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Abstract

We develop a simple model for the spread of an infectious disease that is limited in duration and is

not fatal. We first assume that when an infected person recovers, (s)he becomes susceptible to being

infected again, but we also consider the case where some of the recovering people become immune to

the disease. We find in the first case that the prevalence of thedisease – the proportion of the population

that is infected at a given time – approaches a limiting valuebetween0 and1 in the long run, and that

the predicted limiting value is very sensitive to errors in data taken when the prevalence is small and

growing. In the latter case, we find that the prevalence of thedisease reaches a peak and then decays

toward zero; in the long run, a certain proportion of the population has become immune and a certain

proportion remains susceptible.

1 Introduction

An “epidemic” occurs when an infectious disease that is new to a population is introduced to that population

and spreads to a significant proportion of the population. The population generally consists of people (or

other animals, such as livestock) in a certain geographicalarea, and the disease generally comes from contact

with a population in a different region. The purpose of modeling an epidemic once an outbreak is detected

is both to predict how serious the epidemic will be, and to evaluate the effectiveness of various possible

responses to the epidemic.

An infectious disease is spread by contact between infectedand uninfected people, as opposed to a

hereditary disease. We will use a continuous-time model based on approximating the flow of people between

different subgroups of the population – those who are infected, those who are susceptible to infection,

and those who are immune from infection. The continuous model regards the populations as continuous

variables, though in real life they are discrete (integer-valued). This is reasonable as long as the population

is large, so that changing the status of a single individual is not too significant.

Many epidemiological models divide the infected population into smaller subgroups based on how long

they have been infected or how their symptoms have progressed. To keep the model simple, we will not do

this. In particular, we do not attempt to model the facts thatin people in different stages of the disease may

have markedly different degrees of infectiousness (ability to spread the disease), that different people may

have different amounts of contact with others and differentdegrees of resistiveness to the disease, and that

recovery may take a certain period of time. We also do not takeinto account that the population may modify
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its behavior in response to the epidemic; once diagnosed, people who are infected are likely to have their

contact with others limited. Finally, we assume that there are no “carriers” – people who are immune but

still carry the disease and can infect others.

We now spell out the main assumptions we make and introduce the notation we will use.

(i) The total population is large and constant in time.

(ii) At a given timet, the population can be divided into three groups:

• N(t), the proportion of people who are infected (the “prevalence” of the disease);

• S(t), the proportion of people who are susceptible; and

• M(t), the proportion of people who are immune.

(iii) Each infected person is equally likely to recover on a given day, independent of how long (s)he has

been infected. Letr be the probability per unit time that an infected individualrecovers.

(iv) Each recovering person is equally likely to become immune to future infections, independent of how

many times (s)he has been infected before. Letq be the probability that a recovering individual

becomes immune.

(v) For a given prevalenceN(t), each susceptible person is equally likely to be infected ona given

day, and the likelihood is proportional toN(t). Let the probability per unit time that a susceptible

individual becomes infected bekN(t).

Let us discuss the rationale behind the last assumption. Imagine that each susceptible person comes

into contact with the same number of people each day on average, and the proportion of these people

who are infected is the same as the prevalenceN(t) in the entire population. If each contact between and

infected person and a susceptible person has an equal chanceof spreading the disease, thenk represents the

probability of catching the disease form a single contact times the average number of people contacted per

unit time. An underlying assumption here that the population is relatively homogeneous; not only does each

person interact with others at about the same level, but thateach person is more or less equally likely to

interact with each other person.

In Section 2, we consider the case with no immunity. In this case, our model is a single first-order

differential equation, and we are able to find an analytic solution depending on3 parameters. We show how

to determine these parameters from3 data points, namely the prevalenceN(t) at3 different times. We also

express the long-term prevalence of the disease (the limit of N(t) ast → ∞) in terms of the parameters.

Finally, we show by means of a specific example how small changes in the data can have a substantial impact

on the predicted limit.

In Section 3, we allow for immunity, leading to a system of2 first-order differential equations. We

study a few scenarios by solving this system numerically. Inall scenarios, we find that the prevalence of the

disease eventually decays to0, while the proportion of people who are immune grows but doesnot approach

the entire population. Thus, according to our model at least, even though the disease dies out, part of the

population remains susceptible to a future outbreak. In Section 4 we discuss the results and conclusions we

draw from them.
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2 Model with no Immunity

If nobody can become immune to the disease, then in the notation introduced above, we haveM(t) = q = 0

for all t. It follows thatN(t) + S(t) = 1 for all t. In particular, we need only determine one of the two

functionsN(t) andS(t) since we can find the other function by subtracting from1. It turns out that we get

a simpler differential equation forN(t), which we derive now.

Based on the large population assumption, we assume that thenumber of people who recover in a given

short time span is proportional to the current number of infected people, with the proportionality constant

beingr times the time span. Thus the rate of decrease ofN(t) due to recovery isrN(t). Similarly we model

the rate of increase ofN(t) due to new infections askN(t)S(t) = kN(t)(1 − N(t)). Thus our model for

this section is
dN

dt
= −rN + kN(1−N) = (k − r − kN)N. (1)

(We will often writeN instead ofN(t) for brevity.)

Before giving the general solution to this equation, let us consider its equilibrium solutions. We have

dN/dt = 0 if either N = 0 or N = (k − r)/k. For the situation we are modeling, the only realistic

values ofN are from0 to 1, so the latter equilibrium is only relevant ifk > r. In that case,dN/dt > 0

if 0 < N < (k − r)/k anddN/dt < 0 if N > (k − r)/k, so thatN = 0 is an unstable equilibrium and

N = (k − r)/k is a stable equilibrium. Thus ifN is positive, it will approach a limiting value of(k − r)/k

ast → ∞. If on the other handk < r, thendN/dt < 0 for all N > 0, so thatN decays to0 ast → ∞.

In this case the epidemic would never break out in the first place, since the rate at which people recover

exceeds the rate at which they can infect new people.

The general solution of equation (1)

N(t) =
k − r

k + Ce(r−k)t
(2)

whereC is a constant. (There is also the equilibrium solutionN(t) = 0 for all t; this corresponds in a

manner of speaking to settingC = ∞.) If r > k, then forN(t) to be positiveC must be negative. Then the

denominator approaches−∞ ast → ∞, and henceN(t) approaches0 as we determined before. Ifk > r,

then the denominator of equation (2) approachesk ast → ∞, andN(t) approaches(k − r)/k. Again this

agrees with our earlier analysis.

From now on, we will assume thatk > r, so that an outbreak of the disease is possible (N = 0 is

unstable). Several solution curves are shown in Figure 1, with hypothetical values chosen fork andr and

different curves corresponding to different values ofC – in essence, different initial conditions.

To determine the values of the parametersk, r, andC appropriate to a given scenario, we need some

data. While we could attempt to measurek and r directly if we had good data on new infections and

recoveries, we can also infer them if we just know the value ofN at 3 different times. By plugging these

times into equation (2), we get3 equations to solve for the3 unknown parameters. If we had less data, then

a variety of parameter values would fit the data perfectly, and we would have no good basis to choose which

values to make predictions from. If we had more data, we wouldhave more equations than unknowns, and it

is unlikely that we could find values fork, r, andC that exactly fit all of the data. Instead, we would find the

3



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N

Figure 1: Solutions to equation (1) withk = 0.2 andr = 0.1, indicating the disease prevalence (according

to the model) as a function of time for various initial conditions.

values that “best” fit the data by some statistical criterion(such as least-square error). How well we could

fit the data would give us an idea of how realistic our model is.

To fit the data given in the problem statement, we lett be measured in years, witht = 0 representing the

present time. Then the data are

N(−10) = 0.002, N(−5) = 0.008, N(0) = 0.03.

From equation (2) we get

k − r

k +Ce10(k−r)
= 0.002

k − r

k + Ce5(k−r)
= 0.008

k − r

k + C
= 0.03.

Though these equations can be solved algebraically, the solution is long and tedious. They can also be solved

numerically, by MATLAB for instance. The solution is

k ≈ 1.036, r ≈ 0.754, C ≈ 8.356. (3)

From this we obtain the long-term prevalence of the disease,

N(∞) =
k − r

k
≈ 0.272.
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Figure 2: Prevalence as a function of time forN(−10) = 0.002, N(−5) = 0.008, and: [upper curve]

N(0) = 0.031; [middle curve]N(0) = 0.030; [lower curve]N(0) = 0.029.

That is, eventually about27% of the population will be infected at any given time. We emphasize that

this does not mean that the remaining73% of the population never gets infected. Instead, with27% of the

population infected, the rate of new infections and the rateof recovery balance out, but the specific people

who are infected continues to change over time.

To assess the uncertainty in our prediction of the long-termprevalence, suppose the uncertainty inN(0)

is 0.001. Even without any uncertainty in the other data points, the effect on our prediction is dramatic. If we

changeN(0) to 0.029 and follow the same procedure as above, we getN(∞) ≈ 0.176. And if we change

N(0) to 0.031, we getN(∞) ≈ 0.560. The solutions of our model in all3 cases are shown in Figure 2.

3 Model with Immunity

Now assumeq > 0, so thatM will be positive too. In this caseN + S + M = 1, so that if we know

any 2 of the populations at a given time, we know all3. Our derivation of the differential equation for

N(t) from the previous section still holds, except that we can no longer writeS(t) = 1 − N(t). That is,

dN/dt = −rN + kNS. We can augment this equation with a differential equation for eitherS or M ;

we chooseM because nobody can leave the immune population, leading to asimpler equation. Of therN

people recovering per unit time, a proportionq of them become immune, so the rate of change ofM is qrN .

Writing S = 1−N −M , we get our model for this section:

dN

dt
= −rN + kN(1−N −M) = (k − r − kN − kM)N
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dM

dt
= qrN.

If q = 1, this model is equivalent (though with a difference choice of notation) to the SIR model formulated

by Kermack and McKendrick in 1927 [1] (see also [2]).

For this model to be in equilibrium, we must haveN = 0 for dM/dt to be0, in which casedN/dt = 0

too. Thus as long asq > 0, the population can only be in equilibrium when the prevalence of the disease

goes to0. This would not necessarily be the case in a more realistic model that takes into account changes

in the population; we discuss this point further in the next section.

Having no data that will allow us to determineq, let us consider various values ofq along with the

values ofk and r from equation (3) in the previous section. We useN(0) = 0.03, and to determine a

somewhat realistic value forM(0) we consider that in the distant past, nobody was immune, so weshould

haveM(−∞) = 0. Then

M(0) =

∫ 0

−∞

qrN(t)dt ≈ 0.1128qr ≈ 0.0851q.

Here we assumed that forN is not much different than in the previous section fort < 0; in other words,

immunity has not has much effect onN so far. (This should be reasonable ifq is small, at least.) Then

we used the solution from the previous section, namely equation (2) with the values from equation (3), to

compute the integral ofN .

Given the setup in the previous paragraph, ifq = 0 thenM(t) = 0 for all t andN(t) is the same as

in the previous section (the middle curve in Figure 2). We computed solutions numerically forq = 0.01,

0.1, and1 using MATLAB. The results are shown in Figures 3, 4, and 5. Notice that the graphs cover very

different ranges oft.

Whenq = 0.01, the prevalenceN grows to about25%, nearly as high as when there was no immunity,

but then slowly decays toward0 over a period of several hundred years, while the proportionM of people

who become immune grows to about28%. This slow time scale makes sense mathematically because on

average one has to get the disease100 times before becoming immune. (Notice also that with a recovery

rate of about75% per year, the lifetime of the disease is usually but not always less than a year.) Of course

we are somewhat beyond the bounds of reality here, because people don’t actually live hundreds of years. It

would be vital to take into account changes in the populationwith these parameters.

With q = 0.1, the prevalenceN grows to about16% in 10 to 15 years and then decays more rapidly to

0. The proportionM of people who become immune approaches roughly34%, more than in the previous

case but not radically more. Withq = 1, the prevalenceN grows to about4.5% in about5 years and then

decays, withM approaching roughly50%. The fact thatM andS approach nearly equal values seems to be

a coincidence; it is not a consequence of settingq = 1 because it does not happen if we set different values

for the other parameters.

4 Discussion

Since we have used relatively simple models for the spread ofan epidemic, we should consider to what

extent our results are a just property of the particular model and to what extent they may be expected to
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Figure 3: Graphs ofN(t) [solid line],M(t) [dashed line], andS(t) [dotted line] forq = 0.01.
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Figure 4: Graphs ofN(t) [solid line],M(t) [dashed line], andS(t) [dotted line] forq = 0.1.
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Figure 5: Graphs ofN(t) [solid line],M(t) [dashed line], andS(t) [dotted line] forq = 1.

apply more generally.

In both cases (with and without immunity) we found that the prevalence of the disease tends to an equi-

librium value in the long run. In real life many factors may prevent such an equilibrium, most importantly

changes in behavior and in preventive care once the disease has been identified, and ultimately perhaps a

vaccination or cure for the disease. However, relatively mild diseases like chicken pox may indeed persist at

a more or less constant prevalence for a long time. On the other hand, having chicken pox generally results

in immunity (q ≈ 1) and the prevalence is not going to zero like the model in Section 3 would predict. We

will discuss this discrepancy below.

Our main result in Section 2 was that the predicted limiting prevalence can depend sensitively on the

data used to determine the parameters of the model. Though wedid not do a general study of this effect,

we found that in at least one case, a small uncertainty in dataat a time when the prevalence of the disease is

small but growing rapidly can lead to a very large uncertainty in the predicted long-term prevalence. This is

probably true of more sophisticated models as well.

In Section 3 we found that by allowing for immunity, we could simulate an epidemic where the preva-

lence of the disease rises rapidly to affect a significant percentage of the population, then falls off in the

long run. As we suggested there, the fact that the prevalencefalls off to 0 may not be realistic for too many

diseases, but the fact that it can fall off to0 in this model without having the entire population become

immune suggests that short-lived epidemics may be followedby further outbreaks in the future. And as we

will show now, a modified version of the model from Section 3 can lead to a nonzero long-term prevalence

even with immunity by taking into account changes in the population.

To incorporate births and deaths into our model, we would abandon the assumption that the total popu-
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lation is fixed and letN , S, andM represent total populations rather than proportions (because it is harder

to derive a differential equation for a quantity whose numerator and denominator are both changing). We

would end up with a system like

dN

dt
= −rN + kNS − dNN

dS

dt
= (1− q)rN − kNS − dSS + bNN + bSS + bMM

dM

dt
= qrN − dMM,

where we have different birth ratesbN , bS , bM and death ratesdN , dS , dM for the different populations and

we assume nobody is born infected or immune. Probably it would be best to set some of these rates equal,

at leastbS = bM anddS = dM , to reduce the number of parameters. To be more realistic, weshould divide

the population into age groups, since birth and death rates and susceptibility to the disease will depend on

age.

We could handle immigration and emigration similarly, though probably we would want to assume that

some of the immigrants are infected and/or immune. In any case, with births and deaths and/or immigra-

tion and emigration it should be possible even with immunityto have an equilibrium without having the

prevalence of the disease decay to0, because nowdM/dt can be0 without havingN = 0. Actually, with

a growing population equilibrium would not requireM to be constant anyhow, rather the ratio ofM to

the total population should remain constant, so thatM would grow along with the population. From this

point of view, it would be impossible in fact for a growing population to have equilibrium withM > 0 and

N = 0; either bothM andN would have to go to0 or both should remain positive.

Probably the most serious limitation in our model is that we treated both the entire population and our

3 subgroups – infected, susceptible, and immune – as being homogeneous. To be more realistic, we could

divide the infected population into subgroups based on whatstage of the disease they are in, as mentioned

in the introduction, and we could divide the population intoage groups, as mentioned above. We could also

divide the population by sex, race, geography, and any othergrouping we could think of that would affect

parameters like susceptibility to the disease, interaction rates with other groups, etc. Of course the model

could get very complicated then, and we might have more parameters than we could hope to estimate from

the available data. A reasonable approach would be to start with a simple model like those in this report,

see how well it fits the data, and then build additional factors into the model until (hopefully) a good fit is

achieved without having a ridiculous number of parameters.

Finally, another approach that might be of interest would beto model a heterogeneous population by

a computer simulation that keeps track of each individual, assigning each one certain characteristics for

sociability, susceptibility, etc., and using a random number generator to simulate chance interactions, infec-

tions, etc. This type of approach is sometimes called “agent-based” modeling and is becoming increasingly

popular and increasingly feasible with advances in computer speed and memory; see for instance [3].
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