Lecture 6b: Phase Transition in Random Graphs

Radu Balan

April, 2021

Analytical Results

Distributions

Today we discuss about phase transition in random graphs. Recall on the Erdös-Rényi class $\mathcal{G}_{n, p}$ of random graphs, the probability mass function on $\mathcal{G}, P: \mathcal{G} \rightarrow[0,1]$, is obtained by assuming that, as random variables, edges are independent from one another, and each edge occurs with probability $p \in[0,1]$. Thus a graph $G \in \mathcal{G}$ with m vertices will have probability $P(G)$ given by

$$
P(G)=p^{m}(1-p)\binom{n}{2}-m
$$

Analytical Results

Distributions

Today we discuss about phase transition in random graphs. Recall on the Erdös-Rényi class $\mathcal{G}_{n, p}$ of random graphs, the probability mass function on $\mathcal{G}, P: \mathcal{G} \rightarrow[0,1]$, is obtained by assuming that, as random variables, edges are independent from one another, and each edge occurs with probability $p \in[0,1]$. Thus a graph $G \in \mathcal{G}$ with m vertices will have probability $P(G)$ given by

$$
P(G)=p^{m}(1-p)\binom{n}{2}-m
$$

Recall the expected number of q-cliques X_{q} is

$$
\mathbb{E}\left[X_{q}\right]=\binom{n}{q} p^{q(q-1) / 2}
$$

Analytical Results

Distributions

We shall also use $\Gamma^{n, m}$ the set of all graphs on n vertices with m edges.
The set $\Gamma^{n, m}$ has cardinal

$$
\binom{\binom{n}{2}}{m} .
$$

In $\Gamma^{n, m}$ each graph is equally probable.

Analytical Results

Cliques

The case of 3-cliques: $\mathbb{E}\left[X_{3}\right]=\theta n^{3} p^{3}\left(\theta \sim \frac{1}{6}\right)$.
The case of 4-cliques: $\mathbb{E}\left[X_{4}\right]=\theta n^{4} p^{6}\left(\theta \sim \frac{1}{24}\right)$.
The first problem we consider is thesize of the largest clique of a random graph.
Note, finding the size of the largest clique (called the clique number) is a NP-hard problem.

Analytical Results

Cliques

The case of 3-cliques: $\mathbb{E}\left[X_{3}\right]=\theta n^{3} p^{3}\left(\theta \sim \frac{1}{6}\right)$.
The case of 4-cliques: $\mathbb{E}\left[X_{4}\right]=\theta n^{4} p^{6}\left(\theta \sim \frac{1}{24}\right)$.
The first problem we consider is thesize of the largest clique of a random graph.
Note, finding the size of the largest clique (called the clique number) is a NP-hard problem.
Idea: Analyze p so that $\mathbb{E}\left[X_{q}\right] \approx 1$.

- For $p>\frac{1}{n}$ and large n we expect that graphs will have a 3-clique;
- For $p>\frac{1}{n^{2 / 3}}$ and large n, we expect that graphs will have a 4-clique;

Analytical Results

Cliques

The case of 3-cliques: $\mathbb{E}\left[X_{3}\right]=\theta n^{3} p^{3}\left(\theta \sim \frac{1}{6}\right)$.
The case of 4-cliques: $\mathbb{E}\left[X_{4}\right]=\theta n^{4} p^{6}\left(\theta \sim \frac{1}{24}\right)$.
The first problem we consider is thesize of the largest clique of a random graph.
Note, finding the size of the largest clique (called the clique number) is a NP-hard problem.
Idea: Analyze p so that $\mathbb{E}\left[X_{q}\right] \approx 1$.

- For $p>\frac{1}{n}$ and large n we expect that graphs will have a 3 -clique;
- For $p>\frac{1}{n^{2 / 3}}$ and large n, we expect that graphs will have a 4-clique; Question: How sharp are these thresholds?

Analytical Results

3-Cliques

Theorem

Let $p=p(n)$ be the edge probability in $\mathcal{G}_{n, p}$.
(1) If $p \gg \frac{1}{n}$ (i.e. $\lim _{n \rightarrow \infty} n p=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 3 - clique $] \rightarrow 1$.
(2) If $p \ll \frac{1}{n}$ (i.e. $\lim _{n \rightarrow \infty} n p=0$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 3 - clique $] \rightarrow 0$.

Analytical Results

3-Cliques

Theorem

Let $p=p(n)$ be the edge probability in $\mathcal{G}_{n, p}$.
(1) If $p \gg \frac{1}{n}$ (i.e. $\lim _{n \rightarrow \infty} n p=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a $3-$ clique $] \rightarrow 1$.
(2) If $p \ll \frac{1}{n}$ (i.e. $\lim _{n \rightarrow \infty} n p=0$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 3 - clique $] \rightarrow 0$.

Theorem

Let $m=m(n)$ be the number of edges in $\Gamma^{n, m}$.
(1) If $m \gg n$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n}=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 3 - clique $] \rightarrow 1$.
(2) If $m \ll n$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n}=0$) then
$\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a $3-$ clique $] \rightarrow 0$.

Analytical Results

4-Cliques

Theorem

Let $p=p(n)$ be the edge probability in $\mathcal{G}_{n, p}$.
(1) If $p \gg \frac{1}{n^{2 / 3}}\left(i . e . \lim _{n \rightarrow \infty} n^{2 / 3} p=\infty\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 4 - clique $] \rightarrow 1$.
(c) If $p \ll \frac{1}{n^{2 / 3}}\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} n^{2 / 3} p=0\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 4 - clique $] \rightarrow 0$.

Analytical Results

4-Cliques

Theorem

Let $p=p(n)$ be the edge probability in $\mathcal{G}_{n, p}$.
(1) If $p \gg \frac{1}{n^{2 / 3}}\left(i . e . \lim _{n \rightarrow \infty} n^{2 / 3} p=\infty\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 4 - clique $] \rightarrow 1$.
(2) If $p \ll \frac{1}{n^{2 / 3}}\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} n^{2 / 3} p=0\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a 4 - clique $] \rightarrow 0$.

Theorem

Let $m=m(n)$ be the number of edges in $\Gamma^{n, m}$.
(1) If $m \gg n^{4 / 3}$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n^{4 / 3}}=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 4 - clique $] \rightarrow 1$.
(2) If $m \ll n^{4 / 3}\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} \frac{m}{n^{4 / 3}}=0\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 4 - clique $] \rightarrow 0$.

Analytical Results

 q-Cliques
Theorem

Let $p=p(n)$ be the edge probability in $\mathcal{G}_{n, p}$. Let $q \geq 3$ be and integer.
(1) If $p \gg \frac{1}{n^{2 /(q-1)}}$ (i.e. $\left.\lim _{n \rightarrow \infty} n^{2 /(q-1)} p=\infty\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a q-clique $] \rightarrow 1$.
(2) If $p \ll \frac{1}{n^{2 /(q-1)}}$ (i.e. $\lim _{n \rightarrow \infty} n^{2 /(q-1)} p=0$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a q - clique $] \rightarrow 0$.

Analytical Results

q-Cliques

Theorem

Let $p=p(n)$ be the edge probability in $\mathcal{G}_{n, p}$. Let $q \geq 3$ be and integer.
(1) If $p \gg \frac{1}{n^{2 /(q-1)}}\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} n^{2 /(q-1)} p=\infty\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a $q-$ clique $] \rightarrow 1$.
(2) If $p \ll \frac{1}{n^{2 /(q-1)}}\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} n^{2 /(q-1)} p=0\right)$ then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \mathcal{G}_{n, p}\right.$ has a q - clique $] \rightarrow 0$.

Theorem

Let $m=m(n)$ be the number of edges in $\Gamma^{n, m}$. Let $q \geq 3$ be and integer.
(1) If $m \gg n^{2(q-2) /(q-1)}$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n^{2(q-2) /(q-1)}}=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a q-clique $] \rightarrow 1$.
(2) If $m \ll n^{2(q-2) /(q-1)}$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n^{2(q-1) /(q-1)}}=0$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a q-clique $] \rightarrow 0$.

Analytical Results

Markov and Chebyshev Inequalities
We want to control probabilities of the random event $X_{3}(G)>0$. Two important tools:
(1) (Markov's Inequality) Assume X is a non-negative random variable. Then $\operatorname{Prob}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$.
(2) (Chebyshev's Inequality) For any random variable X, $\operatorname{Prob}[|X-E[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$.
where $\mathbb{E}[X]$ is the mean of X, and $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-|\mathbb{E}[X]|^{2}$ is the variance of X.

Analytical Results

Markov and Chebyshev Inequalities
We want to control probabilities of the random event $X_{3}(G)>0$. Two important tools:
(1) (Markov's Inequality) Assume X is a non-negative random variable. Then $\operatorname{Prob}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$.
(2) (Chebyshev's Inequality) For any random variable X, $\operatorname{Prob}[|X-E[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$.
where $\mathbb{E}[X]$ is the mean of X, and $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-|\mathbb{E}[X]|^{2}$ is the variance of X. Quick Proof:

$$
\operatorname{Prob}[X \geq t]=\int_{t}^{\infty} p_{X}(x) d x \leq \frac{1}{t} \int_{t}^{\infty} x p_{X}(x) d x \leq \frac{\mathbb{E}[X]}{t}
$$

$\operatorname{Prob}[|X-\mathbb{E}[X]| \geq t]=P\left[|X-\mathbb{E}[X]|^{2} \geq t^{2}\right] \leq \frac{\mathbb{E}\left[|X-\mathbb{E}[X]|^{2}\right]}{t^{2}}=\frac{\operatorname{Var}[X]}{t^{2}}$.

Analytical Results

Proofs for the 3-clique case
For small probability: We shall use Markov's inequality to show $\operatorname{Prob}\left[X_{3}>0\right] \rightarrow 0$ when $p \ll \frac{1}{n}$:

$$
\operatorname{Prob}\left[X_{3}>0\right]=\operatorname{Prob}\left[X_{3} \geq 1\right] \leq \frac{E\left[X_{3}\right]}{1}=\frac{n(n-1)(n-2)}{6} p^{3}=\theta n^{3} p^{3} \rightarrow 0 .
$$

Analytical Results

Proofs for the 3-clique case
For small probability: We shall use Markov's inequality to show $\operatorname{Prob}\left[X_{3}>0\right] \rightarrow 0$ when $p \ll \frac{1}{n}:$
$\operatorname{Prob}\left[X_{3}>0\right]=\operatorname{Prob}\left[X_{3} \geq 1\right] \leq \frac{E\left[X_{3}\right]}{1}=\frac{n(n-1)(n-2)}{6} p^{3}=\theta n^{3} p^{3} \rightarrow 0$.
For large probability: Since $\mathbb{E}\left[X_{3}\right] \rightarrow \infty$ it follows that $\operatorname{Prob}\left[X_{3}>0\right]>0$. We need to show that $\operatorname{Prob}\left[X_{3}=0\right] \rightarrow 0$. By Chebyshev's inequality:

$$
\operatorname{Prob}\left[X_{3}=0\right] \leq \operatorname{Prob}\left[\left|X_{3}-\mathbb{E}\left[X_{3}\right]\right| \geq \mathbb{E}\left[X_{3}\right]\right] \leq \frac{\operatorname{Var}\left[X_{3}\right]}{\left|\mathbb{E}\left[X_{3}\right]\right|^{2}}
$$

Analytical Results

Proofs for the 3-clique case
For small probability: We shall use Markov's inequality to show $\operatorname{Prob}\left[X_{3}>0\right] \rightarrow 0$ when $p \ll \frac{1}{n}:$
$\operatorname{Prob}\left[X_{3}>0\right]=\operatorname{Prob}\left[X_{3} \geq 1\right] \leq \frac{E\left[X_{3}\right]}{1}=\frac{n(n-1)(n-2)}{6} p^{3}=\theta n^{3} p^{3} \rightarrow 0$.
For large probability: Since $\mathbb{E}\left[X_{3}\right] \rightarrow \infty$ it follows that $\operatorname{Prob}\left[X_{3}>0\right]>0$. We need to show that $\operatorname{Prob}\left[X_{3}=0\right] \rightarrow 0$. By Chebyshev's inequality:

$$
\operatorname{Prob}\left[X_{3}=0\right] \leq \operatorname{Prob}\left[\left|X_{3}-\mathbb{E}\left[X_{3}\right]\right| \geq \mathbb{E}\left[X_{3}\right]\right] \leq \frac{\operatorname{Var}\left[X_{3}\right]}{\left|\mathbb{E}\left[X_{3}\right]\right|^{2}}
$$

Need the variance of $X_{3}=\sum_{(i, j, k) \in S_{3}} 1_{i, j, k}$,

$$
X_{3}^{2}=\sum_{(i, j, k) \in S_{3}} \sum_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in S_{3}} 1_{i, j, k} 1_{i^{\prime}, j^{\prime}, k^{\prime}}
$$

Analytical Results

Proofs for the 3 -clique case

$$
\begin{aligned}
X_{3}^{2}= & \sum_{(i, j, k) \in S_{3}(n)} 1_{i, j, k}+\sum_{(i, j, k) \in S_{3}(n)} \sum_{l \in S_{1}(n-3)}\left(1_{i, j, k} 1_{i, j, l}+1_{i, j, k} 1_{j, k, l}+1_{i, j, k} 1_{k, i, l}\right)+ \\
& +\sum_{(i, j, k) \in S_{3}(n)} \sum_{u, v \in S_{2}(n-3)}\left(1_{i, j, k} 1_{i, u, v}+1_{i, j, k} 1_{j, u, v}+1_{i, j, k} 1_{k, u, v}\right)+ \\
& +\sum_{(i, j, k) \in S_{3}(n)} \sum_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in S_{3}(n-3)} 1_{i, j, k} 1_{i^{\prime}, j^{\prime}, k^{\prime}}
\end{aligned}
$$

Analytical Results

Proofs for the 3-clique case

$$
\begin{aligned}
X_{3}^{2}= & \sum_{(i, j, k) \in S_{3}(n)} 1_{i, j, k}+\sum_{(i, j, k) \in S_{3}(n)} \sum_{l \in S_{1}(n-3)}\left(1_{i, j, k} 1_{i, j, I}+1_{i, j, k} 1_{j, k, I}+1_{i, j, k} 1_{k, i, l}\right)+ \\
& +\sum_{(i, j, k) \in S_{3}(n)} \sum_{u, v \in S_{2}(n-3)}\left(1_{i, j, k} 1_{i, u, v}+1_{i, j, k} 1_{j, u, v}+1_{i, j, k} 1_{k, u, v}\right)+ \\
& +\sum_{(i, j, k) \in S_{3}(n)} \sum_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in S_{3}(n-3)} 1_{i, j, k} 1_{i^{\prime}, j^{\prime}, k^{\prime}} \\
\mathbb{E}\left[X_{3}^{2}\right]= & \left|S_{3}\right| p^{3}+3\left|S_{3}\right|(n-3) p^{5}+3\left|S_{3}\right|\binom{n-3}{2} p^{6}+\left|S_{3}\right|\binom{n-3}{3} p^{6} .
\end{aligned}
$$

Thus

$$
\operatorname{Var}\left[X_{3}\right]=\mathbb{E}\left[X_{3}^{2}\right]-\left|\mathbb{E}\left[X_{3}\right]\right|^{2}=\ldots=\theta\left(n^{3} p^{3}+n^{4} p^{5}+n^{5} p^{6}\right)
$$

Analytical Results

Proofs for the 3-clique case
and:

$$
\operatorname{Prob}\left[X_{3}=0\right] \leq \frac{\theta\left(n^{3} p^{3}+n^{4} p^{5}+n^{5} p^{6}\right)}{\theta\left(n^{6} p^{6}\right)}=\frac{1}{(n p)^{3}}+\frac{1}{n} \rightarrow 0 .
$$

Analytical Results

Proofs for the 3-clique case
and:

$$
\operatorname{Prob}\left[X_{3}=0\right] \leq \frac{\theta\left(n^{3} p^{3}+n^{4} p^{5}+n^{5} p^{6}\right)}{\theta\left(n^{6} p^{6}\right)}=\frac{1}{(n p)^{3}}+\frac{1}{n} \rightarrow 0
$$

Similar proofs for the other cases (4-cliques and q-cliques).

Analytical Results

Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson random variable X with parameter λ has p.m.f. $\operatorname{Prob}[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!}$.
Theorem
In $\mathcal{G}_{n, p}$,
(1) For $p=\frac{c}{n}, X_{3}$ is asymptotically Poisson with parameter $\lambda=c^{3} / 6$.
(2) For $p=\frac{c}{n^{2 / 3}}, X_{4}$ is asymptotically Poisson with parameter $\lambda=c^{6} / 24$.

Analytical Results

Behavior at the threshold
In general we obtain a "coarse threshold". Recall a Poisson random variable X with parameter λ has p.m.f. $\operatorname{Prob}[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!}$.

Theorem

In $\mathcal{G}_{n, p}$,
(1) For $p=\frac{c}{n}, X_{3}$ is asymptotically Poisson with parameter $\lambda=c^{3} / 6$.
(2) For $p=\frac{c}{n^{2 / 3}}, X_{4}$ is asymptotically Poisson with parameter $\lambda=c^{6} / 24$.

Theorem
In $\Gamma^{n, m}$,
(1) For $m=c n, X_{3}$ is asymptotically Poisson with parameter $\lambda=4 c^{3} / 3$.
(2) For $m=c n^{4 / 3}, X_{4}$ is asymptotically Poisson with parameter

$$
\lambda=8 c^{6} / 3 .
$$

Analytical Results

Connected Components
$\mathcal{G}_{n, p}$ class of random graphs has a remarkable property in regards to the largest connected component. We shall express the result in the class $\Gamma^{n, m}$.

Analytical Results

Connected Components

Theorem

(1) Let $m=m(n)$ satisfies $m \ll \frac{1}{2} n \log (n)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=0
$$

(2) Let $m=m(n)$ satisfies $m \gg \frac{1}{2} n \log (n)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=1
$$

Analytical Results

Connected Components

Theorem

(1) Let $m=m(n)$ satisfies $m \ll \frac{1}{2} n \log (n)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=0
$$

(2) Let $m=m(n)$ satisfies $m \gg \frac{1}{2} n \log (n)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=1
$$

(3) Assume $m=\frac{1}{2} n \log (n)+t n+o(n)$, where $o(n) \ll n$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=e^{-e^{-2 t}}
$$

Analytical Results

Connected Components

Theorem

(1) Let $m=m(n)$ satisfies $m \ll \frac{1}{2} n \log (n)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=0
$$

(2) Let $m=m(n)$ satisfies $m \gg \frac{1}{2} n \log (n)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=1
$$

(3) Assume $m=\frac{1}{2} n \log (n)+t n+o(n)$, where $o(n) \ll n$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m} \text { is connected }\right]=e^{-e^{-2 t}}
$$

In this case $\frac{1}{2} n \log (n)$ is known as a strong threshold.

Numerical Results

3-cliques \& Connectivity results

Results for $n=1000$ vertices.
(1) 3-cliques. Recall $\mathbb{E}\left[X_{3}\right] \sim m^{3}$
(2) Connectivity. Recall the connectivity threshold is $\frac{1}{2} n \log (n)=3454$.

Numerical Results

3-cliques

Numerical Results

3-cliques

Numerical Results

Connectivity

References

目 B．Bollobás，Graph Theory．An Introductory Course， Springer－Verlag 1979．99（25），15879－15882（2002）．

回 F．Chung，Spectral Graph Theory，AMS 1997.
F．Chung，L．Lu，The average distances in random graphs with given expected degrees，Proc．Nat．Acad．Sci． 2002.

R R．Diestel，Graph Theory，3rd Edition，Springer－Verlag 2005.
固 P．Erdös，A．Rényi，On The Evolution of Random Graphs
（ G．Grimmett，Probability on Graphs．Random Processes on Graphs and Lattices，Cambridge Press 2010.

圊 J．Leskovec，J．Kleinberg，C．Faloutsos，Graph Evolution：Densification and Shrinking Diameters，ACM Trans．on Knowl．Disc．Data，1（1） 2007.

