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Independent, Identically-Distributed Models for Markets
We now consider a market with N risky assets. Let {si (d)}Dd=0 be the
share price history of asset i . The associated return and growth rate
histories are {ri (d)}Dd=1 and {xi (d)}Dd=1 where

ri (d) = si (d)
si (d − 1) − 1 , xi (d) = log

( si (d)
si (d − 1)

)
.

Because each si (d) is positive, each ri (d) is in (−1,∞), and each xi (d) is
in (−∞,∞). Let r(d) and x(d) be the N-vectors

r(d) =

 r1(d)
...

rN(d)

 , x(d) =

x1(d)
...

xN(d)

 .

The market return and growth rate histories can then be expressed simply
as {r(d)}Dd=1 and {x(d)}Dd=1 respectively.
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Independent, Identically-Distributed Models for Markets

An IID model for this market draws D random vectors {Rd}Dd=1 from a
fixed probablity density q(R) over (−1,∞)N . Such a model is reasonable
when the points {(d , r(d))}Dd=1 are distributed uniformly in d . This is hard
to visualize when N is not small.
You might think a necessary condition for the entire market to have an IID
model is that each asset has an IID model. This can be visualized for each
asset by plotting the points {(d , ri (d))}Dd=1 in the dr-plane and seeing if
they appear to be distributed uniformly in d.

Similar visual tests based on pairs of assets can be carried out by plotting
the points {(d , ri (d), rj(d))}Dd=1 in R3 with an interactive 3D graphics
package.
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Independent, Identically-Distributed Models for Markets

Visual tests like those described above often show that funds behave more
like IID models than individual stocks or bonds. This means that portfolio
balancing strategies based on IID models might work better for portfolios
composed largely of funds. This is one reason why some investors prefer
investing in funds over investing in individual stocks and bonds.
A better lesson to be drawn from the observation in the last paragraph is
that every sufficiently diverse portfolio of assets in a market will behave
more like an IID model than many of the individual assets in that market.
In other words, IID models for a market can be used to develop portfolio
balancing strategies when the portfolios considered are sufficiently diverse,
even when the behavior of individual assets in that market may not be well
described by the model. This is another reason to prefer holding diverse,
broad-based portfolios.
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Independent, Identically-Distributed Models for Markets

More importantly, this suggests that it is better to apply visual tests like
those described above to representative portfolios rather than to individual
assets in the market.

Remark. Such visual tests can only warn you when IID models might not
be appropriate for describing the data. There are also statistical tests that
can play this role. There is no visual or statistical test that can insure the
validity of using an IID model for a market. However, due to their
simplicity, IID models are often used unless there is a good reason not to
use them.
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Independent, Identically-Distributed Models for Markets
After we have decided to use an IID model for the market, we must gather
statistical information about the return probability density q(R). The
mean vector µ and covariance matrix Ξ of R are given by

µ =
∫

R q(R) dR , Ξ =
∫

(R− µ)(R− µ)Tq(R) dR .

Given any sample {Rd}Dd=1 drawn from q(R), these have the unbiased
estimators

µ̂ =
D∑

d=1
wd Rd , Ξ̂ =

D∑
d=1

wd
1− w̄ (Rd − µ̂) (Rd − µ̂)T .

If we assume that such a sample is given by the return history {r(d)}Dd=1
then these estimators are given in terms of the vector m and matrix V by

µ̂ = m , Ξ̂ = 1
1− w̄ V .
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Independent, Identically-Distributed Models for Portfolios
Recall that the value of a portfolio that holds a risk-free balance brf(d)
with return µrf and ni (d) shares of asset i during trading day d is

π(d) = brf(d) (1 + µrf) +
N∑

i=1
ni (d)si (d) .

We will assume that π(d) > 0 for every d . Then the return r(d) and
growth rate x(d) for this portfolio on trading day d are given by

r(d) = π(d)
π(d − 1) − 1 , x(d) = log

(
π(d)

π(d − 1)

)
.

Recall that the return r(d) for the Markowitz portfolio with allocation f
can be expressed in terms of the vector r(d) as

r(d) = (1− 1Tf)µrf + fTr(d) .
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Independent, Identically-Distributed Models for Portfolios

This implies that if the underlying market has an IID model with return
probability density q(R) then the Markowitz portfolio with allocation f has
the IID model with return probability density qf(R) given by

qf(R) =
∫
δ
(

R − (1− 1Tf)µrf − RTf
)

q(R) dR .

Here δ( · ) denotes the Dirac delta distribution, which can be defined by
the property that for every sufficiently nice function ψ(R)∫

ψ(R) δ
(

R − (1− 1Tf)µrf − RTf
)

dR = ψ
(

(1− 1Tf)µrf + RTf
)
.
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Independent, Identically-Distributed Models for Portfolios

Hence, by combining the foregoing formula for qf(R) with the defining
property of the Dirac delta distribution, we see that for every sufficiently
nice function ψ(R) we have the formula

Ex
(
ψ(R)

)
=
∫
ψ(R) qf(R) dR

=
∫
ψ(R)

[∫
δ
(

R − (1− 1Tf)µrf − RTf
)

q(R) dR
]

dR

=
∫ [∫

ψ(R) δ
(

R − (1− 1Tf)µrf − RTf
)

dR
]

q(R) dR

=
∫
ψ
(

(1− 1Tf)µrf + RTf
)

q(R) dR .

This formula can also be viewed as defining qf(r).
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Independent, Identically-Distributed Models for Portfolios

In particular, we can compute the mean µ of qf(R) as

µ = Ex(R) =
∫ (

(1− 1Tf)µrf + RTf
)

q(R) dR

= (1− 1Tf)µrf

∫
q(R) dR +

(∫
R q(R) dR

)T
f

= (1− 1Tf)µrf + µTf ,

where in the last step we have used the facts that∫
q(R) dR = 1 ,

∫
R q(R) dR = µ .
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Independent, Identically-Distributed Models for Portfolios

This formula for µ can then be used to compute the variance ξ of qf(R) as

ξ = Ex
(
(R − µ)2) =

∫ (
(1− 1Tf)µrf + RTf − µ

)2q(R) dR

=
∫ (

RTf − µTf
)2

q(R) dR

=
∫

fT(R− µ) (R− µ)Tf q(R) dR

= fT
(∫

(R− µ)(R− µ)Tq(R) dR
)

f = fTΞ f ,

where in the last step we have used the fact that∫
(R− µ)(R− µ)Tq(R) dR = Ξ .
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Independent, Identically-Distributed Models for Portfolios
If we assume that the return history {r(d)}Dd=1 is an IID sample drawn
from a probability density q(R) then unbiased estimators of the associated
mean µ and variance Ξ are given in terms of m and V by

µ̂ = m , Ξ̂ = 1
1− w̄ V .

Moreover, the Markowitz portfolio with allocation f has the return history
{r(d)}Dd=1 where

r(d) = (1− 1Tf)µrf + fTr(d) .
This return history is an IID sample drawn from the probability density
qf(R) and the formulas on the last two pages show that the mean µ and
variance ξ of qf(R) have the unbiased estimators

µ̂ = µrf(1− 1Tf) + mTf , ξ̂ = 1
1− w̄ fTVf .
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Growth Rate Probability Densities

Now suppose that the returns of an IID model for a portfolio are drawn
from a return probability density q(R). Given D samples {Rd}Dd=1 that are
drawn from q(R), the associated simulated portfolio values {Πd}Dd=1
satisfy

Πd = (1 + Rd ) Πd−1 , for d = 1, · · · , D . (3.1)

If the inital portfolio value π(0) is known then we set Π0 = π(0) and use
induction to show that

Πd =
d∏

d ′=1
(1 + Rd ′)π(0) . (3.2)
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Growth Rate Probability Densities

The growth rate Xd is related to the return Rd by

eXd = 1 + Rd . (3.3)

In other words, Xd is the growth rate that yeilds a return Rd on trading
day d . The formula for Πd then takes the form

Πd = exp
( d∑

d ′=1
Xd ′

)
π(0) . (3.4)
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Growth Rate Probability Densities

If the samples {Rd}Dd=1 are drawn from a density q(R) over (−1,∞) then
the {Xd}Dd=1 are drawn from a density p(X ) over (−∞,∞) where

p(X ) dX = q(R) dR ,

with X and R related by

X = log(1 + R) , R = eX − 1 .

More explicitly, the densities p(X ) and q(R) are related by

p(X ) = q
(

eX − 1
)

eX , q(R) = p(log(1 + R))
1 + R .
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Growth Rate Probability Densities

Because our models will involve means and variances, we will require that∫ ∞
−∞

X 2p(X ) dX =
∫ ∞
−1

log(1 + R)2 q(R) dR <∞ ,∫ ∞
−∞

(
eX − 1

)2
p(X ) dX =

∫ ∞
−1

R2q(R) dR <∞ .

Then the mean γ and variance θ of X are

γ = Ex(X ) =
∫ ∞
−∞

X p(X ) dX ,

θ = Var(X ) = Ex
(

(X − γ)2
)

=
∫ ∞
−∞

(X − γ)2 p(X ) dX .
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Growth Rate Probability Densities

The big advantage of working with p(X ) rather than q(R) is the fact that

log
( Πd
π(0)

)
=

d∑
d ′=1

Xd ′ .

In other words, log(Πd/π(0)) is a sum of an IID process. It is easy to
compute the mean and variance of this quantity in terms of those of X .
For the mean of log(Πd/π(0)) we find that

Ex
(

log
( Πd
π(0)

))
=

d∑
d ′=1

Ex(Xd ′) = d γ ,
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Growth Rate Probability Densities

For the variance of log(Πd/π(0)) we find that

Var
(

log
( Πd
π(0)

))
= Ex

( d∑
d ′=1

Xd ′ − d γ
)2

= Ex

( d∑
d ′=1

(Xd ′ − γ)
)2

= Ex
( d∑

d ′=1

d∑
d ′′=1

(Xd ′ − γ) (Xd ′′ − γ)
)

=
d∑

d ′=1
Ex
(

(Xd ′ − γ)2
)

= d θ .
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Growth Rate Probability Densities

Remark. The off-diagonal terms in the foregoing double sum vanish
because

Ex
(

(Xd ′ − γ) (Xd ′′ − γ)
)

= 0 when d ′′ 6= d ′ .

Hence, the growth rate expected value and variance of the IID model
portfolio at day d is

Ex
(

log
( Πd
π(0)

))
= γ d , Var

(
log
( Πd
π(0)

))
= θ d .
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Law of Large Numbers
Let {Xd}∞d=1 be any sequence of IID random variables drawn from a
probability density p(X ) with mean γ and variance θ > 0. Let {Y (d)}∞d=1
be the sequence of random variables defined by

Yd = 1
d

d∑
d ′=1

Xd ′ for every d = 1, · · · , ∞ .

It is easy to check that

Ex(Yd ) = γ , Var(Yd ) = θ

d .

Given any δ > 0 the Law of Large Numbers states that

lim
d→∞

Pr
{
|Yd − γ| ≥ δ

√
θ
}

= 0 . (4.5)
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Law of Large Numbers

The convergence rate of this limit can be estimated by the Chebyshev
inequality, which yields the δ-dependent upper bound

Pr
{
|Yd − γ| ≥ δ

√
θ
}
≤ Var(Yd )

δ2 θ
= 1
δ2

1
d . (4.6)

Remark. The Chebyshev inequality is easy to derive. Suppose that pd (Y )
is the unknown probability density for Y (d). Then

Pr
{
|Yd − γ| ≥ δ

√
θ
}

=
∫
{|Y−γ|≥δ

√
θ}

pd (Y ) dY

≤
∫ |Y − γ|2

δ2 θ
pd (Y ) dY = Var(Y (d))

δ2 θ
= 1
δ2

1
d .
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Law of Large Numbers

Remark. The probability density pd (Y ) in the previous slide can be
expressed in terms of the unknown probability density p(X ) as

pd (Y ) =
∫
· · ·
∫
δ

(
Y − 1

d

d∑
d ′=1

Xd ′

)
p(X1) · · · p(Xd ) dX 1 · · · dX d ,

where δ( · ) is the Dirac delta distribution introduced earlier.
Remark. The IID model suggests that the growth rate mean γ is a good
proxy for the reward of a portfolio and that

√
θ is a good proxy for its risk.

However, these are not the proxies chosen by MPT.
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Law of Large Numbers

The proxies γ and
√
θ can be approximated by γ̂ and

√
θ̂ where γ̂ and θ̂

are the unbiased estimators of γ and θ given by

γ̂ =
D∑

d=1
wd Xd , θ̂ =

D∑
d=1

wd
1− w̄

(
Xd − γ̂

)2
.
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Normal Growth Rate Model

We can illustrate what is going on with the simple IID model where p(X )
is the normal or Gaussian density with mean γ and variance θ, which is
given by

p(X ) = 1√
2πθ

exp
(
−(X − γ)2

2θ

)
.

Let {X (d)}∞d=1 be a sequence of IID random variables drawn from p(X ).
Let {Yd}∞d=1 be the sequence of random variables defined by

Yd = 1
d

d∑
d ′=1

Xd ′ for every d = 1, · · · , ∞ .
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Normal Growth Rate Model
We can easily check that

Ex(Yd ) = γ , Var(Yd ) = θ

d .

We can also check that

Ex(Yd |Yd−1) = d − 1
d Yd−1 + 1

d γ .

So the variables Yd are neither independent nor identically distributed.
It can be shown (the details are not given here) that Yd is drawn from the
normal density with mean γ and variance θ/d , which is given by

pd (Y ) =
√

d
2πθ exp

(
−(Y − γ)2d

2θ

)
.
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Normal Growth Rate Model
Because Sd/s(0) = ed Yd , the mean return at day d is

Ex
(

ed Yd
)

=
√

d
2πθ

∫
exp
(
−(Y − γ)2d

2θ + d Y
)

dY

=
√

d
2πθ

∫
exp
(
−(Y − γ − θ)2d

2θ + d(γ + 1
2θ)
)

dY

= exp
(

d(γ + 1
2θ)
)
.

Because pd (Y ) becomes sharply peaked around Y = γ as d increases,
most investors will see the lower growth rate γ rather than γ + 1

2θ.
By setting d = 1 in the above formula, we see that the return mean is

µ = Ex(R) = Ex
(

eX − 1
)

= exp
(
γ + 1

2θ
)
− 1 .

Hence, µ > γ + 1
2θ, with µ ≈ γ + 1

2θ when (γ + 1
2θ) << 1.
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Normal Growth Rate Model

Therefore most investors will see a return that is below the return mean µ
— far below in volatile markets. This is because eX amplifies the tail of
the normal density. For a more realistic IID model with a density p(X )
that decays more slowly than a normal density as X →∞, this difference
can be more striking. Said another way, most investors will not see the
same return as Warren Buffett, but his return will boost the mean.
The normal growth rate model confirms that γ is a better proxy for how
well a risky asset might perform than µ because pd (Y ) becomes more
peaked around Y = γ as d increases. The Law of Large Numbers extends
this result to IID models that are more realistic.
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Portfolio Selection

Our general approach to portfolio management will be to select an
allocation f that maximizes some objective function. The Law of Large
Numbers for IID models suggests that we might want to pick f to
maximize γ. However, a difficulty with using this strategy is that we do
not know γ. Rather, we will develop strategies that maximize one of a
family objective functions that are built from γ̂ and θ̂.
In 1956 John Kelly, a colleague of Claude Shannon at Bell Labs, used the
Law of Large Numbers to devise optimal betting strategies for a class of
games of chance. A strategy that tries to maximize γ became known as
the Kelly criterion, Kelly strategy, or Kelly bet. In practice they employed
modifications of the Kelly criterion.
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Portfolio Selection

Such strategies were subsequently adopted by Claude Shannon, Ed Thorp,
and others to win at blackjack, roullette, and other casino games. These
exploits are documented in Ed Thorpe’s 1962 book Beat the Dealer.
Because many casinos were controlled by organized crime at that time,
using these strategies could adversely affect the user’s health.
Claude Shannon, Ed Thorp, and others soon realized that it was better for
both their health and their wealth to apply the Kelly criterion to winning
on Wall Street. Ed Thorpe laid out a strategy to do this in his 1967 book
Beat the Market. He went on to run the first quantiative hedge fund,
Princeton Newport Partners, which introduced statistical arbitrage
strategies to Wall Street. This history is told in Scott Peterson’s 2010
book The Quants and in Ed Thorp’s 2017 book A Man for All Markets.
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Kelly Criterion for a Simple Game
Before showing how the Kelly criterion is applied to balancing portfolios
with risky assets, we will show how it is applied to a simple betting game.
Consider a game in which each time that we place a bet:

(i) the probability of winning is p ∈ (0, 1),
(ii) the probability of losing is q = 1− p,
(iii) when we win there is a positive return r on our bet.

We start with a bankroll of cash and the game ends when the bankroll is
gone. Suppose that you know p and r . We would like answers to the
following questions.

1. When should we play?,
2. When we do play, what fraction of our bankroll should we bet?,
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Kelly Criterion for a Simple Game
The game is clearly an IID process. Because each time we play we are
faced with the same questions and will have no addtional helpful
information, the answers will be the same each time. Therefore we only
consider strategies in which we bet a fixed fraction f of our bankroll. If
f = 0 then we are not betting. If f = 1 then we are betting out entire
bankroll. (This is clearly a foolish strategy in the long run because we will
go broke the first time we lose.) Then

when we win our bankroll increases by a factor of 1 + fr ,
when we lose our bankroll decreases by a factor of 1− f .

Therefore if we bet n times and win m times (hence, lose n −m times)
then our bankroll changes by a factor of

(1 + fr)m(1− f )n−m .

The Kelly criterion is to pick f ∈ [0, 1) to maximize this factor for large n.
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Kelly Criterion for a Simple Game
This is equivalent to maximizing the log of this factor, which is

m log(1 + fr) + (n −m) log(1− f ) .

The law of large numbers implies that

lim
n→∞

m
n = p .

Therefore for large n we see that
m log(1 + fr) + (n −m) log(1− f )

∼
(
p log(1 + fr) + (1− p) log(1− f )

)
n .

Hence, the Kelly criterion says that we want to pick f ∈ [0, 1) to maximize
the growth rate

γ(f ) = p log(1 + fr) + (1− p) log(1− f ) . (7.7)

This is now an exercise from first semester calculus.
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Kelly Criterion for a Simple Game
Notice that γ(0) = 0 and that

lim
f↗1

γ(f ) = −∞ .

Also notice that for every f ∈ [0, 1) we have

γ′(f ) = pr
1 + fr −

1− p
1− f ,

γ′′(f ) = − pr2

(1 + fr)2 −
1− p

(1− f )2 .

Because γ′′(f ) < 0 over [0, 1), we see that γ(f ) is strictly concave over
[0, 1) and that γ′(f ) is strictly decreasing over [0, 1).
If γ′(0) = pr − (1− p) = p(1 + r)− 1 ≤ 0 then γ(f ) is strictly deceasing
over [0, 1) because γ′(f ) is strictly decreasing over [0, 1). In that case the
maximizer for γ(f ) over [0, 1) is f = 0 and the maximun is γ(0) = 0.
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Kelly Criterion for a Simple Game

If γ′(0) = pr − (1− p) = p(1 + r)− 1 > 0 then γ(f ) has a unique
maximizer at f = f∗ ∈ (0, 1) that satifies

0 = γ′(f∗) = pr
1 + f∗r

− 1− p
1− f∗

= pr(1− f∗)− (1− p)(1 + f∗r)
(1 + f∗r)(1− f∗)

= p(1 + r)− f∗r
(1 + f∗r)(1− f∗)

.

Upon solving this equation for f∗ we find that

f∗ = p(1 + r)− 1
r . (7.8)
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Kelly Criterion for a Simple Game
Remark. We see from (7.8) that if p(1 + r)− 1 > 0 then

0 < f∗ = p(1 + r)− 1
r = p − 1− p

r < p < 1 .

Therefore the Kelly crtierion yields the optimal betting strategy

f∗ =

0 if p(1 + r)− 1 ≤ 0 ,
p(1 + r)− 1

r if p(1 + r)− 1 > 0 .
(7.9)

The maximum growth rate (details not shown) when p(1 + r)− 1 > 0 is

γ(f∗) = p log
(
p(1 + r)

)
+ (1− p) log

(
(1− p) 1 + r

r

)
. (7.10)

Remark. In practice this strategy is is far from ideal for reasons that we
will discuss in the next section.
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Kelly Criterion for a Simple Game
Remark. Some bettors call r the odds because the return r on a winning
wager is usually chosen so that the ratio r : 1 reflects a probability of
winning. The expected return on each amount wagered is pr − (1− p).
This is the probability of winning, p, times the return of a win, r , plus the
probability of losing, 1− p, times the return of a loss, −1. Some bettors
call this quantity the edge when it is postive. Notice that
pr − (1− p) = p(1 + r)− 1 is the numerator of f∗ given by (7.8), while r
is the denominator of f∗ given by (7.8). Then strategy (7.9) can be
expressed in this language as follows.

1. Do not bet unless we have an edge.

2. If we have an edge then bet f∗ = edge
odds of our bankroll.

This view of the Kelly criterion is popular, but is not very helpful when
trying to apply it to more complicated games.
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Kelly Criterion in Practice

In most betting games played at casinos the players do not have an edge
unless they can use information that is not used by the house when
computing the odds. For example, card counting strategies can allow a
blackjack player to compute a more accurate probability of winning than
the one used by the house when it computed the odds.
Kelly bettors will not make a serious wager until they are very sure that
they have an edge, and then they will use the Kelly criterion to size their
bet. Because their algorithm yields an approximation of their edge, they
are not sure of their true Kelly optimal bet. Because there is a big
downside to betting more that the true Kelly optimal bet, their bet is
typically a fraction of the Kelly optimal bet.
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Kelly Criterion in Practice
We will illustrate these ideas with a modification of the simple game from
the last section. Specifically, suppose that the game is the same except for
the fact that we are not told p. Rather, we are told that r = .125 and that
the player won 225 times the last 250 times the game was played.
Based on the information that the player won 225 times the last 250 times
the game was played, we guess that p = .9. If we use this value of p then
we see that

p(1 + r)− 1 = .9(1 + .125)− 1 = 9
10 ·

9
8 − 1 = 1

80 .

Based on this calculation, we have an edge, so we will play and the
optimal bet is

f∗ = p(1 + r)− 1
r =

1
80
1
8

= 1
10 .

Therefore the Kelly strategy is to bet 1
10 of our bankroll each time.
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Kelly Criterion in Practice

However, suppose that the previous players had just gotten lucky and that
in fact p = .875. If we use this value of p then we see that

p(1 + r)− 1 = .875(1 + .125)− 1 = 7
8 ·

9
8 − 1 = − 1

64 .

Therefore we do not have an edge and we should not play!
The difference between .9 and .875 is not large in the sense that it is not
an unreasonable error based on only 250 observations. If we bet 1

10 of our
bankroll each time then our bankroll will be significantly diminished before
we have played the game enough to realize that there is no edge!
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Kelly Criterion in Practice

Now suppose that in fact p = .895. If we use this value of p then we see
that

p(1 + r)− 1 = .895(1 + .125)− 1 = .006875 .

So in fact, we have an edge. However, the optimal bet is

f∗ = p(1 + r)− 1
r = .006875

.125 = .055 .

If we bet 1
10 of our bankroll each time then our bankroll will be

significantly diminished before we have played the game enough to realize
that p is lower than .9.
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Kelly Criterion in Practice

In this game both the edge and the odds are small. Small uncertainties in
our estimation of p can lead to large uncertainties in our estimation of f∗.
If we overestimate f∗ enough then we are almost certain to lose. Betting
more than the true f∗ is called overbetting. If we underestimate f∗ then we
will certainly win, just a less than the optimal amount.
Because of this asymmetry, it is wise to bet a fraction of the optimal Kelly
bet when we are uncertain of our edge. The greater the uncertainty, the
smaller the fraction that should be used. Fractions ranging from 1

3 to 1
10

are common, depending on the uncertainty. These are called fractional
Kelly strategies.
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