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Mean-Variance Objectives

We consider portfolios that contains N risky assets along with a risk-free
safe investment and possibly a risk-free credit line. Given the return mean
vector m, the return covariance matrix V, and the risk-free returns µsi and
µcl, a mean-variance objective for a portfolio allocation f has the form

Γ̂(f) = G(σ̂(f), µ̂(f)) , (1.1a)

where the return mean and variance estimators are given by

σ̂(f) =
√

fTVf ,

µ̂(f) = µrf(f)
(

1− 1Tf
)

+ mTf ,
µrf(f) =

{
µsi if 1Tf ≤ 1 ,
µcl if 1Tf > 1 .

(1.1b)

Here we show how to optimize such objectives over a class Π of Markowitz
portfolio allocations.
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Mean-Variance Objectives
If Γ̂(f) is Γ̂χp (f), Γ̂χq (f), Γ̂χr (f), Γ̂χs (f), Γ̂χt (f), or Γ̂χu (f) for some χ ≥ 0 then

Gχ
p (σ, µ) = µ− 1

2σ
2 − χσ , (1.2a)

Gχ
q (σ, µ) = µ− 1

2µ
2 − 1

2σ
2 − χσ , (1.2b)

Gχ
r (σ, µ) = log(1 + µ)− 1

2 σ
2 − χσ , (1.2c)

Gχ
s (σ, µ) = log(1 + µ)− 1

2
σ2

1 + 2µ − χσ , (1.2d)

Gχ
t (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χσ , (1.2e)

Gχ
u (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χ
σ

1 + µ
if χ ∈ [0, 1) . (1.2f)
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Mean-Variance Objectives

These are the parabolic, quadratic, reasonable, sensible, Taylor, and
ultimate estimators respectively. Their respective convex domains are

Σp =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
, (1.3a)

Σq =
{

(σ, µ) ∈ R2 : σ ≥ 0 , µ < 1
}
, (1.3b)

Σr =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
, (1.3c)

Σs =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 1
2
}
, (1.3d)

Σt =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > σ
}
, (1.3e)

Σχ
u =

{
(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > σ

1−χ
}

if χ ∈ [0, 1) . (1.3f)

It is evident that each G(σ, µ) given in (1.2) is infinitely differentiable over
the interior of the convex set Σ that is respectively given in (1.3).
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Mean-Variance Objectives
We will consider mean-variance objectives (1.1) given by a function
G(σ, µ) that is defined over a convex set Σ ⊂ R2 which is consistent with
the class of Markowitz portfolio allocations Π in the sense that

Σ(Π) =
{(
σ̂(f) , µ̂(f)

)
: f ∈ Π

}
⊂ Σ . (1.4)

For example, it can be shown that
Σ(Ω(0,2)) ⊂ Σq ,

where Ω(0,2) is the set of all portfolio allocations with value-ratios in (0, 2);
Σ(Ω) ⊂ Σr ,

where Ω is the set of all solvent portfolio allocations; and
Σ(Ω 1

2
) ⊂ Σs ,

where Ω 1
2

is the set of all portfolio allocations with value-ratios in (1
2 ,∞).
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Mean-Variance Objectives

The set Ω( 1
2 ,2) of all portfolio allocations with value-ratios in (1

2 , 2) satisfies

Σ
(

Ω( 1
2 ,2)

)
⊂
{

(σ, µ) ∈ R2 : σ ≥ 0 , (1− µ)(µ+ 1
2) > σ2

}
,

whereby

Σ
(

Ω( 1
2 ,2)

)
⊂ Σq , Σ

(
Ω( 1

2 ,2)

)
⊂ Σr , Σ

(
Ω( 1

2 ,2)

)
⊂ Σs ,

Σ
(

Ω( 1
2 ,2)

)
⊂ Σt , Σ

(
Ω( 1

2 ,2)

)
⊂ Σχ

u for every χ ∈ [0, 1
4 ] .

This means if we choose Π such that Π ⊂ Ω( 1
2 ,2) then the consistency

condition (1.4) will hold for each of the estimators given in (1.2) provided
our caution coefficient satifies χ ≤ 1

4 . In practice χ < 1
4 is always satisfied

while Π ⊂ Ω( 1
2 ,2) is satisfied for portfolios with a sufficient leverge limit.
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Explicit Level Sets of some Objectives

For every such mean-variance objective (1.1) given by a function G(σ, µ)
that is defined over a convex set Σ ⊂ R2 we define its level set associated
with a possible value Γ ∈ R by

Σ(Γ) =
{

(σ, µ) ∈ Σ : G(σ, µ) = Γ
}
. (2.5)

This set will be empty when there are no points (σ, µ) ∈ Σ that satisfy
G(σ, µ) = Γ. The consistency condition (1.4) implies that{(

σ̂(f) , µ̂(f)
)

: f ∈ Π(Γ)
}
⊂ Σ(Γ) , (2.6a)

where Π(Γ) is defined by

Π(Γ) =
{
f ∈ Π : Γ̂(f) = Γ

}
. (2.6b)
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Explicit Level Sets of some Objectives
For the parabolic estimator the points (σ, µ) in the level set Σp(Γ) satisfy

µ− 1
2σ

2 − χσ = Γ .

Upon solving this for µ we obtain

µ = 1
2σ

2 + χσ + Γ
= 1

2(σ + χ)2 + Γ− 1
2χ

2 .

This equation yields a parabola with vertex(
− χ , Γ− 1

2χ
2) ,

focal length is 1
2 , and focus(

− χ , Γ− 1
2χ

2 + 1
2
)
.
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Explicit Level Sets of some Objectives

The level set Σp(Γ) is the restriction of this parabola to Σp. Because

Σp =
{

(σ, µ) ∈ R2 : σ ≥ 0
}
,

we have
Σp(Γ) =

{
(σ , µχp(σ, Γ)

)
: σ ≥ 0

}
. (2.7)

where µ = µχp(σ, Γ) is given by

µχp(σ, Γ) = 1
2σ

2 + χσ + Γ .

We thereby see that Σp is foilated by segments of the family of parabolas
given by µ = µχp(σ, Γ). These parabolas shift upward with increasing Γ.
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Explicit Level Sets of some Objectives

For the quadratic estimator the points (σ, µ) in the level set Σq(Γ) satisfy

µ− 1
2µ

2 − 1
2σ

2 − χσ = Γ .

By completing squares we see that this equation has the form

1
2(σ + χ)2 + 1

2(µ− 1)2 = 1
2χ

2 + 1
2 − Γ .

This equation clearly has no solution unless χ2 + 1 ≥ 2Γ. When
χ2 + 1 ≥ 2Γ it yields a circle in the σµ-plane with center(

− χ , 1
)
,

and radius √
χ2 + 1− 2Γ .
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Explicit Level Sets of some Objectives
The level set Σq(Γ) is the restriction of this circle to Σq. Because

Σq =
{

(σ, µ) ∈ R2 : σ ≥ 0 , µ < 1
}
,

we can show that Σq(Γ) is empty when Γ ≥ 1
2 , and that when Γ < 1

2 we
have

Σq(Γ) =
{

(σ , µχq (σ, Γ)
)

: 0 ≤ σ ≤
√
χ2 + 1− 2Γ− χ

}
, (2.8)

where µ = µχq (σ, Γ) is given by

µχq (σ, Γ) = 1−
√
χ2 + 1− 2Γ− (σ + χ)2 .

We thereby see that Σq is foilated by arcs of the family of semicircles
centered at (−χ, 1) given by µ = µχq (σ, Γ) for every Γ < 1

2 . The radius of
these circles decreases with increasing Γ.
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Explicit Level Sets of some Objectives

For the reasonable estimator the points (σ, µ) in the level set Σr(Γ) satisfy

log(1 + µ)− 1
2σ

2 − χσ = Γ .

Upon solving this for µ we obtain

µ = exp
(1

2σ
2 + χσ + Γ)− 1

= exp
(1

2(σ + χ)2 + Γ− 1
2χ

2)− 1 .

The graph of this function is strictly convex with a minimum at(
− χ , exp

(
Γ− 1

2χ
2)− 1

)
.

Because ez − 1 > z for every z 6= 0, we see that this curve lies above the
corresponding parabola associated with the parabolic estimator.
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Explicit Level Sets of some Objectives

The level set Σr(Γ) is the restriction of this curve to Σr. Because

Σr =
{

(σ, µ) ∈ R2 : σ ≥ 0 , 1 + µ > 0
}
,

we have
Σr(Γ) =

{(
σ , µχr (σ, Γ)

)
: σ ≥ 0

}
, (2.9)

where µ = µχr (σ, Γ) is given by

µχr (σ, Γ) = exp
(1

2σ
2 + χσ + Γ)− 1 .

We thereby see that Σr is foilated by segments of the family of curves
given by µ = µχr (σ, Γ). These curves shift upward with increasing Γ.
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Implicit Level Sets of the Objectives
At this point the explicit approach that we have been taking breaks down.
For the sensible estimator the points (σ, µ) in the level set Σs(Γ) satisfy

log(1 + µ)− 1
2

σ2

1 + 2µ − χσ = Γ .

For the Taylor estimator the points (σ, µ) in the level set Σt(Γ) satisfy

log(1 + µ)− 1
2

σ2

(1 + µ)2 − χσ = Γ .

For the ultimate estimator the points (σ, µ) in the level set Σχ
u(Γ) satisfy

log(1 + µ)− 1
2

σ2

(1 + µ)2 − χ
σ

1 + µ
= Γ .

These equations cannot be solved for µ explicitly. Of course, they can be
solved for σ explicitly. However, it is easier to analyze the level sets that
they define implicitly because this avoids messy formulas.
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Implicit Level Sets of the Objectives

We will carry out this implicit analysis in the general setting of an equation
in the form

G(σ, µ) = Γ ,

where we assume that Gµ(σ, µ) > 0 over the interior of the convex set
Σ ⊂ R2. (Here Gµ denotes the partial derivative of G with respect to µ.)
By the Implicit Function Theorem this assumption implies that there exists
a unique function µ(σ, Γ) such that

G(σ, µ(σ, Γ)) = Γ . (3.10)

Moreover, the function µ(σ, Γ) is infinitely differentiable.
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Implicit Level Sets of the Objectives

By taking the partial derivative of (3.10) with respect to Γ we find that

Gµ(σ, µ) ∂µ
∂Γ = 1 .

Because Gµ(σ, µ) > 0, this can be solved to obtain

∂µ

∂Γ = 1
Gµ(σ, µ) > 0 .

Therefore µ(σ, Γ) is a strictly increasing function of Γ.
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Implicit Level Sets of the Objectives

By taking the partial derivative of (3.10) with respect to σ we find that

Gσ(σ, µ) + Gµ(σ, µ) ∂µ
∂σ

= 0 ,

Because Gµ(σ, µ) > 0, this can be solved to obtain

∂µ

∂σ
= −Gσ(σ, µ)

Gµ(σ, µ) .

(Here Gσ denotes the partial derivative of G with respect to σ.)
Therefore, if we assume that Gσ(σ, µ) < 0 over the interior of the convex
set Σ ⊂ R2 then µ(σ, Γ) is a strictly increasing function of σ.
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Implicit Level Sets of the Objectives

Finally, by taking the second partial derivative of (3.10) with respect to σ,
using the foregoing result, and again using the fact that Gµ(σ, µ) > 0, we
find after some calculation that

∂2µ

∂σ2 = − 1
G 3
µ

(
Gµ −Gσ

)(Gσσ Gσµ
Gσµ Gµµ

)(
Gµ
−Gσ

)
,

where the (σ, µ) arguments of all the functions have been suppressed.
(Here Gσσ, Gσµ, Gµµ, denote the various second-order partial derivatives
of G with respect to σ and µ.)
Therefore if we assume that the right-hand side is positive over the interior
of the convex set Σ ⊂ R2 then µ(σ, Γ) is a strictly convex function of σ.
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Implicit Level Sets of the Objectives

In summary, if G(σ, µ) considered over the interior of the convex set Σ has
the properties

Gσ < 0 , Gµ > 0 , (3.11a)(
Gµ −Gσ

)(Gσσ Gσµ
Gµσ Gµµ

)(
Gµ
−Gσ

)
< 0 , (3.11b)

then the level sets of G(σ, µ) that lie within the convex set Σ are curves
given by µ = µ(σ, Γ) where µ(σ, Γ) is:

a strictly increasing, strictly convex function of σ,
a strictly increasing function of Γ.

Indeed, the functions µχp(σ, Γ), µχq (σ, Γ), and µχr (σ, Γ) that are given
explicitly by (2.7), (2.8), and (2.9), have these properties.
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Implicit Level Sets of the Objectives
Remark. Properties (3.11) are implied when G(σ, µ) considered over the
interior of the convex set Σ has the properties

Gσ < 0 , Gµ > 0 , (3.12a)(
Gσσ Gσµ
Gµσ Gµµ

)
is negative definite . (3.12b)

Verifying the negative definiteness property (3.12b) is often the fastest
way to verify property (3.11b). As we will see, the functions µχq (σ, Γ) and
µχr (σ, Γ) given explicitly by (2.8) and (2.9) satisfy (3.12) while the
function µχp(σ, Γ) given explicitly by (2.7) does not. Property (3.12b)
implies that G(σ, µ) is a strictly concave function over the convex set Σ,
which combines with property (3.12a) to imply that the mean-variance
objective Γ̂(f) given by (1.1) is strictly concave over any class Π of
portfolio allocations that is consistent with Σ in the sense (1.4).
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Implicit Level Sets of the Objectives

For completeness, we now verify properties (3.11) for the parabolic,
quadratic, reasonable, sensible, Taylor, and ultimate estimators.
For the parabolic estimator we see from (1.2a) that

G(σ, µ) = µ− 1
2σ

2 − χσ ,

whereby
Gσ = −σ − χ , Gµ = 1 ,

Gσσ = −1 , Gσµ = 0 , Gµµ = 0 .
(3.13)

Hence, because χ ≥ 0, properties (3.11) hold for every (σ, µ) in the interior
of Σp given by (1.3a). However it is clear from (3.13) that the parabolic
estimator does not have the negative definiteness property (3.12b).
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Implicit Level Sets of the Objectives

For the quadratic estimator we see from (1.2b) that

G(σ, µ) = µ− 1
2µ

2 − 1
2σ

2 − χσ ,

whereby
Gσ = −σ − χ , Gµ = 1− µ ,

Gσσ = −1 , Gσµ = 0 , Gµµ = −1 .
(3.14)

Hence, because χ ≥ 0, properties (3.12) hold for every (σ, µ) in the
interior of Σq given by (1.3b).
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Implicit Level Sets of the Objectives

For the reasonable estimator we see from (1.2c) that

G(σ, µ) = log(1 + µ)− 1
2σ

2 − χσ ,

whereby

Gσ = −σ − χ , Gµ = 1
1 + µ

,

Gσσ = −1 , Gσµ = 0 , Gµµ = − 1
(1 + µ)2 .

(3.15)

Hence, because χ ≥ 0, properties (3.12) hold for every (σ, µ) in the
interior of Σr given by (1.3c).
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Implicit Level Sets of the Objectives
For the sensible estimator we see from (1.2d) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

1 + 2µ − χσ ,

whereby

Gσ = − σ

1 + 2µ − χ , Gµ = 1
1 + µ

+ σ2

(1 + 2µ)2 ,

Gσσ = − 1
1 + 2µ , Gσµ = 2σ

(1 + 2µ)2 ,

Gµµ = − 1
(1 + µ)2 −

4σ2

(1 + 2µ)3 .

(3.16)

Hence, because χ ≥ 0, properties (3.12) hold for every (σ, µ) in the
interior of Σs given by (1.3d).
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Implicit Level Sets of the Objectives
Because

Gχ
s (σ, µ) = log(1 + µ)− 1

2
σ2

1 + 2µ − χσ ,

for every σ > 0 the mapping µ 7→ Gχ
s (σ, µ) is strictly increasing and maps

the interval (1
2 ,∞) onto R. Therefore, for every σ > 0 and every Γ ∈ R

there exists a unique µχs (σ, Γ) > −1
2 such that

Gχ
s
(
σ, µχs (σ, Γ)

)
= Γ .

Moreover, for σ = 0 and every Γ > log(1
2) we have

µχs (0, Γ) = exp(Γ)− 1 .

We thereby see that Σs is foilated by segments of the family of strictly
increasing, strictly convex curves given by µ = µχs (σ, Γ). These curves shift
upward with increasing Γ.
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Implicit Level Sets of the Objectives
For the Taylor estimator we see from (1.2e) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 − χσ ,

whereby

Gσ = − σ

(1 + µ)2 − χ , Gµ = 1
1 + µ

+ σ2

(1 + µ)3 ,

Gσσ = − 1
(1 + µ)2 , Gσµ = 2σ

(1 + µ)3 ,

Gµµ = − 1
(1 + µ)2 −

3σ2

(1 + µ)4 .

(3.17)

Hence, because χ ≥ 0, properties (3.12) hold for every (σ, µ) in the
interior of Σt given by (1.3e).
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Implicit Level Sets of the Objectives
Because

Gχ
t (σ, µ) = log(1 + µ)− 1

2
σ2

(1 + µ)2 − χσ ,

for every σ > 0 the mapping µ 7→ Gχ
t (σ, µ) is strictly increasing and maps

the interval (σ − 1,∞) onto the interval (log(σ)− 1
2 − χσ,∞). Therefore,

for every σ > 0 and every Γ ∈ (log(σ)− 1
2 − χσ,∞) there exists a unique

µχt (σ, Γ) > σ − 1 such that

Gχ
t
(
σ, µχt (σ, Γ)

)
= Γ .

Moreover, for σ = 0 and every Γ ∈ R we have

µχt (0, Γ) = exp(Γ)− 1 .

We thereby see that Σt is foilated by segments of the family of strictly
increasing, strictly convex curves given by µ = µχt (σ, Γ). These curves shift
upward with increasing Γ.

C. David Levermore (UMD) Optimization of Mean-Variance Objectives May 3, 2020



Mean-Variance Objectives Explicit Level Sets Implicit Level Sets Reduced Problem

Implicit Level Sets of the Objectives
If χ < 1 then for the ultimate estimator we see from (1.2f) that

G(σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 −
χσ

1 + µ
,

whereby

Gσ = − σ

(1 + µ)2 −
χ

1 + µ
, Gµ = 1

1 + µ
+ σ2

(1 + µ)3 + χσ

(1 + µ)2 ,

Gσσ = − 1
(1 + µ)2 , Gσµ = 2σ

(1 + µ)3 + χ

(1 + µ)2 , (3.18)

Gµµ = − 1
(1 + µ)2 −

3σ2

(1 + µ)4 −
2χσ

(1 + µ)3 .

It can be checked that, because χ ∈ [0, 1), properties (3.12) hold for every
(σ, µ) in the interior of Σχ

u given by (1.3f).
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Implicit Level Sets of the Objectives

Because
Gχ

u (σ, µ) = log(1 + µ)− 1
2

σ2

(1 + µ)2 −
χσ

1 + µ
,

for every σ > 0 the mapping µ 7→ Gχ
u (σ, µ) is strictly increasing and maps

the interval (σ/(1− χ)− 1,∞) onto the interval (ΓχL(σ),∞) where

ΓχL(σ) = log
(

σ

1− χ

)
− 1

2(1− χ)2 − χ (1− χ) .

Therefore, for every σ > 0 and every Γ ∈ (ΓχL(σ),∞) there exists a unique
µχu(σ, Γ) > σ/(1− χ)− 1 such that Gχ

u
(
σ, µχu(σ, Γ)

)
= Γ. Moreover, for

σ = 0 and every Γ ∈ R we have µχu(0, Γ) = exp(Γ)− 1. We thereby see
that Σχ

u is foilated by segments of the family of strictly increasing, strictly
convex curves given by µ = µχu(σ, Γ). These curves shift upward with
increasing Γ.
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Reduced Maximization Problem

Mean-variance objectives have the feature that they can be optimized by
simply maximizing G(σ, µ) over the efficient frontier of Π in the σµ-plane.
Recall that given any choice of Markowitz portfolio allocations Π its
efficient frontier is a curve µ = µef(σ) in the σµ-plane given by an
increasing, concave, continuous, piecewise differentiable function µef(σ).
The consistency condition (1.4) insures that the efficient frontier of Π lies
within Σ.
The function µef(σ) is defined over the interval [0,∞) for the unlimited
leverage, One Risk-Free Rate and Two Risk-Free Rates models, and is
defined over some bounded interval [0, σmx] for every portfolio model with
limited leverage. We define the function Γef(σ) over this interval by

Γef(σ) = G
(
σ, µef(σ)

)
.
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Reduced Maximization Problem

Fact. If G(σ, µ) is a strictly decreasing function of σ and a strictly
increasing function of µ over Σ then we have

max
{
G
(
σ̂(f), µ̂(f)

)
: f ∈ Π

}
= max{Γef(σ) : σ ∈ [0, σmx]} .

Reason. Because frontier portfolios minimize σ̂ for a given value of µ̂, and
because G(µ̂, σ̂) is a strictly decreasing function of σ̂, the optimal f∗
clearly must be a frontier portfolio. Because the optimal portfolio must
also be more efficient than every other portfolio with the same volatility,
because G(µ̂, σ̂) is a strictly increasing function of µ̂, the optimal portfolio
must lie on the efficient frontier.
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Reduced Maximization Problem

This reduced maximization problem can be visualized by considering the
family of level set curves in the σµ-plane parameterized by Γ as

G(σ, µ) = Γ .

When G(σ, µ) has properties (3.11) then these curves are strictly
increasing, strictly convex functions of σ. As Γ increases the curve shifts
upward in the σµ-plane.
For some values of Γ the corresponding curve will intersect the efficient
frontier, which is given by µ = µef(σ). There is clearly a maximum such Γ.
As the level set curve is strictly convex while the efficient frontier is
concave, for this maximum Γ the intersection will consist of a single point
(σopt, µopt). Then σ = σopt is the maximizer of Γef(σ).
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Reduced Maximization Problem

Remark. This reduction is appealing because the efficient frontier only
depends on general information about an investor, like whether he or she
will take short positions. Once it is computed, the problem of maximizing
any given Γ̂(f) over all allocations f reduces to the problem of maximizing
the associated Γef(σ) over all admissible σ — a problem over one variable.
Remark. The maximum problem

max{Γef(σ) : σ ∈ [0, σmx]} .

is easy to solve numerically. We simply evaluate G(σ, µ) at the points
(σk , µk) that were computed to find the efficient frontier numerically. The
maximizer is the point (σk , µk) at which G(σk , µk) is largest.
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Reduced Maximization Problem

Let us consider what might happen. Because µef(σ) has a piecewise
derivative, the function Γef(σ) has the piecewise derivative

Γ′ef(σ) = ∂µG
(
σ, µef(σ)

)
µ′ef(σ) + ∂σG

(
σ, µef(σ)

)
.

Because µef(σ) is concave, Γ′ef(σ) is strictly decreasing.
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Reduced Maximization Problem

Because Γ′ef(σ) is strictly decreasing, there are three possibilities.
Γef(σ) takes its maximum at σ = 0, the left endpoint of its interval of
definition. This case arises whenever Γ′ef(0) ≤ 0.
Γef(σ) takes its maximum in the interior of its interval of definition at
the unique point σ = σopt where Γ′ef(σ) changes sign. This case arises
for the unlimited leverage models whenever Γ′ef(0) > 0, and for a
limited leverage portfolio model whenever Γ′ef(σmx) < 0 < Γ′ef(0).
Γef(σ) takes its maximum at σ = σmx, the right endpoint of its
interval of definition. This case arises only for limited leverage
portfolio models whenever Γ′ef(σmx) ≥ 0.
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Reduced Maximization Problem

In summary, our approach to portfolio selection has six steps:
1 Choose a return rate history for some set of risky assets.
2 Calibrate its mean vector m and covariance matrix V.
3 Given m, V, µsi, µcl, and any portfolio constraints, compute µef(σ).
4 Choose a mean-variance objective specificed by some G(σ, µ).
5 Find the maximizer σopt of the function Γef(σ) = G

(
σ, µef(σ)

)
.

6 Evaluate the unique efficient frontier portfolio allocation fef(σopt).
The third step is the most computationally intensive for most choices of
portfolio constraints. This step is simplest for unlimited leverage portfolios
with a single risk-free rate model. In that case µef(σ) = µrf + νtgσ, where
νtg is the Sharpe ratio.
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