Lecture 4：Alignment Problems

Radu Balan

University of Maryland

March 2， 2021

Alignment Problems

Assume we have two geometric graphs, $\mathbb{X}=\left\{x_{1}, \cdots, x_{n}\right\} \subset \mathbb{R}^{d}$ and $\mathbb{Y}=\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$. Today we discuss how to best align these two sets of points. Specifically we discuss the following alignment problems:
(1) Procrustes problem: Find the rotation transformation that maps one set of points closest to the other set of points;
(2) Classical Procrustes problem: Find the translation and rotation transformations that map one set of points closest to the other set of points;
(3) Full alignment problem: Find the translation, rotation and scaling that map optimally one set of points to the other set of points;
We shall not discuss the graph matching problem, a related but much harder (NP-hard) problem.

Alignment Problems

The Procrustes Problem

Given matrices $X, Y \in \mathbb{R}^{d \times n}$ whose columns are the n points from each set \mathbb{X}, \mathbb{Y}, find an orthogonal matrix $Q \in O(d)$ that:

$$
\underset{Q \in O(d)}{\operatorname{minimize}}\|Y-Q X\|_{F}^{2}
$$

where

$$
\|A\|_{F}^{2}=\operatorname{trace}\left(A^{T} A\right)=\sum_{i, j}\left|A_{i, j}\right|^{2}
$$

$$
\left\|\left[\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -2
\end{array}\right]\right\|_{F}^{2}=11
$$

Alignment Problems

The Classical Procrustes Problem

Given matrices $X, Y \in \mathbb{R}^{d \times n}$ whose columns are the n points from each set \mathbb{X}, \mathbb{Y}, find an orthogonal matrix $Q \in O(d)$ and a vector $z \in \mathbb{R}^{d}$ that:

$$
\underset{\substack{\operatorname{minimize}}}{\underset{z \in \mathbb{R}^{d}}{ }}
$$

Alignment Problems

The Full Alignment Problem

Given matrices $X, Y \in \mathbb{R}^{d \times n}$ whose columns are the n points from each set \mathbb{X}, \mathbb{Y}, find an orthogonal matrix $Q \in O(d)$, a vector $z \in \mathbb{R}^{d}$ and a positive scalar $a>0$ that:

$$
\operatorname{minimize} \quad\left\|Y-a Q\left(X-z 1^{T}\right)\right\|_{F}^{2}
$$

$$
Q \in O(d)
$$

$$
\begin{gathered}
z \in \mathbb{R}^{d} \\
a>0
\end{gathered}
$$

The Optimization Problem

Given matrices $X, Y \in \mathbb{R}^{d \times n}$ whose columns are the n points from each set \mathbb{X}, \mathbb{Y}, find an orthogonal matrix $Q \in O(d)$ that:

$$
\underset{Q \in O(d)}{\operatorname{minimize}}\|Y-Q X\|_{F}^{2}
$$

where

$$
\|A\|_{F}^{2}=\operatorname{trace}\left(A^{T} A\right)=\sum_{i, j}\left|A_{i, j}\right|^{2}
$$

$$
\left\|\left[\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -2
\end{array}\right]\right\|_{F}^{2}=11
$$

The solution to the Procrustes problem

Algorithm (Schönemann 1964)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$.
(1) Compute the $d \times d$ matrix $R=X Y^{T}$;
(2) Compute the Singular Value Decomposition (SVD), $R=U \Sigma V^{\top}$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{d}\right)$ is the diagonal matrix with singular values $\sigma_{1}, \cdots, \sigma_{d} \geq 0$ on its diagonal;
(3) Compute $Q=V U^{T}$.

Output: Orthogonal matrix $Q \in O(d) \subset \mathbb{R}^{d \times d}$.

Derivation of the solution

The derivation of the solution is as follows. First recall a matrix $Q \in \mathbb{R}^{d \times d}$ is said orthogonal if $Q^{-1}=Q^{T}$. Equivalently, $Q^{T} Q=I_{d}$ or $Q Q^{T}=I_{d}$. Then note the set of orthogonal matrices $O(d)$ forms a group: in particular, the product of two orthogonal matrices is still an orthogonal matrix: if $Q_{1}, Q_{2} \in O(d)$ then

$$
\left(Q_{1} Q_{2}\right)^{T}\left(Q_{1} Q_{2}\right)=Q_{2}^{T} Q_{1}^{T} Q_{1} Q_{2}=Q_{2}^{T} I_{d} Q_{2}=Q_{2}^{T} Q_{2}=I_{d} .
$$

Recall also that $\operatorname{trace}(A B)=\operatorname{trace}(B A)$.

1. We start by expanding the objective function:
$\|Y-Q X\|_{F}^{2}=\operatorname{trace}\left((Y-Q X)^{T}(Y-Q X)\right)=\operatorname{trace}\left(Y^{T} Y\right)-\operatorname{trace}\left(X^{T} Q^{T} Y\right)-$
$-\operatorname{trace}\left(Y^{\top} Q X\right)+\operatorname{trace}\left(X^{\top} Q^{T} Q X\right)=\|Y\|_{F}^{2}-\operatorname{trace}\left(Y^{\top} Q X\right)-\operatorname{trace}\left(Y^{\top} Q X\right)+$

$$
+\operatorname{trace}\left(X^{T} X\right)=\|Y\|_{F}^{2}-2 \operatorname{trace}\left(Q X Y^{T}\right)+\|X\|_{F}^{2} .
$$

Derivation of the solution - 2

$$
\|Y-Q X\|_{F}^{2}=\|Y\|_{F}^{2}-2 \operatorname{trace}\left(Q X Y^{T}\right)+\|X\|_{F}^{2}
$$

Then:

$$
\begin{gathered}
\operatorname{minimize} \\
Q \in O(d)
\end{gathered}\|Y-Q X\|_{F}^{2} \Leftrightarrow \underset{Q \in O(d)}{\text { maximize }} \operatorname{trace}\left(Q X Y^{T}\right)
$$

2. The SVD decomposition of matrix $R=X Y^{\top}$. One can form two symmetric matrices out of $R: R^{T} R$ and $R R^{T}$. Each is positive semidefinite and diagonalizes: $R^{T} R=V D V^{T}$ and $R R^{T}=U E U^{T}$, where both U and V are orthogonal matrices, and D, E are diagonal matrices. Fact: The eigenvalues of $R^{T} R$ and $R R^{T}$ are the same. Furthermore, if v is an eigenvector for $R^{T} R$ then $R v$ is an eigenvector for $R R^{T}$. Why: Let $\left(v, \sigma^{2}\right)$ be an eigenpair for $R^{T} R: R^{T} R v=\sigma^{2} v$. Then $R R^{T} R v=\sigma^{2} R v$. This shows that $\left(R v, \sigma^{2}\right)$ is an eigenpair for $R R^{T}$. Similarly, if $\left(u, \sigma^{2}\right)$ is an eigenpair for $R R^{T}: R R^{T} u=\sigma^{2} u$, then $R^{T} R R^{T} u=\sigma_{*}^{2} R^{T} u$.

Derivation of the solution - 3

Thus (R^{T}, σ^{2}) is an eigenpair for $R^{T} R$.
Consequence: $D=E$. Let $\Sigma^{2}=D=E$ (that is, $\Sigma=D^{1 / 2}$). It follows, the SVD decomposition of R is given by $R=U \Sigma V^{T}$.
The maximization criterion becomes:

$$
\operatorname{trace}\left(Q X Y^{\top}\right)=\operatorname{trace}(Q R)=\operatorname{trace}\left(Q U \Sigma V^{T}\right)=\operatorname{trace}\left(V^{T} Q U \Sigma\right)
$$

Let $\tilde{Q}=V^{T} Q U$. Then we need to maximize

$$
\begin{aligned}
& \operatorname{maximize} \quad \operatorname{trace}(\tilde{Q} \Sigma) \\
& \tilde{Q} \in O(d)
\end{aligned}
$$

Let $\Sigma=\operatorname{diag}\left(\sigma_{k}\right)_{1 \leq k \leq d}$ and $\tilde{Q}=\left(q_{i, j}\right)_{1 \leq i, j \leq d}$. Then

$$
\operatorname{trace}(\tilde{Q} \Sigma)=\sum_{k=1}^{d} q_{k, k} \sigma_{k}
$$

Derivation of the solution - 4

Since $\sum_{j=1}^{d}\left|q_{k, j}\right|^{2}=1$ it follows the maximum of the sum above is achieved when $q_{1,1}=\cdots=q_{d, d}=1$. In this case $\tilde{Q}=I_{d}$ and $\operatorname{trace}(\tilde{Q} \Sigma)=\operatorname{trace}(\Sigma)$.
Thus $V^{T} Q U=I_{d}$ and hence $Q=V U^{T}$.
The alignment error (mismatch) is given by:

$$
E r r=Y-Q X, \quad\|E r r\|_{F}^{2}=\|X\|_{F}^{2}+\|Y\|_{F}^{2}-2 \operatorname{trace}(\Sigma)
$$

Note $R=X Y^{T}$ and $R^{T} R=V \Sigma^{2} V^{T}$. Thus Σ^{2} is the diagonal form of $R^{T} R=Y X^{T} X Y^{T}$. It follows $\operatorname{trace}(\Sigma)=\operatorname{trace}\left(\left(R^{T} R\right)^{1 / 2}\right)$ and

$$
\|E r r\|_{F}^{2}=\operatorname{trace}\left(X X^{T}\right)+\operatorname{trace}\left(Y Y^{T}\right)-2 \operatorname{trace}\left(\left(Y X^{T} X Y^{T}\right)^{1 / 2}\right)
$$

caveat: exponent $1 / 2$ means matrix square root.

The Optimization Problem

Given matrices $X, Y \in \mathbb{R}^{d \times n}$ whose columns are the n points from each set \mathbb{X}, \mathbb{Y}, find an orthogonal matrix $Q \in O(d)$ and a vector $z \in \mathbb{R}^{d}$ that:

$$
\underset{\substack{\operatorname{minimize} \\ z \in \mathbb{R}^{d}}}{ } \quad\left\|Y-Q\left(X-z 1^{T}\right)\right\|_{F}^{2}
$$

The solution to the classical Procrustes problem

Algorithm (Rotation-Translation alignment)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$.
(1) Compute centers $\bar{x}=\frac{1}{n} X \cdot 1, \bar{y}=\frac{1}{n} Y \cdot 1$ and recenter data $\tilde{X}=X-\bar{x} \cdot 1^{T}, \tilde{Y}=Y-\bar{y} \cdot 1^{T}$.
(2) Compute the $d \times d$ matrix $R=\tilde{X} \tilde{Y}^{T}$;
(3) Compute the Singular Value Decomposition (SVD), $R=U \Sigma V^{T}$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{d}\right)$ is the diagonal matrix with singular values $\sigma_{1}, \cdots, \sigma_{d} \geq 0$ on its diagonal;
(9) Compute $Q=V U^{T}$ and $z=\bar{x}-Q^{T} \bar{y}$.

Output: Orthogonal matrix $Q \in O(d) \subset \mathbb{R}^{d \times d}$, translation vector $z \in \mathbb{R}^{d}$.

Derivation of the solution

We start by introducing a new vector $w=\bar{y}-Q(\bar{x}-z)$ so that

$$
Y-Q\left(X-z 1^{T}\right)=\tilde{Y}-Q \tilde{X}+w 1^{T}
$$

Then expand the objective function:

$$
\begin{gathered}
\left\|Y-Q\left(X-z 1^{T}\right)\right\|_{F}^{2}=\|\tilde{Y}\|_{F}^{2}+\|\tilde{X}\|_{F}^{2}+\left\|w 1^{T}\right\|_{F}^{2}-2 \operatorname{trace}\left(Q \tilde{X} \tilde{Y}^{T}\right)+ \\
+2 \operatorname{trace}\left(w 1^{T} \tilde{Y}\right)-2 \operatorname{trace}\left(Q \tilde{X} 1 w^{T}\right)
\end{gathered}
$$

But: $\tilde{X}_{1}=0$ and $\tilde{Y}_{1}=0$ because of the centering. It follows:

$$
\left\|Y-Q\left(X-z 1^{T}\right)\right\|_{F}^{2}=\|\tilde{Y}\|_{F}^{2}+\|\tilde{X}\|_{F}^{2}+n\|w\|^{2}-2 \operatorname{trace}(Q R)
$$

where $R=\tilde{X} \tilde{Y}^{T}$. Then the minimum of this criterion is achieved at $w=0$ and Q that maximizes trace $(Q R)$, hence the previous algorithm.

The Optimization Problem

Given matrices $X, Y \in \mathbb{R}^{d \times n}$ whose columns are the n points from each set \mathbb{X}, \mathbb{Y}, find an orthogonal matrix $Q \in O(d)$, a vector $z \in \mathbb{R}^{d}$ and a positive scalar $a>0$ that:

$$
\begin{aligned}
& \underset{Q \in O(d)}{\operatorname{minimize}}\left\|Y-a Q\left(X-z 1^{T}\right)\right\|_{F}^{2} \\
& z \in \mathbb{R}^{d} \\
& \quad a>0
\end{aligned}
$$

The solution to the full alignment problem

Algorithm (Full alignment)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$.
(1) Compute centers $\bar{X}=\frac{1}{n} X \cdot 1, \bar{y}=\frac{1}{n} Y \cdot 1$ and recenter data $\tilde{X}=X-\bar{x} \cdot 1^{T}, \tilde{Y}=Y-\bar{y} \cdot 1^{T}$.
(2) Compute the $d \times d$ matrix $R=\tilde{X} \tilde{Y}^{T}$;
(3) Compute the Singular Value Decomposition (SVD), $R=U \Sigma V^{T}$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{d}\right)$ is the diagonal matrix with singular values $\sigma_{1}, \cdots, \sigma_{d} \geq 0$ on its diagonal;
(4. Compute $Q=V U^{T}, a=\frac{\operatorname{trace}(\Sigma)}{\|\tilde{X}\|_{F}^{2}}$ and $z=\bar{x}-\frac{1}{a} Q^{T} \bar{y}$.

Output: Orthogonal matrix $Q \in O(d) \subset \mathbb{R}^{d \times d}$, translation vector $z \in \mathbb{R}^{d}$ and $a>0$.

Derivation of the solution

We start by introducing a new vector $w=\bar{y}-a Q(\bar{x}-z)$ so that

$$
Y-a Q\left(X-z 1^{T}\right)=\tilde{Y}-a Q \tilde{X}+w 1^{T}
$$

Then expand the objective function:

$$
\begin{gathered}
\left\|Y-a Q\left(X-z 1^{T}\right)\right\|_{F}^{2}=\|\tilde{Y}\|_{F}^{2}+a^{2}\|\tilde{X}\|_{F}^{2}+\left\|w 1^{T}\right\|_{F}^{2}-2 a \operatorname{trace}\left(Q \tilde{X} \tilde{Y}^{T}\right)+ \\
+2 \operatorname{trace}\left(w 1^{T} \tilde{Y}\right)-2 a \operatorname{trace}\left(Q \tilde{X} 1 w^{T}\right)
\end{gathered}
$$

But: $\tilde{X}_{1}=0$ and $\tilde{Y}_{1}=0$ because of the centering. It follows:

$$
\left\|Y-Q\left(X-z 1^{T}\right)\right\|_{F}^{2}=\|\tilde{Y}\|_{F}^{2}+a^{2}\|\tilde{X}\|_{F}^{2}+n\|w\|^{2}-2 \operatorname{atrace}(Q R)
$$

where $R=\tilde{X} \tilde{Y}^{T}$. Then the minimum of this criterion is achieved at $w=0, Q$ the orthogonal matrix that maximizes trace $(Q R)$, and a the minimizer of $\|\tilde{X}\|_{F}^{2} a^{2}-2 a \operatorname{trace}(\Sigma)$. The solution follows.

References

圊 Wikipedia:
https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

