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Introduction

The Kelly criterion says that investors whose objective is to maximize the
value of their portfolio over an extended period should maximize its growth
rate mean. More precisely, it suggests that such investors should select an
allocation f that maximizes the estimator γ̂(f). This suggestion rests upon:

the validity of an IID model,
the Law of Large Numbers,
the accuracy of the estimator γ̂(f).

If these assumptions hold then the Kelly criterion would be suitable for
many young investors, but not for those older investors who depend upon
their portfolios for their income. Of course, the first assumption is
questionable while the last is foolhardy, so even young investors should be
more cautious.
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Introduction

The Kelly criterion exposes investors to potential downside events from
which it might be hard to recover. Older investors who depend upon their
portfolios for their income might be drawing down on their portfolio at a
rate of 4% per year, hoping that this income stream will last at least 20
years. But if the value of their portfolio is reduced by 40% in a market
downturn then their future income stream will be similarly reduced. This
puts them in a tough spot if their reduced income no longer covers their
fixed expenses. They might feel forced to draw down at 6.5% per year,
which would rapidly erode the value of their portfolio.
Here we will develop objective functions that are better suited for more
cautious investors. We will do so within the framework of IID models.
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Cautious Objectives

Given a set of assets with a return history {r(d)}Dd=1 and a choice of
positive weights {wd}Dd=1 that sum to one, the Kelly Criterion selects the
portfolio allocation f that maximizes γ̂(f) over a class Π of Markowitz
portfolio allocations f, where the objective γ̂(f) is the sample mean
estimator of γ(f) given by

γ̂(f) =
D∑

d=1
wd log

(
1 + r(d , f)

)
, (2.1)

with
r(d , f) = µrf(f)

(
1− 1Tf

)
+ r(d)Tf ,

µrf(f) =
{
µsi for 1Tf ≤ 1 ,
µcl for 1Tf > 1 .

(2.2)
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Cautious Objectives

Here we present the family of cautious objectives that has the form

Γ̂χ(f) = γ̂(f)− χ
√
θ̂(f) , (2.3)

where the nonnegative parameter χ is the so-called caution coefficient and
θ̂(f) is the sample variance estimator of θ(f) given by

θ̂(f) = 1
1− w̄D

D∑
d=1

wd
(

log
(
1 + r(d , f)

)
− γ̂(f)

)2
, (2.4)

with w̄D defined by

w̄D =
D∑

d=1
w 2

d . (2.5)
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Cautious Objectives

Because γ̂(f) is a strictly concave function of f, it is clear that Γ̂χ(f) given
by (2.3) will be is a strictly concave function of f over any bounded set
provided that the caution coefficient χ is small enough.

We will soon see that the function
√
θ̂(f) is convex over relevant sets of f.

In that case for every χ > 0 the additional term in Γ̂χ(f) will enhance the
strict concavity of γ̂(f), which helps guard against overbetting.
The choice of a value for the caution coefficient χ is up to each individual
investor. It characterizes how cautious the investor wishes to be. Caution
can arise from many sources, each of which has to be quantified in order
to guide the choice of χ.
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Cautious Objectives

We will consider contributions to the caution coefficient from two sources:
the uncertainty in the sample mean estimator γ̂(f) given by (2.1);
the desire to reduce the impact of downside market events.

The first will be analyzed using the Chebyshev inequality bounds that we
developed earlier.
The second will require more information than the Law of Large Numbers
provides. However, this additional information can be estimated with the
aid of the Central Limit Theorem.

Other potential contributions to the caution coefficient will be explored in
the projects. These might include our confidence in the IID model or our
assesment of economic factors.
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Sample Mean Estimator Uncertainty

Recall that the uncertainty in the sample mean estimator γ̂(f) can be
quantified by the Chebyshev inequality, which shows for every δ >

√
w̄D

that
Pr
{
|γ̂(f)− γ(f)| > δ

√
θ(f)

}
≤ w̄D

δ2 .

This can be recast as

Pr
{
|γ̂(f)− γ(f)| ≤ δ

√
θ(f)

}
≥ 1− w̄D

δ2 . (3.6)

This implies that

Pr
{
γ(f) ≥ γ̂(f)− δ

√
θ(f)

}
≥ 1− w̄D

δ2 . (3.7)
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Sample Mean Estimator Uncertainty

This suggests that if w̄D/δ
2 is small then with high probability

γ(f) ≥ γ̂(f)− δ
√
θ̂(f) . (3.8)

Notice that here we have replaced the unknown θ(f) in (3.7) with its
estimator θ̂(f) given by (2.4).
Remark. Because we see from (2.2) that r(d , 0) = µsi for every d , we see
from (2.1) and (2.4) that

γ̂(0) = log(1 + µsi) , θ̂(0) = 0 .

Therefore because γ(0) = log(1 + µsi), we see that inequality (3.8) is an
equality for f = 0.
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Sample Mean Estimator Uncertainty

Now let λe ∈ (0, 1) be the probability that we hope inequality (3.8) holds.
By setting

λe = 1− w̄D
δ2 ,

we obtain
δ =

√
w̄D

1− λe
.

This suggests that if this sample mean estimator uncertainty was our only
concern then we could select the caution coefficient

χe =
√

w̄D
1− λe

. (3.9)

Of course, the addition of other concerns will lead to a higher value for χ.
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Central Limit Theorem

Because the Central Limit Theorem is used to analyze our next concern,
we now review it. Let {Xd}∞d=1 be any sequence of IID random variables
drawn from a probability density p(X ) with mean γ and variance θ > 0.
Let {Yd}∞d=1 be the sequence of random variables defined by

Yd = 1
d

d∑
d ′=1

Xd ′ for every d = 1, · · · , ∞ . (4.10)

Recall that
Ex(Yd ) = γ , Var(Yd ) = θ

d .

The Law of Large Numbers says that Yd is will approach γ as d →∞.
However, it does not say how the Yd are distibuted around γ for fixed d .
The Central Limit Theorem gives such information.
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Central Limit Theorem

Let {Zd}∞d=1 be the sequence of random variables defined by

Zd = Yd − γ√
θ/d

for every d = 1, · · · , ∞ .

These random variables have been standardized so that

Ex(Zd ) = 0 , Var(Zd ) = 1 .

The Central Limit Theorem says that as d →∞ the limiting distribution
of Zd will be the mean-zero, variance-one normal distribution.
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Central Limit Theorem

More precisely, it says that for every ζ ∈ R we have

lim
d→∞

Pr
{

Zd ≥ −ζ
}

= N(ζ) , (4.11)

where N(ζ) is the normal cummulative distribution function defined by

N(ζ) ≡
∫ ζ

−∞

1√
2π

e−
1
2 Z2 dZ =

∫ ∞
−ζ

1√
2π

e−
1
2 Z2 dZ . (4.12)

We can express the limit (4.11) in terms of Yd as

lim
d→∞

Pr
{

Yd ≥ γ − ζ
√
θ/d

}
= N(ζ) . (4.13)
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Central Limit Theorem

Remark. The normal cummulative distribution function N is an
increasing, continous function that maps R onto (0, 1). It thereby has an
inverse N−1 that is an increasing, continuous function that maps (0, 1)
onto R. Both of these functions are infinitely differentiable.
Remark. The power of the Central Limit Theorem is that it assumes so
little about the underlying probability density p(X ). Specifically, it
assumes that ∫ ∞

−∞
X 2p(X ) dX <∞ ,

and that

0 < θ =
∫ ∞
−∞

(X − γ)2p(X ) dX , where γ =
∫ ∞
−∞

X p(X ) dX .
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Central Limit Theorem

The Central Limit Theorem does not estimate how fast the limit (4.13) is
approached. Such estimates require additional assumptions about the
underlying probability density p(X ). The Berry-Esseen Theorem is the
simplest such theorem, but it is not covered in most undergraduate
probability courses.
The Berry-Esseen Theorem says that there exists CBE ∈ R such that if

ρ =
∫ ∞
−∞
|X − γ|3p(X ) dX <∞ ,

then for every ζ ∈ R we have∣∣∣∣Pr
{

Yd ≥ γ − ζ
√
θ/d

}
−N(ζ)

∣∣∣∣ ≤ CBE
ρ√
d θ3

. (4.14)
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Central Limit Theorem

Remark. The Berry-Esseen Theorem shows that the rate of convergence
of the limit (4.13) in the Central Limit Theorem is d− 1

2 as d →∞.
Remark. The constant CBE is universal because it does not depend upon
the probability density p(X ). Its best value is known to lie within the
interval (0.4, 0.5). Bounding this value is the subject of current research.
Remark. The quantity ρ is the absolute centered third moment of the
probability density p(X ). The Hölder inequality shows that it is bounded
below by the variance θ of p(X ) as

ρ ≥
√
θ3 .

The error bound (4.14) depends upon p(X ) through the ratio ρ/
√
θ3,

which is larger for densities with fatter tails.
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Downside Uncertainties
The IID model for the Markowitz portfolio with allocation f has a growth
rate mean γ(f) and a growth rate variance θ(f) that are estimated from
the return history {r(d)}Dd=1 by γ̂(f) and θ̂(f) given by (2.1) and (2.4).
Let {Xd}∞d=1 be an IID growth rate history drawn from this model and let
{Yd}∞d=1 be defined by (4.10). The Law of Large Numbers says that as
d →∞ the values of Yd become strongly peak around γ(f). This behavior
seems to be consistent with the idea that a reasonable approach towards
portfolio management is to select f to maximize the estimator γ̂(f).
However, by taking ζ = 0 in (4.13) we see that the Central Limit Theorem
implies

lim
d→∞

Pr
{

Yd ≥ γ(f)
}

= N(0) = 1
2 .

This shows that in the long run the growth rate of a portfolio will exceed
γ(f) with a probability of only 1

2 . Cautious investors might want the
portfolio to exceed the optimized growth rate with a higher probability.
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Downside Uncertainties

The Central Limit Theorem says that if T is large enough then we can use
the approximation

Pr
{

YT ≥ γ(f)− ζ
√
θ(f)/T

}
≈ N(ζ) . (5.15)

Let λd ∈ (1
2 , 1) be the probability that we do not want to experience a

downside event. Set
ζd = N−1(λd) .

Then approximation (5.15) becomes

Pr
{

YT ≥ γ(f)− ζd√
T
√
θ

}
≈ λd . (5.16)
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Downside Uncertainties

This suggests that if downside tail events were our only concern then we
could pick the caution coefficient

χd = N−1(λd)√
T

, (5.17)

whereby
Γ̂χ(f) = γ̂(f)− N−1(λd)√

T

√
θ̂(f) . (5.18)

Remark. Because γ̂(f) is a strictly concave function of f, it is clear that
Γ̂χ(f) will be is a strictly concave function of f over any bounded set
provided that χd is small enough.
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Downside Uncertainties

Remark. The only assumption that we made made beyond the validity of
the IID model in order to construct this objective is that T is large enough
for the Central Limit Theorem to yield a good approximation of the
distribution of growth rates.

Remark. Investors often choose T to be the interval at which the portfolio
will be rebalanced, regardless of whether T is large enough for the Central
Limit Theorem approximation to be valid. If an investor plans to rebalance
once a year then T = 252, twice a year then T = 126, four times a year
then T = 63, and twelve times a year then T = 21. The smaller T , the
less likely it is that the Central Limit Theorem approximation is valid.
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Downside Uncertainties

The idea will be to select the admissible Markowitz allocation f that
maximizes Γ̂χ(f) given a choice of χd by the investor. In other words, the
objective will be to maximize the growth rate that will be exceeded by the
portfolio with probability λd when it is held for T trading days. Because
1− λd is the fraction of times the investor is willing to experience a
downside tail event, the choice of λd reflects the caution of the investor.
More cautious investors will select a higher λd.
Remark. The caution of an investor can increase with age. Retirees whose
portfolio provide an income that covers much of their living expenses will
often be extremely cautious. Investors within ten years of retirement may
be fairly cautious because they have less time for their portfolio to recover
from an economic downturn. In constrast, young investors can be less
cautious because they have more time to experience economic upturns and
because they are typically far from their peak earning capacity.
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Downside Uncertainties

Remark. The caution of an investor should also depend on a careful
reading of economic factors or an analysis of the historical data. For
example, if the historical data shows evidence of a bubble then any
investor should be more cautious.
An investor can select ζd = N−1(λd) such that λd is a probability that
reflects his or her caution. For example, an investor can select ζd based on
the following tabulations

N
(

1
4

)
≈ .5987 , N

(
1
2

)
≈ .6915 , N

(
3
4

)
≈ .7734 , N(1) ≈ .8413 ,

N
(

5
4

)
≈ .8944 , N

(
3
2

)
≈ .9332 , N

(
7
4

)
≈ .9599 , N(2) ≈ .9772 ,

N
(

9
4

)
≈ .9878 , N

(
5
2

)
≈ .9938 , N

(
11
4

)
≈ .9970 , N(3) ≈ .9987 .
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Downside Uncertainties

An investor who is willing to experience a downside tail event roughly

once every two years might select ζd = 0 ,
twice every five years might select ζd = 1

4 ,

thrice every ten years might select ζd = 1
2 ,

twice every nine years might select ζd = 3
4 ,

once every six years might select ζd = 1 ,
once every ten years might select ζd = 5

4 ,

once every fifteen years might select ζd = 3
2 ,

once every twenty five years might select ζd = 7
4 ,

once every forty four years might select ζd = 2 .
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Downside Uncertainties

Remark. We should pick a larger value of ζd whenever our analysis of the
historical data gives us less confidence either in the health of the economy,
in the calibration of m and V, or in the validity of an IID model. These are
the questions that are addressed in the projects.
Remark. This approach is similar to something in financal management
called value at risk. The finance problem is much harder because the time
horizon T considered there is much shorter, typically on the order of days.
The Central Limit Theorem approximation is likely invalid in that case.
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Mean-Variance Estimators of Cautious Objectives
The family of cautious objectives Γ̂χ(f) given by (2.3) is expressed in
terms of the growth rate mean and variance estimators γ̂(f) and θ̂(f). In
order to work within the framework of Markowitz portfolio theory we now
derive estimators of these objectives expressed in terms of the sample
estimators of the return mean and variance given by

µ̂(f) = µrf(f)
(
1− 1Tf

)
+ mTf , fTVf , (6.19)

where m and V are given by

m =
D∑

d=1
wd r(d) ,

V =
D∑

d=1
wd
(
r(d)−m

)(
r(d)−m

)T
.

(6.20)

These are mean-variance estimators of the cautious objectives.
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Mean-Variance Estimators of Cautious Objectives

Let r̃(d) = r(d)−m be the deviation of r(d) from its sample mean m.
Then

r(d , f) = µ̂(f) + r̃(d)Tf ,

where µ̂(f) is the sample mean given by (6.19) of the history {r(d , f)}Dd=1.
Then we can write

x(d , f) = log
(
1 + r(d , f)

)
= log

(
1 + µ̂(f)

)
+ log

(
1 + r̃(d)Tf

1 + µ̂(f)

)
.

(6.21)

In the last lecture this expression was used to derive estimators of γ̂(f).
Here it will be used to also derive estimators of θ̂(f).
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Mean-Variance Estimators of Cautious Objectives

More specifically, in the last lecture we used the second-order Taylor
approximation log(1 + z) ≈ z − 1

2z2 in the second term of (6.21) to obtain

x(d , f) ≈ log
(
1 + µ̂(f)

)
+ r̃(d)Tf

1 + µ̂(f) −
1
2

(
r̃(d)Tf

1 + µ̂(f)

)2

.

This led to the Taylor estimator

γ̂t(f) = log
(
1 + µ̂(f)

)
− 1

2
fTVf

(1 + µ̂(f))2 .

This estimator is not well-behaved for large f, so from it we derived the
sensible, reasonable, quadratic, and parabolic estimators, γ̂s(f), γ̂r(f),
γ̂q(f), and γ̂p(f), all of which behave better for large f.
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Mean-Variance Estimators of Cautious Objectives
Here we use the first-order Taylor approximation log(1 + z) ≈ z in the
second term of (6.21) to obtain

x(d , f) ≈ log
(
1 + µ̂(f)

)
+ r̃(d)Tf

1 + µ̂(f) . (6.22)

When this is placed into the definition of θ̂(f) we obtain

θ̂(f) =
D∑

d=1

wd
1− w̄

(
x(d , f)− γ̂(f)

)2 ≈ 1
1− w̄

fTVf
(1 + µ̂(f))2 ,

which leads to the Taylor estimator

θ̂t(f) = 1
1− w̄

fTVf
(1 + µ̂(f))2 . (6.23)

Like the Taylor estimator γ̂t(f), this is not well-behaved for large f.
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Mean-Variance Estimators of Cautious Objectives

The simplest thing to do is drop the µ̂(f) term in the denominator of
θ̂t(f), which leads to the quadratic estimator

θ̂q(f) = 1
1− w̄ fTVf . (6.24)

We then introduce the caution coefficient χ by

χ = 1√
1− w̄

(
χe + χd

)
= 1√

1− w̄

(√
w̄

1− λe
+ N−1(λd)√

T

)
.

(6.25)

Typically χ < 1.
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Mean-Variance Estimators of Cautious Objectives

When the estimator (6.24) is combined with the parabolic estimator γ̂p(f)
we obtain

Γ̂χ
p (f) = µ̂(f)− 1

2 fTVf − χ
√

fTVf . (6.26)

When it is combined with the quadratic estimator γ̂q(f) we obtain

Γ̂χ
q (f) = µ̂(f)− 1

2 µ̂(f)2 − 1
2 fTVf − χ

√
fTVf ,

over Πq =
{
f ∈ RN : µ̂(f) ≤ 1

}
.

(6.27)

When it is combined with the reasonable estimator γ̂r(f) we obtain

Γ̂χ
r (f) = log

(
1 + µ̂(f)

)
− 1

2 fTVf − χ
√

fTVf ,
over Πr =

{
f ∈ RN : 1 + µ̂(f) > 0

}
.

(6.28)
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Mean-Variance Estimators of Cautious Objectives

When it is combined with the sensible estimator γ̂s(f) we obtain

Γ̂χ
s (f) = log

(
1 + µ̂(f)

)
− 1

2
fTVf

1 + 2µ̂(f) − χ
√

fTVf ,

over Πs =
{
f ∈ RN : 1 + µ̂(f) > 1

2
}
.

(6.29)

When it is combined with the Taylor estimator γ̂t(f) we obtain

Γ̂χ
t (f) = log

(
1 + µ̂(f)

)
− 1

2
fTVf

(1 + µ̂(f))2 − χ
√

fTVf ,

over Πt =
{
f ∈ RN : 1 + µ̂(f) ≥

√
fTVf

}
.

(6.30)

This estimator is strictly concave over Πt.

C. David Levermore (UMD) Cautious Objectives May 3, 2020



Intro Cautious Obj Estimator Uncert CLT Downside Uncert Mean-Variance

Mean-Variance Estimators of Cautious Objectives

Finally, when χ < 1 and the Taylor estimator γ̂t(f) is combined with the
Taylor estimator θ̂t(f) given by (6.23) to estimate the cautious objective,
Γ̂χ(f) given by (2.3), then we obtain the ultimate estimator

Γ̂χ
u (f) = log

(
1 + µ̂(f)

)
− 1

2
fTVf

(1 + µ̂(f))2 − χ
√

fTVf
1 + µ̂(f) ,

over Πχ
u =

{
f ∈ RN : 1 + µ̂(f) ≥

√
fTVf

1− χ

}
.

(6.31)

This estimator is strictly concave over Πχ
u .
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