
Discovery Thread: Project 2

In this project you will apply the techniques for random graphs model se-
lection and community detection on a specific data set.

Three files are assigned to your teams: a DataFile *.dat , and two images
*.bmp as described next.

1. The image file Phantom*.bmp contains a n×n black-and-white image that
is utilized as reference signal for your project. You can load this image
in Matlab using imread() function. Note the entries are unsigned 8-bit
integers (hence in the range 0 .. 255).

2. The graph weight matrix file WeightMatrixForImage*Noisy.dat . This
text file has the following format:

First line: n

Second line: W(1,1) W(1,2) W(1,3) ... W(1,n)

Third line: W(2,1) W(2,2) W(2,3) ... W(2,n)

...

Line n+1: W(n,1) W(n,2) W(n,3) ... W(n,n)

where the entries W (i, j) were computed based on the reference Phantom
image. Specifically W (i, j) = exp(−|I(i)− I(j)|/20− ‖i− j‖2/10) where
I(i), I(j) are noisy intensities of pixels i and j of image Phantom*.bmp.

3. The image HighResNoisyPhantom*.bmp is the upsampled noisy reference
image Phantom*.bmp.

In your project n = 1024 and corresponds to a 32 × 32 image. Vertices are
pixels indexed row-wise from left to right:

vertex1 = pixel(1, 1) , vertex2 = pixel(1, 2) , vertex3 = pixel(1, 3) · · · vertex33 = pixel(2, 1) · · ·

On the weighted undirected graph dataset assigned to your project perform
the following three tasks:

I. Random graph model testing:
Point Estimation:

1. Under the Erdos-Renyi random graph model, estimate the parameter p.
Compute the estimated number of 3-cliques and 4-cliques and compare
them to the actual numbers of 3-cliques and 4-cliques in your data set.

2. Under the SSBM random graph model, estimate the parameters a and
b based on the number of vertices, edges, and 3-cliques. Compute the
estimated number of 4-cliques (under the SSBM model) and compare this
predicted number to the actual number of 4-cliques.

Sequence of 4-cliques prediction:

1

1. Create an ordered sequence of edges accoring to their weight. Specifically,
order the edges according to the weight, starting with the largest weight
first and then continue in a monotonic decreasing order. To do so, create
a data file, say graph.dat, from the data file assigned to your project, that
lists the edges in the appropriate order, and has the following format:

First line: n m

Second line: Edge1Vertex1 Edge1Vertex2

Third line: Edge2Vertex1 Edge2Vertex2

...

m+1st line: EdgemVertex1 EdgemVertex2

2. For the sequence of edges (and graphs) perform the following computa-
tions:

(a) Under the Erdos-Renyi random graph model, for each graph in the
sequence, estimate the parameter p, and compute the expectation of
the number of 4-cliques; On the log-log plot, determine the best linear
fit, log(X4) = aERlog(m) + bER, where m is the running number of
edges; discard the first values of m when there are no 4-cliques.

(b) Under the SSBM random graph model, for each graph in the se-
quence, estimate parameters a and b and compute the expectation
of the number of 4-cliques; On the log-log plot, determine the best
linear fit, log(X4) = aSSBM log(m) + bSSBM , where m is the running
number of edges; discard the first values of m when there are no
4-cliques.

(c) For each graph in the sequence, compute the actual number of 4-
cliques, X4(m), and determine the best linear fit, log(X4) = a0log(m)+
b0, where m is the running number of edges; discard the first values
of m when there are no 4-cliques.

3. Overlay in the same plot the graphs of log(X4) and the prediction under
Erdos-Renyi and SSBM models of the number of 4-cliques. Print also the
parameters aER, aSSBM , a0 and bER, bSSBM , b0.

II. Community detection:
Implement the six community discovery algorithms (partition algorithms)

and run them on your project data set.
Specifically, implement:

1. Spectral methods using: W , ∆, and ∆̃

2. SDP relaxation algorithms using: W , ∆, and ∆̃

Recall rasterisation is done row by row.
For each of the six algorithms above, determine sets S and S̄ = {1, 2, . . . , n}\

S. Then map back onto the noisy image the two sets, and overlay the resulting
partition.

2

For easy visualization, use the High resolution image (which is 1024× 1024
pixels). Each pixel in the standard (low-res) 32×32 image is upsampled to (i.e.,
replaced by) a 32 × 32 block of pixels in the High resolution image. For each
algorithm present the following images images:

1. The High resolution noisy and/or clean image

2. The indicator image of the partition sets, as a two-tone image;

3. Overlay of the partition indicator to the noisy High resolution image

3

