + rj (β1, · · · , βm) , for every j = 1, · · · , n ,

and try to minimize the rj (β1, · · · , βm) in some sense.
The problem is simplified by restricting ourselves to models in which
the parameters appear linearly — so-called linear models. Such a
model is specified by the choice of a basis {fi (t)}mi=1 and takes the form

f (t ;β1, · · · , βm) =
m∑

i=1

βi fi (t) .
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Linear Statistical Models: Examples

Example. One classic linear model is the family of all polynomials of
degree at most `. This family is often expressed as

f (t ;β0, · · · , β`) =
∑̀
k=0

βk tk .

Here the index k runs from 0 to ` so that it matches the degree of each
term in the sum. Therefore m = ` + 1.
Example. If the underlying phenomena is periodic with period T then
a classic linear model is the family of all trigonometric polynomials of
degree at most `. This family can be expressed as

f (t ;α0, · · · , α`, β1, · · · , β`) = α0 +
∑̀
k=1

(
αk cos(kωt) + βk sin(kωt)

)
,

where ω = 2π/T its fundamental frequency. Notice that m = 2` + 1.
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Linear Statistical Models: Translation Invariance

Remark. Linear models are linear in the parameters, but are typically
nonlinear in the independent variable t . This is illustrated by the
foregoing examples: the family of all polynomials of degree at most ` is
nonlinear in t for ` > 1; the family of all trigonometric polynomials of
degree at most ` is nonlinear in t for ` > 0.
Remark. When there is no preferred instant of time it is best to pick a
model f (t ;β1, · · · , βm) that is translation invariant. This means for every
choice of parameter values (β1, · · · , βm) and time shift s there exist
parameter values (β′1, · · · , β′m) such that

f (t + s;β1, · · · , βm) = f (t ;β′1, · · · , β′m) for every t .

Both models given on the previous slide are translation invariant. Can
you show this? Can you find models that are not translation invariant?
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General Univariate Linear Models: Introduction

It is just as easy to work in the general univariate setting in which we
are given data {

(xj , yj )
}n

j=1 ,

where the xj are distinct points within a bounded domain X ⊂ Rd and
the yj lie in R. Here x is called the independent variable and y is called
the dependent variable.
The problem we will examine now becomes the following.
How can we use this data set to make a reasonable guess about the
value of y when x is a point in X that is not represented in the data set?
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General Univariate Linear Models: Example

We will consider linear statistical models with m parameters in the form

f (x;β1, · · · , βm) =
m∑

i=1

βi fi (x) ,

where each basis function fi (x) is defined over X and takes values in R.
Example. One classic linear model is the family of all affine functions.
If xk denotes the k th entry of x then this family can be written as

f (x; a,b1, · · · ,bd ) = a +
d∑

k=1

bk xk .

Alternatively, it can be expressed in vector notation as

f (x; a,b) = a + b · x ,

where a ∈ R and b ∈ Rd . Notice that here m = d + 1.
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General Univariate Linear Models: Examples

Example. Similarly the family of all quadratic functions can be
expressed in vector notation as

f (x; a,b,C) = a + b · x + x · Cx ,

where a ∈ R, b ∈ Rd and C ∈ Rd∨d . Here Rd∨d denotes the set of all
symmetric d×d real matrices. In this case m = 1

2 (d + 1)(d + 2).
Remark. The dimension m for the family of polynomials in d variables
of degree at most ` is

m =
(d + `)!

d ! `!
=

(d + 1)(d + 2) · · · (d + `)
`!

.

This grows like d ` as d grows. This means that these models can
become impractical when the dimension d is large. In such cases we
can use custom built models rather than general ones.
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General Univariate Linear Models: Residuals

Recall that given the data {(xj , yj )}nj=1 and any model f (x;β1, · · · , βm),
the residual associated with each (xj , yj ) is defined by the relation

yj = f (xj ;β1, · · · , βm) + rj (β1, · · · , βm) .

The linear model given by the basis {fi (x)}mi=1 is

f (x;β1, · · · , βm) =
m∑

i=1

βi fi (x) ,

for which the residual rj (β1, · · · , βm) is given by

rj (β1, · · · , βm) = yj −
m∑

i=1

βi fi (xj ) .

The idea is to determine the parameters β1, · · · , βm in the statistical
model by minimizing the residuals rj (β1, · · · , βm).
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General Univariate Linear Models: Fitting Problem

This so-called fitting problem can be recast in terms of vectors. Define
the m-vector ββ, the n-vectors y and r, and the n×m-matrix F by

ββ =

β1
...
βm

 , y =

y1
...

yn

 , r =

r1
...
rn

 ,

F =

f1(x1) · · · fm(x1)
...

...
...

f1(xn) · · · fm(xn)

 .

We will assume the matrix F has rank m. The fitting problem is then
the problem of finding a value of ββ that minimizes the size of

r(ββ) = y− Fββ .

But what does “size” mean?
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Euclidean Least Squares Fitting: Introduction

A popular notion of the size of a vector is the Euclidean norm, which is

‖r(ββ)‖ =
√

r(ββ)Tr(ββ) =

√√√√ n∑
j=1

rj (β1, · · · , βm)2 .

Minimizing ‖r(ββ)‖ is equivalent to minimizing ‖r(ββ)‖2, which is the sum
of the “squares” of the residuals.
For linear models r(ββ) = y− Fββ, so we minimize

q(ββ) = 1
2‖r(ββ)‖2 = 1

2r(ββ)Tr(ββ) = 1
2 (y− Fββ)T(y− Fββ)

= 1
2yTy− ββTFTy + 1

2ββTFTFββ .

Because this quadratic function of ββ is easy to minimize, this method
is popular. We will use multivariable calculus to minimize it.
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Euclidean Least Squares Fitting: Gradient

Recall that the gradient (if it exists) of a real-valued function q(ββ) with
respect to the m-vector ββ is the m-vector ∂

ββ
q(ββ) such that

d
ds

q(ββ + s γγγ)
∣∣∣
s=0

= γγγT∂
ββ
q(ββ) for every γγγ ∈ Rm .

In particular, for the quadratic q(ββ) arising from our least squares
problem we can easily check that

q(ββ + s γγγ) = q(ββ) + s γγγT(FTFββ − FTy
)

+ 1
2s2γγγTFTFγγγ .

By differentiating this with respect to s and setting s = 0 we obtain
d

ds
q(ββ + s γγγ)

∣∣∣
s=0

= γγγT(FTFββ − FTy
)
,

from which we read off that the gradient is

∂
ββ
q(ββ) = FTFββ − FTy .

Balan, Hunt, Levermore (UMD) Least Squares Fitting February 2, 2021



Lin Stat Models Gen Univariate Least Squares Fitting

Euclidean Least Squares Fitting: Hessian

Similarly, the derivative (if it exists) of the vector-valued function ∂
ββ
q(ββ)

with respect to the m-vector ββ is the m×m-matrix ∂
ββββ

q(ββ) such that

d
ds
∂

ββ
q(ββ + s γγγ)

∣∣∣
s=0

= ∂
ββββ

q(ββ)γγγ for every γγγ ∈ Rm .

The symmetric matrix-valued function ∂
ββββ

q(ββ) is the Hessian of q(ββ).
For the quadratic q(ββ) arising from our least squares problem we have

∂
ββ
q(ββ + s γγγ) = FTF(ββ + s γγγ)− FTy = ∂

ββ
q(ββ) + s FTFγγγ .

By differentiating this with respect to s and setting s = 0 we obtain
d

ds
∂

ββ
q(ββ + s γγγ)

∣∣∣
s=0

=
d

ds
(
∂

ββ
q(ββ) + s FTFγγγ

)∣∣∣
s=0

= FTFγγγ ,

from which we read off that the Hessian is

∂
ββββ

q(ββ) = FTF .
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Euclidean Least Squares Fitting: Positive Definiteness

We now show that the m×m matrix FTF is positive definite. We have

γγγTFTFγγγ = (Fγγγ)TFγγγ = ‖Fγγγ‖2 ≥ 0 for every γγγ ∈ Rm ,

which implies that FTF is nonnegative definite. It will be positive
definite if we can show that

γγγTFTFγγγ =⇒ γγγ = 0 .

However, because γγγTFTFγγγ = ‖Fγγγ‖2 we see that

γγγTFTFγγγ =⇒ ‖Fγγγ‖ = 0 =⇒ Fγγγ = 0 .

Because F has rank m, its columns are linearly independent, whereby

Fγγγ = 0 =⇒ γγγ = 0 .

Therefore FTF is positive definite.
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Euclidean Least Squares Fitting: Minimizer

Because ∂
ββββ

q(ββ) is positive definite, the function q(ββ) is strictly convex,
whereby it has at most one (global) minimizer. We find this minimizer
by setting the gradient of q(ββ) equal to zero, yielding

∂
ββ

q(ββ) = FTFββ − FTy = 0 .

Because the matrix FTF is positive definite, it is invertible, whereby the
above equation can be solved. The minimizer is found to be ββ = β̂̂β
where

β̂̂β = (FTF)−1FTy .

Remark. In practice you should not compute (FTF)−1 when m > 2.
Rather, you should think of the right-hand side above as notation for
the solution of the linear algebraic system FTFββ = FTy. All that you
need to compute is the solution β̂̂β of this system.
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Euclidean Least Squares Fitting: Uniqueness

The fact that β̂̂β is the unique global minimizer is seen by using the fact
that FTy = FTFβ̂̂β to obtain the identity

q(ββ) = 1
2yTy− ββTFTy + 1

2ββTFTFββ

= 1
2yTy− ββTFTFβ̂̂β + 1

2ββTFTFββ

= 1
2yTy− 1

2 β̂̂β
T
FTFβ̂̂β + 1

2 (ββ − β̂̂β)TFTF(ββ − β̂̂β)

= q(β̂̂β) + 1
2 (ββ − β̂̂β)TFTF(ββ − β̂̂β) .

Then the fact FTF is positive definite implies that

q(ββ) ≥ q(β̂̂β) for every ββ ∈ Rm ,

q(ββ) = q(β̂̂β) ⇐⇒ ββ = β̂̂β .
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Euclidean Least Squares Fitting: Affine Example

Example. For the affine model f (t ;α, β) = α + βt and data {(tj , yj )}nj=1
the matrix F has the form

F =
(
1 t

)
, where 1 =

1
...
1

 , t =

t1
...
tn

 .

Then

FTF =

(
1T1 1Tt
tT1 tTt

)
= n

(
1 t̄
t̄ t2

)
,

and det
(
FTF

)
= n2(t2 − t̄2) = n2σ2 > 0, where

t̄ =
1
n

n∑
j=1

tj , t2 =
1
n

n∑
j=1

t 2
j , σ2 =

1
n

n∑
j=1

(tj − t̄ )2 .

Here t̄ and σ2 are the sample mean and variance of t respectively.
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Euclidean Least Squares Fitting: Affine Example

Then the α̂ and β̂ that give the least squares fit are given by(
α̂

β̂

)
= β̂̂β = (FTF)−1FTy =

1
n

1
σ2

(
t2 −t̄
−t̄ 1

)(
1T

tT

)
y

=
1
σ2

(
t2 −t̄
−t̄ 1

)(
ȳ
ty

)
=

1
σ2

(
t2 ȳ − t̄ ty
ty − t̄ ȳ

)
,

where

ȳ =
1
n

1Ty =
1
n

n∑
j=1

yj , yt =
1
n

tTy =
1
n

n∑
j=1

yj tj .

These formulas can be expressed simply as

β̂ =
yt − ȳ t̄
σ2 , α̂ = ȳ − β̂ t̄ ,

so β̂ is the sample covariance of y and t over the sample variance of t .
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Euclidean Least Squares Fitting: Numerical Methods

Therefore the best fit is

f̂ (t) = α̂ + β̂t = ȳ + β̂(t − t̄ ) = ȳ +
yt − ȳ t̄
σ2 (t − t̄ ) .

Remark. In this example we inverted the matrix FTF to obtain β̂̂β. This
was easy because our model had only two parameters in it, so FTF
was only 2×2. The number of paramenters m does not have to be too
large before this approach becomes slow or unfeasible. However for
such m you can find β̂̂β by using Gaussian elimination or some other
direct numerical method to efficiently solve the linear system

FTFββ = FTy .

Such direct methods work because the matrix FTF is positive definite.
As we will see later, this step can be simplified by constructing the
basis {fi (t)}mi=1 so that FTF is diagonal.
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Euclidean Least Squares Fitting: Geometric View

The Euclidean least squares fit has a beautiful geometric interpretation
in Rn equipped with the Euclidean scalar product

(p |q) = pTq .

The range of the n×m matrix F is given by

Range(F) =
{
Fγγγ : γγγ ∈ Rm} .

It is the linear subspace of Rn spanned by the columns of F. Because
F has rank m, its columns are linearly independent and Range(F) has
dimension m.
Define r̂ = r(β̂̂β) = y− Fβ̂̂β. For every γγγ ∈ Rm we have(

Fγγγ | r̂
)

= (Fγγγ)Tr̂ = γγγTFTr̂ = γγγTFT(y− Fβ̂̂β
)

= γγγT(FTy− FTFβ̂̂β
)

= γγγT0 = 0 .

Therefore r̂ is orthogonal to Range(F).
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Euclidean Least Squares Fitting: Geometric View

We will express the fact that r̂ is orthogonal to Range(F) as either

r̂ ⊥ Range(F) or r̂ ∈ Range(F)⊥ .

Because r̂ ⊥ Range(F), we see that y = Fβ̂̂β + r̂ is the orthogonal
decomposition of y ∈ Rn into Fβ̂̂β ∈ Range(F) plus r̂ ∈ Range(F)⊥.
Because Fβ̂̂β and r̂ are orthogonal we have the Pythagorean relation

‖y‖2 = (y |y) =
(
Fβ̂̂β + r̂ |Fβ̂̂β + r̂

)
=
(
Fβ̂̂β |Fβ̂̂β

)
+
(
r̂ |Fr̂

)
=
∥∥Fβ̂̂β

∥∥2 +
∥∥r̂∥∥2

.

Remark. Because the residual r̂ is orthogonal to Range(F). it will have
mean zero if 1 ∈ Range(F), which is the case whenever the constant
function 1 is in the linear span of the basis {fi (x)}mi=1 for the model.
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Euclidean Least Squares Fitting: Geometric View

Remark. Because β̂̂β = (FTF)−1FTy, the components of the orthogonal
decomposition y = Fβ̂̂β + r̂ can be expressed as

Fβ̂̂β = Py , r̂ = y− Fβ̂̂β = (I− P)y ,

where P = F(FTF)−1FT and I is the n×n identity matrix. It is easy to
check that the n×n matrix P satisfies

P2 = P , PT = P , PF = F .

These properties can be used to show that:
P is the orthogonal projection onto Range(F);
I− P is the orthogonal projection onto Range(F)⊥.
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Further Questions

We have seen how to use Euclidean least squares to fit linear
statistical models with m parameters to data sets containing n pairs
when m� n. Among the questions that arise are the following.

How do we pick a basis that is well suited to the given data?
(This is explored in homework.)
How can we avoid overfitting?
(By keeping m� n and being careful.)
Do these methods extended to nonlinear statistical models?
(Minimization can become extremely difficult.)
Can we use other notions of smallness of the residual?
(We see some in the next chapter.)
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