
Lecture 3: Geometric Graph Embeddings with Partial
Data

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC
University of Maryland, College Park, MD

February 23, 2021



Full Data Embeddings Partial Data Embeddings Convex Optimizations

Embedding Problems
Problem Statement and Ambiguities

Main Problem
Isometric Embedding: Given the set of all squared-distances
{d2

i ,j ; 1 ≤ i , j ≤ n} find a dimension d and a set of n points
{y1, · · · , yn} ⊂ Rd so that ‖yi − yj‖2 = d2

i ,j , 1 ≤ i , j ≤ n .

Main Problem
Nearly Isometric Embedding: Given the set of all squared-distances
{d2

i ,j ; 1 ≤ i , j ≤ n} find a dimension d and a set of n points
{y1, · · · , yn} ⊂ Rd so that ‖yi − yj‖2 ≈ d2

i ,j , 1 ≤ i , j ≤ n .

Note the set of points is unique up to rigid transformations: translations,
rotations and reflections: Rd × O(d). This means two sets of n points in
Rd have the same pairwise distances if and only if one set is obtained from
the other set by a combination of rigid transformations.
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Isometric Embeddings with Partial Data
Dimension estimation

Consider now the case that only a subset of the pairwise squared-distances
are known, indexed by Θ. Assume that only m distances (out of
n(n− 1)/2 possible values) are known – this means the cardinal of Θ is m.

Remark
Minimum number of measurements: m ≥ nd − d(d+1)

2 , because: nd is the
number of degrees of freedom (coordinates) needed to describe n points in
Rd ; d(d + 1)/2 is the the dimension of the Lie group of Euclidean
transformations: translations in Rd of dimension d and orthogonal
transformations O(d) of dimension d(d − 1)/2 (the dimension of the Lie
algebra of anti-symmetric matrices).

In the absence of noise, for sufficiently large m but less than n(n − 1)/2,
exact (i.e. isometric) embedding is possible.
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Geometry of the (Lie) Group O(d)
Recall the definition of orthogonal matrices: A matrix U ∈ Rd×d is called
orthogonal if UUT = Id . Note this means the matrix U is invertible,
U−1 = UT and therefore UT U = Id . Hence if U is an orthogonal matrix
so is UT .
Let O(n) denote the set of all d × d orthogonal matrices. Notice that it
satisfies the following properties:

1 Id := eye(d) is an orthogonal matrix, Id ∈ O(d);
2 If U ∈ O(d) then UT ∈ O(d) and UUT = UT U = Id ;
3 If U,V ,W ∈ O(d) then:

(UV )W = U(VW )
4 If U,V ∈ O(d) then UV ∈ O(d) because:

(UV )(UV )T = UVV T UT = UUT = Id
All these properties combined say that (O(d), ·) forms a group. Here ·
denotes the matrix multiplication.
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In addition to abstract algebraic properties, the O(d) group admits more
analytical and geometric properties. All these make O(d) a prime example
of a Lie group. Specifically:

1 the set O(d) has the structure of a manifold (generalization of the
concepts of ”curve” and ”surface” from R3);

2 the matrix multiplication and inversion are differentiable maps.

Two properties of matrix determinant:
i) For any A,B ∈ Rd×d , det(AB) = det(A)det(B).
ii) For any A ∈ Rd×d , det(AT ) = det(A).
This implies: for any U ∈ O(d),

1 = det(I) = det(UUT ) = det(U)det(UT ) = (det(U))2

Thus det(U) = ±1. We define:

SO(d) = {U ∈ O(d) ; det(U) = 1} = {U ∈ Rd×d , UUT = I , det(U) = 1}

called the special orthogonal group of order d .
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SO(d) represents the connected component of O(d), that is, the set of
orthogonal matrices that can be connected by a continuous path to the
identity. As we shall see later, the continuous path can be constructed
using the matrix exponential map. The complement set O(d) \ SO(d) is
also a connected component (but not a subgroup of O(d)).
Consider a differentiable path γ : (−1, 1)→ SO(d), γ(0) = I. We want to
find the tangent vector of this curve at t = 0. The set of such vectors is
called the tangent space to manifold SO(d) (and implicitly to manifold
O(d)). We denote this tangent space by so(d).
Let’s compute them:

γ(t)γ(t)T = I → d
dt

(
γ(t)γ(t)T

)
|t=0 = 0

Using the product rule and the fact that γ(0) = I, the above identity
reduces to:

dγ(t)
dt (0) + dγ(t)

dt (0)T = 0.
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Hence:
so(d) = {A ∈ Rd×d , A + AT = 0}

is the set of anti-symmetric matrices. We are going to use this information
(the tangent space) to determine the dimension of the group O(d), or
SO(d).
First, notice the following properties:

1 so(d) is a vector space: if A,B are anti-symmetric matrices so is
A + B as well as cA, for anay c ∈ R.

2 Since so(d) is a vector space, subspace of Rd×d , it has a finite
dimension. Let p = dim(so(d)). Since all anti-symmetric matrices
have 0 on the main diagonal, and the upper elements are repeated on
the lower half of the matrix, with sign changed, the dimension of
so(d) must be

p = dim(so(d)) = d(d − 1)
2
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In addition to the vector space structure, so(d) has an additional internal
operation, the Lie bracket (or the commutator):

A,B ∈ so(d)→ [A,B] = AB − BA ∈ so(d)

It is bilinear, anti-symmetric and satisfies a 3-term identity (called the
Jacobi identity): for every A,B,C ∈ so(d), α, β, γ ∈ R,

1 [αA +βB,C ] = α[A,C ] +β[B,C ] , [A, βB + γC ] = β[A,B] + γ[A,C ];
2 [A,A] = 0
3 [A, [B,C ]] + [B, [C ,A]] + [C , [A,B]] = 0

These tree properties define a Lie algebra. Thus so(d) is a Lie algebra of
dimension d(d−1)

2 .
In general any Lie group (G , ·) admits a Lie algebra (g ,+, [, ]) of some
dimension p. The converse is also true (one of Lie theorems).
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Isometric Embeddings with Partial Data
Linear constraints

Given any set of vectors {y1, · · · , yn} and their associated matrix
Y = [y1| · · · |yn] their invariant to the action of the rigid transformations
(translations, rotations, and reflections) is the Gram matrix of the centered
system (L is an orthogonal projection):

G = (I − 1
n 1 · 1T )Y T Y (I − 1

n 1 · 1T ) =: LY T YL , L = I − 1
n 1 · 1T .

On the other hand, the distance between points i and j can be computed
by:

d2
i ,j = ‖yi − yj‖2 = Gi ,i − Gi ,j + Gj,j − Gj,i = eT

ij Geij

where
eij = δi − δj = [0 · · · 0 1 · · · − 1 0 · · · 0]T

where 1 is on position i , −1 is on position j , and 0 everywhere else.
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Almost Isometric Embeddings with Partial Data
The SDP Problem

Reference [3] proposes to find the matrix G by solving the following
Semi-Definite Program:

min
G = GT ≥ 0

G1 = 0
|〈Geij , eij〉 − d̃2

i ,j | ≤ ε , (i , j) ∈ Θ

trace(G)

where d̃2
i ,j are noisy estimates di ,j and ε is the maximum noise level. The

trace promotes low rank in this optimization. Overall this is a feasibility
problem: Decrease ε to the minimum value where a feasible solution
exists. With probability 1 that is unique.
How to do this: Use CVX with Matlab.
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Nearly Isometric Embeddings with Partial Data
Stability to Noise

Let Θr = {(i , j) , ‖yi − yj‖ ≤ r} be the set of all pairs of points at distance at most r .

Theorem (Javanmard, Montanari[3])
Let {y1, · · · , yn} be n nodes distributed uniformly at random in the hypercube [−0.5, 0.5]d .
Further, assume that we are given noisy measurement of all distances in Θr for some
r ≥ 10

√
d(log(n)/n)1/d and the induced geometric graph of edges is connected. Let

d̃2
i,j = d2

i,j + νi,j with |νi,j | ≤ ε. Then with high probability, the error distance between the
estimated Ŷ = [ŷ1, | · · · |ŷn] returned by the SDP algorithm and the true coordinate matrix
Y = [y1| · · · |yn] is upper bounded as

‖LŶ T Ŷ L− LY T YL‖1 ≤ C1(nrd )5 ε

r4 .

Conversely, w.h.p., there exist adversarial measurement errors {zi,j}(i,j)∈Θr such that

‖LŶ T Ŷ L− LY T YL‖1 ≥ C2min(1,
ε

r4 ).

Here, C1 and C2 denote universal constants that depend only on d, and L = I − 1
n 1 · 1T .
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Convex Sets. Convex Functions

A set S ⊂ Rn is called a convex set if for any points x , y ∈ S the line
segment [x , y ] := {tx + (1− t)y , 0 ≤ t ≤ 1} is included in S, [x , y ] ⊂ S.

A function f : S → R is called convex if for any x , y ∈ S and 0 ≤ t ≤ 1,
f (t x + (1− t)y) ≤ t f (x) + (1− t)f (y).
Here S is supposed to be a convex set in Rn.
Equivalently, f is convex if its epigraph is a convex set in Rn+1. Epigraph:
{(x , u) ; x ∈ S, u ≥ f (x)}.

A function f : S → R is called strictly convex if for any x 6= y ∈ S and
0 < t < 1, f (t x + (1− t)y) < t f (x) + (1− t)f (y).
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Convex Optimization Problems

The general form of a convex optimization problem:

min
x∈S

f (x)

where S is a closed convex set, and f is a convex function on S.
Properties:

1 Any local minimum is a global minimum. The set of minimizers is a
convex subset of S.

2 If f is strictly convex, then the minimizer is unique: there is only one
local minimizer.

In general S is defined by equality and inequality constraints:
S = {gi (x) ≤ 0 , 1 ≤ i ≤ p} ∩ {hj(x) = 0 , 1 ≤ j ≤ m}. Typically hj are
required to be affine: hj(x) = aT x + b.
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Convex Programs

The hiarchy of convex optimization problems:
1 Linear Programs: Linear criterion with linear constraints
2 Quadratic Programs: Quadratic Criterion with Linear Constraints;

Quadratically Constrained Quadratic Problems (QCQP);
Second-Order Cone Program (SOCP)

3 Semi-Definite Programs(SDP)
Typical SDP:

min
X = X T ≥ 0

trace(XBk) = yk , 1 ≤ k ≤ p
trace(XCj) ≤ zj , 1 ≤ j ≤ m

trace(XA)
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CVX
Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows ”Disciplined” Convex
Programming – à la Boyd [1].

m = 20; n = 10; p = 4;
A = randn(m,n); b = randn(m,1);
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin

variable x(n);
minimize( norm( A * x - b, 2 ) )
subject to

C * x == d;
norm( x, Inf ) <= e;

cvx_end

min
Cx = d
‖x‖∞ ≤ e

‖Ax − b‖
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CVX
SDP Example

n = 10;
E1 = randn(n,n); d1 = randn(n,1);
E2 = randn(n,n); d2 = randn(n,1);
epsx = 1e-1;
cvx_begin sdp

variable X(n,n) semidefinite;
minimize trace(X);
subject to
X*ones(n,1) == zeros(n,1);
abs(trace(E1*X)-d1)<=epsx;
abs(trace(E2*X)-d2)<=epsx;

cvx_end

minimize trace(X )
subject to X = X T ≥ 0

X · 1 = 0
|trace(E1X )− d1| ≤ ε
|trace(E2X )− d2| ≤ ε
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