Lecture 8: Community Detection: Spectral Methods and SDP Relaxations

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 15, 2021

Integer Programs

•000000

Graph Partitions: Objective Functions

Assume a weighted graph given by the weight matrix W (could be the adjacency matrix). The goal is to perform a disjoint partition into two clusters of the vertex set $\mathcal{V} = S \cup S$ that had the largest total weight inside each cluster while maintaining a low cross-weight between clusters. Two types of objective functions:

1. Min-edge type criteria (Rayleight type criteria), or Cheeger constant:

$$h_G = \min_{S \subset \mathcal{V}} \frac{|E(S, S)|}{\min(vol(S), vol(\bar{S}))}.$$

where $vol(S) = 1^T W 1_S = \sum_{i \in S} d_i$, $vol(\bar{S}) = 1^T W 1_{\bar{S}} = \sum_{i \in \bar{S}} d_i$, $|E(S, \bar{S})| = 1_S^T W 1_{\bar{S}}$.

2. Modularity function, fraction of the edges that fall within the communities minus the expected fraction if edges were distributed at random (unweighted case):

$$\max_{S \subset \mathcal{V}} \frac{1}{2m} \sum_{(i,j) \in (S \times S) \cup (\bar{S} \times \bar{S})} \left(A_{i,j} - \frac{d_i d_j}{2m} \right) , \quad d_i = \sum_k A_{i,k}.$$

Optimization Problems

Second Smallest for $\tilde{\Delta}$

The Algorithm is supposed to provide an approximate solution for the min-edge cut problem of the Cheeger constant

$$h_G = \min_{S \subset \mathcal{V}} \frac{|E(S, \bar{S})|}{\min(vol(S), vol(\bar{S}))}.$$

The algorithm has been derived while proving the bound $2h_G \ge \lambda_1$. Implicitely, the second smallest eigenpair solves the optimization problem:

$$\begin{aligned} & & & & \text{min} & & e^T \tilde{\Delta} e \\ & & & e \in \mathbb{R}^n \\ & & & \|e\|_2 = 1 \\ & & e^T D^{1/2} 1 = 0 \end{aligned}$$

Spectral Algorithm using the Symmetric Normalized Graph Laplacian

Algorithm (Spectral Algorithm with $\tilde{\Delta}$)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1,\Omega_2,...,\Omega_d)$ into connected components.

Else:

- ① Compute the symmetric normalized graph Laplacian $\tilde{\Delta} = I D^{-1/2}AD^{-1/2}$, with $D = Diag(A \cdot 1)$ the degree matrix.
- **2** Compute the second smallest eigenpair: (e_1, λ_1) , with $\tilde{\Delta}e_1 = \lambda_1e_1$ and $\lambda_1 > 0 = \lambda_0$.
- **3** Define the partition $\Omega_1 = \{k : e_1(k) > 0\}, \ \Omega_2 = \{k : e_1(k) \le 0\}.$ Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

Optimization Problems

Integer Programs

0000000

MAP and MLE for Balanced Communities

Consider now a slightly different optimization problem. Assume we know we have a symmetric stochastic block model SSBM(n, 2, a, b) with two communities of equal size: $|\Omega_1| = |\Omega_2|$. Then the Maximum A Posteriori (MAP) partition function $Z \in \{1,2\}^n$ coincides with the Maximum Likelihood Estimator (MLE) and maximizes:

$$\max_{Z:|\Omega_1|=|\Omega_2|} a^{m_{11}+m_{22}} (1-a)^{m_{11}^c+m_{22}^c} b^{m_{12}} (1-b)^{m_{12}^c}$$

But for equal size communities (== balanced communities),

$$m_{12}+m_{12}^c=rac{n^2}{4} \ ext{and} \ m_{11}+m_{22}+m_{11}^c+m_{22}^c=2\left(egin{array}{c} n/2 \ 2 \end{array}
ight)pprox rac{n^2}{4}.$$

Furthermore, $m_{11} + m_{12} + m_{22} = m$. Thus, the optimal estimator maximizes:

$$\max_{Z:|\Omega_1|=|\Omega_2|} \left(\frac{a(1-b)}{b(1-a)}\right)^{m_{11}+m_{22}}$$

Radu Balan (UMD)

Optimization Problems

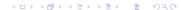
MAP and MLE for Balanced Communities

Assume a > b. Then $\frac{a(1-b)}{b(1-a)} > 1$ and maximization of $\left(\frac{a(1-b)}{b(1-a)}\right)^{m_{11}+m_{22}}$ is equivalent to maximization of the number of intra-edges while have balanced communities.

$$\max_{Z:|\Omega_1|=|\Omega_2|} m_{11}+m_{22}$$

Equivalently, since $m_{11} + m_{22} + m_{12} = m$ and is invariant to any partition, the solution minimizes the number of cross-edges m_{12} subject to balanced communities:

$$\min_{Z:|\Omega_1|=|\Omega_2|} m_{12}$$



MAP and MLE for Balanced Communities (2)

Replace the partition vector $Z \in \{1,2\}^n$ with a sign vector $z \in \{-1,1\}^n$ so that $Z_k = 1$ iff $z_k = -1$ and $Z_k = 2$ iff $z_k = +1$. Then

$$z^{T}Az = \sum_{i,j=1}^{m} A_{i,j}z_{i}z_{j} = 2(m_{11}+m_{22})-2m_{12} = 4(m_{11}+m_{22})-2m = 2m-4m_{12}$$

Thus

Integer Programs

0000000

$$m_{11} + m_{22} = \frac{1}{4} z^T A z + \frac{m}{2}$$

and the number of cross-edges can be computed using:

$$m_{12} = \frac{1}{4}(2m - z^T A z) = \frac{1}{4}(z^T D z - z^T A z) = \frac{1}{4}z^T \Delta z$$

because $z^T D z = 1^T D 1 = \sum_{i,j=1}^n A_{i,j} = 2m$.

□▶ ◀♬▶ ◀불▶ ◀불▶ 불 ∽9<℃

Integer Programs

000000

Balanced communities: $|\Omega_1| = |\Omega_2|$ is equivalent to requiring $z^T \cdot 1 = 0$. Thus we obtain the following optimization problems:

Graph Laplacian based Minimization:

$$\min_{z \in \{-1, +1\}^n \\ z^T \cdot 1 = 0} z^T \Delta z$$

Adjacency Matrix based Maximization:

$$\max_{z \in \{-1, +1\}^n} z^T A z$$
$$z^T \cdot 1 = 0$$

These are NP-hard problems, known as Quadratic Integer Programming. We study two relaxations: Euclidean relaxation, and SDP relaxation.

Integer Programs

The Euclidean relaxation of the QIP

$$\min / \max_{\substack{z \in \{-1, +1\}^n \\ z^T \cdot 1 = 0}} z^T S z$$

is obtained by replacing $z \in \{-1,+1\}^n$ with $\|z\|_2 = \sqrt{n}$. Here $S = S^T$ stands for Δ or A. Since different norm values produce same solution up to scaling, we use instead the unit Euclidean norm relaxation:

$$\min / \max_{\|z\|_2 = 1} z^T Sz$$
$$z^T \cdot 1 = 0$$

Spectral Algorithms

Integer Programs

Using the Courant-Fisher criterion (related also to the Rayleigh quotient), the Euclidean relaxation is solved using the second eigenvector of the corresponding symmetric matrix.

Why the second eigenvector:

- lacktriangled In the case of $\tilde{\Delta}$, 1 is the eigenvector corresponding to the smallest eigenvalue ($\lambda_0 = 0$), hence $z^T 1 = 0$ is satisfied automatically by the second eigenvector.
- 2 In the case of A, 1 is approximately the leading eigenvector asuming each node has the same valence. This happens when the adjacency matrix approximates well its Expected value matrix $\mathbb{E}[A]$. Note: One can solve exactly (no approximation needed) the optimization problem max $z^T A z$ subject to $||z||_2 = 1$ and $z^T 1 = 0$. The solution is the normalized eigenvector associated to the largest eigenvalue of $(I - \frac{1}{2}11^T)A(I - \frac{1}{2}11^T).$

Spectral Algorithm using the Graph Laplacian

Algorithm (Spectral Algorithm with Δ)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

- Compute the graph Laplacian $\Delta = D A$, with $D = Diag(A \cdot 1)$, the degree matrix.
- **2** Compute the second smallest eigenpair: (e_1, λ_1) , with $\Delta e_1 = \lambda_1 e_1$ and $\lambda_1 > 0 = \lambda_0$.
- **3** Define the partition $\Omega_1 = \{k : e_1(k) > 0\}$, $\Omega_2 = \{k : e_1(k) \le 0\}$. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

Algorithm (Spectral Algorithm with A)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$.

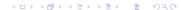
If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

Integer Programs

- Compute the second largest eigenpair of A: (f_2, μ_2) , with $Af_2 = \mu_2 f_1$.
- ② Define the partition $\Omega_1 = \{k : f_2(k) > 0\}, \ \Omega_2 = \{k : f_2(k) \le 0\}.$ Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$



Integer Programs

The SDP Relaxation

The Semi-Definite Program (SDP) relaxation of the QIP

$$\min / \max_{\substack{z \in \{-1, +1\}^n \\ z^T \cdot 1 = 0}} z^T Sz$$

is obtained in the following way: First one replaces the variable vector z by the matrix $Y \in \mathbb{R}^{n \times n}$, $Y = zz^T$. Note:

$$z^{T}Sz = trace(z^{T}Sz) = trace(Szz^{T}) = trace(SY)$$

The constraints $z \in \{-1, +1\}^n$ is equivalent to $Y_{ii} = 1$. The constraint $z^T \cdot 1 = 0$ is equivalent to $Y \cdot 1 = 0$. Additionally, the matrix Y satisfies also: $Y \ge 0$ and rank(Y) = 1.

The SDP Relaxation - 2

Putting together all conditions, we obtain the (equivalent!) problem: $\min / \max_{\substack{min \ Y = Y^T \geq 0 \\ rank(Y) = 1}} trace(SY)$ $Y = Y^T \geq 0$ rank(Y) = 1 $Y_{ii} = 1 \ , \ 1 \leq i \leq n$ $Y \cdot 1 = 0$

April 29, 2021

The SDP Relaxation - 2

Putting together all conditions, we obtain the (equivalent!) problem: $\min / \max trace(SY)$

$$Y = Y^T \ge 0$$
 $rank(Y) = 1$
 $Y_{ii} = 1$, $1 \le i \le n$
 $Y \cdot 1 = 0$

However this problem is not convex, due to the rank constraint. The convex relaxation, known as the *SDP relaxation*, simply removes the rank constraint:

$$\begin{aligned} \min / & \max_{Y = Y^T \ge 0} & \textit{trace}(SY) \\ Y_{ii} = 1 \;, \; 1 \le i \le n \\ Y \cdot 1 = 0 \end{aligned}$$

In general the result Y is not rank 1, so one approximates it by the leading eigenvector of solution \hat{Y} . Note, for $Y = Y^T \ge 0$, $Y \cdot 1 = 0$ is equivalent to $1^T Y 1 = 0$.

The Graph Laplacian SDP

Algorithm (SDP with Δ)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

- Compute the graph Laplacian $\Delta = D A$, with $D = Diag(A \cdot 1)$, the degree matrix.
- 2 Solve the Semi-Definite Program:

The Graph Laplacian SDP

Algorithm (SDP with Δ - continued)

- **3** Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.
- Define the partition $\Omega_1 = \{k : e_{max}(k) > 0\}$, $\Omega_2 = \{k : e_{max}(k) \le 0\}$. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

The Adjacency Matrix SDP

Algorithm (SDP with A)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

• Solve the Semi-Definite Program:

$$egin{array}{ll} ext{max} & trace(AY) \ Y & ext{subject to} \ Y = Y^T \geq 0 \ Y_{ii} = 1 \; , \; 1 \leq i \leq n \ 1^T \cdot Y \cdot 1 = 0 \ \end{array}$$

② Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.

Integer Programs

Algorithm (SDP with A - continued)

3 Define the partition $\Omega_1 = \{k : e_{max}(k) > 0\},$ $\Omega_2 = \{k : e_{max}(k) < 0\}. \text{ Set } d = 2.$

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

Algorithm (SDP with $\tilde{\Delta}$)

Integer Programs

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the symmetric normalized graph Laplacian $\tilde{\Delta} = I D^{-1/2}AD^{-1/2}$, with $D = Diag(A \cdot 1)$, the degree matrix.
- **2** Solve the Semi-Definite Program:

$$egin{array}{ll} \min & trace(ilde{\Delta}Y) \ Y & \mathrm{subject\ to} \ Y = Y^T \geq 0 \ Y_{ii} = 1 \; , \; 1 \leq i \leq n \ 1^T \cdot Y \cdot 1 = 0 \end{array}$$

The Normalized Graph Laplacian SDP

Algorithm (SDP with $\tilde{\Delta}$ - continued)

- **3** Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max} e_{max}$.
- **1** Define the partition $\Omega_1 = \{k : e_{max}(k) > 0\}$, $\Omega_2 = \{k : e_{max}(k) < 0\}.$ Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

This is the SDP counterpart of the spectral algorithm we studied last time.

Partitions of Weighted Graphs

Integer Programs

In this section we rewrite all the previous algorithms in the case of weighted graphs.

The idea: The Cheeger constant is simply replaced by total cross-weight between partitions:

$$h_G = \min_{S} \frac{\sum_{x \in S, y \in \bar{S}} W_{x,y}}{\min(\sum_{x \in S} D_{x,x}, \sum_{y \in \bar{S}} D_{y,y})}, \quad D_{i,i} = \sum_{j} W_{i,j}$$

Solution: replace the adjacency matrix A by the weight matrix W. Thus we obtain a total of six algorithms: 3 spectral algorithms, and 3 SDP relaxations; each class using either $I-D^{-1/2}WD^{-1/2}$. D-W . or W .

Spectral Algorithm using the symmetric normalized Weighted Graph Laplacian

Algorithm (Spectral Algorithm with symmetric normalized weighted Δ)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1,\Omega_2,...,\Omega_d)$ into connected components.

Else:

- Compute the symmetric normalized weighted graph Laplacian $\tilde{\Delta} = I D^{-1/2}WD^{-1/2}$, with $D = Diag(W \cdot 1)$.
- **2** Compute the second smallest eigenpair: (e_1, λ_1) , with $\Delta e_1 = \lambda_1 e_1$ and $\lambda_1 > 0 = \lambda_0$.
- **1** Define the partition $\Omega_1 = \{k : e_1(k) > 0\}$, $\Omega_2 = \{k : e_1(k) \le 0\}$. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes

Spectral Algorithm using the Weighted Graph Laplacian

Algorithm (Spectral Algorithm with weighted Δ)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

- Compute the weighted graph Laplacian $\Delta = D W$, with $D = Diag(W \cdot 1)$.
- **2** Compute the second smallest eigenpair: (e_1, λ_1) , with $\Delta e_1 = \lambda_1 e_1$ and $\lambda_1 > 0 = \lambda_0$.
- **3** Define the partition $\Omega_1 = \{k : e_1(k) > 0\}$, $\Omega_2 = \{k : e_1(k) \le 0\}$. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

Algorithm (Spectral Algorithm with W)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

Integer Programs

- Compute the second largest eigenpair of $W: (f_2, \mu_2)$, with $Wf_2 = \mu_2 f_1$.
- **2** Define the partition $\Omega_1 = \{k : f_2(k) > 0\}, \ \Omega_2 = \{k : f_2(k) \le 0\}.$ Set d=2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

Algorithm (SDP with weighted $\hat{\Delta}$)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

- Compute the symmetric normalized weighted graph Laplacian $\tilde{\Delta} = I - D^{-1/2}WD^{-1/2}$, with $D = Diag(W \cdot 1)$.
- Solve the Semi-Definite Program:

$$egin{array}{ll} \min & trace(ilde{\Delta}Y) \ Y & \mathrm{subject\ to} \ Y = Y^T \geq 0 \ Y_{ii} = 1 \; , \; 1 \leq i \leq n \ 1^T \cdot Y \cdot 1 = 0 \end{array}$$

The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted $\hat{\Delta}$ - continued)

- **3** Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max} e_{max}$.
- **1** Define the partition $\Omega_1 = \{k : e_{max}(k) > 0\}$, $\Omega_2 = \{k : e_{max}(k) < 0\}. \text{ Set } d = 2.$

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Algorithm (SDP with weighted Δ)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$.

If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components.

Else:

- Compute the weighted graph Laplacian $\Delta = D W$, with $D = Diag(W \cdot 1)$.
- 2 Solve the Semi-Definite Program:

Integer Programs

Algorithm (SDP with weighted Δ - continued)

- **3** Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max} e_{max}$.
- **1** Define the partition $\Omega_1 = \{k : e_{max}(k) > 0\}$, $\Omega_2 = \{k : e_{max}(k) < 0\}. \text{ Set } d = 2.$

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

The Weight Matrix SDP

Algorithm (SDP with W)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Flse:

• Solve the Semi-Definite Program:

$$\max_{\substack{Y \text{ subject to} \\ Y = Y^T \geq 0 \\ Y_{ii} = 1 , 1 \leq i \leq n \\ 1^T \cdot Y \cdot 1 = 0 } } trace(WY)$$

② Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.

The Weight Matrix SDP

Integer Programs

Algorithm (SDP with W - continued)

3 Define the partition $\Omega_1 = \{k : e_{max}(k) > 0\},$ $\Omega_2 = \{k : e_{max}(k) < 0\}. \text{ Set } d = 2.$

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \cdots, n\}.$

Problem: How to measure the quality of a given partition? We previously studied:

Definition

Integer Programs

The agreement between two community vectors $x, y \in [k]^n$ is obtained by maximizing the number of common components of these two vectors over all possible relabelling (i.e., permutations):

$$Agr(x, y) = \frac{1}{n} \max_{\pi \in S_k} \sum_{i=1}^{n} \mathbf{1}(x_i = \pi(y_i))$$

where S_k denotes the group of permutations.

In the case of 2-community detection, the above formula reduces to:

$$Agr(x,y) = \frac{1}{n} \max \left(\sum_{i=1}^{n} \mathbf{1}(x_i = y_i), \sum_{i=1}^{n} \mathbf{1}(x_i \neq y_i) \right) = \frac{1}{n} \max(\alpha, n - \alpha)$$

where

Integer Programs

$$\alpha = \sum_{i=1}^n \mathbf{1}(x_i = y_i).$$

measures the overlap. Typically it is more appropriate to report the percentage agreement:

$$Agr[\%] = 100 \max(\frac{\alpha}{n}, 1 - \frac{\alpha}{n}).$$

Note the agreement is always larger than or equal to 50%. In the case of k communities, the previous formula involves taking maximum over k! possible label assignments.

Integer Programs

A set $S \subset \mathbb{R}^n$ is called a *convex set* if for any points $x, y \in S$ the line segment $[x, y] := \{tx + (1-t)y, 0 < t < 1\}$ is included in S, $[x, y] \subset S$.

A function $f: S \to \mathbb{R}$ is called *convex* if for any $x, y \in S$ and $0 \le t \le 1$, $f(tx+(1-t)y) \le t f(x) + (1-t)f(y).$

Here S is supposed to be a convex set in \mathbb{R}^n .

Equivalently, f is convex if its epigraph is a convex set in \mathbb{R}^{n+1} . Epigraph: $\{(x, u) : x \in S, u > f(x)\}.$

A function $f: S \to \mathbb{R}$ is called *strictly convex* if for any $x \neq y \in S$ and 0 < t < 1, f(tx + (1-t)y) < tf(x) + (1-t)f(y).

Convex Optimization Problems

The general form of a convex optimization problem:

$$\min_{x \in S} f(x)$$

where S is a closed convex set, and f is a convex function on S. Properties:

- Any local minimum is a global minimum. The set of minimizers is a convex subset of S.
- ② If *f* is strictly convex, then the minimizer is unique: there is only one local minimizer.

In general S is defined by equality and inequality constraints:

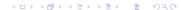
 $S = \{g_i(x) \le 0 \ , \ 1 \le i \le p\} \cap \{h_j(x) = 0 \ , \ 1 \le j \le m\}$. Typically h_j are required to be affine: $h_i(x) = a^T x + b$.

Convex Programs

The hiarchy of convex optimization problems:

- Linear Programs: Linear criterion with linear constraints
- Quadratic Programs: Quadratic Criterion with Linear Constraints;
 Quadratically Constrained Quadratic Problems (QCQP);
 Second-Order Cone Program (SOCP)
- Semi-Definite Programs(SDP)

Typical SDP:



Matlab package

Integer Programs

Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined" Convex Programming – à la Boyd [2].

 cvx_end

CVX SDP Example

cvx_end

References

S. Boyd, L. Vandenberghe, **Convex Optimization**, available online at: http://stanford.edu/boyd/cvxbook/