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Introduction

Independent, Identically Distributed (IID) models of returns make two
simplifying assumptions.

1. Independent. That what happens on day d is independent of what
has happened in the past.

2. Identically Distributed. What happens each day is statistically
identical to what happens every other day.

In IID models the random numbers {Rd}Dd=1 that mimic a return history
are each drawn from (−1,∞) in accord with the same probability density.
The question arises as to how can we determine how well a given return
history {r(d)}Dd=1 is mimiced by such a model. Here we present ways by
which the validity of each assumption can be assessed.
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Introduction

First, we will examine how to assess the validity of the identically
distributed assumption. This comes down to understanding how likely it is
that two different return histories, say {r1(d)}D1

d=1 and {r2(d)}D2
d=1, might

be drawn from the same probability density. We will take three approaches:
graphical,
comparing means and variances,
comparing distributions.

Next, we will examine how to assess the validity of the independent
assumption. This comes down to understanding how correlated each r(d)
is with earlier values, say with r(d − 1). We will take three approaches:

graphical,
comparing with an autoregression model,
comparing autocovariance matrices.
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Comparing Distributions

Comparing Distributions. In an IID model the random numbers
{Rd}Dd=1 are each drawn from (−1,∞) in accord with the same probability
density q(R). Therefore if we plot the points {(d ,Rd )}Dd=1 in the dr -plane
they will usually be distributed in a way that looks uniform in d .
Therefore if the return history {r(d)}Dd=1 is mimiced by such a model then
the points {(d , r(d))}Dd=1 plotted in the dr-plane should appear to be
distributed in a way that is uniform in d.

This will be the case if every subsample of the return history {r(d)}Dd=1
behaves as if it was drawn from the same probability density. Therefore
the question that we must address is how to tell when two samples,
{r1(d)}D1

d=1 and {r2(d)}D2
d=1, might be drawn from the same probability

density.
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Comparing Distributions

We start with a simpler question. How to compare two probability densities
over (−1,∞), say q1(R) and q2(R) where q1(R) ≥ 0, q2(R) ≥ 0, and∫ ∞

−1
q1(R) dR =

∫ ∞
−1

q2(R) dR = 1 .

One idea is to compare their distributions Q1(R) and Q2(R), which are

Q1(R) =
∫ R

−1
q1(R ′) dR ′ , Q2(R) =

∫ R

−1
q2(R ′) dR ′ .

These are nondecreasing functions of R over (−1,∞) such that

lim
R→−1

Q1(R) = lim
R→−1

Q2(R) = 0 , lim
R→∞

Q1(R) = lim
R→∞

Q2(R) = 1 .

C. David Levermore (UMD) Assessment of IID Models April 20, 2020



Intro Comparing Ident Dist Autoregress Fitting Independ

Comparing Distributions

The Kolmogorov-Smirnov measure of the closeness of Q1 and Q2 is the
sup norm of their difference:

‖Q2 − Q1‖KS = sup
{
|Q2(R)− Q1(R)| : R ∈ (−1,∞)

}
.

The Kuiper measure of the closeness of Q1 and Q2 is

‖Q2 − Q1‖Ku = sup
{

Q2(R)− Q1(R) : R ∈ (−1,∞)
}

+ sup
{

Q1(R)− Q2(R) : R ∈ (−1,∞)
}
.

It can be shown that

‖Q2 − Q1‖KS ≤ ‖Q2 − Q1‖Ku ≤ 1 .
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Comparing Distributions

The Cramer-von Mises measure of the closeness of Q1 and Q2 is the
L2-norm of their difference:

‖Q2 − Q1‖CvM =
(∫ ∞
−1

(
Q2(R)− Q1(R)

)2dR
) 1

2
.

This can clearly be generalized to any Lp-norm with respect to any
positive measure over (−1,∞). Specifically, for every p ∈ [1,∞) we have

‖Q2 − Q1‖Lp =
(∫ ∞
−1

(
Q2(R)− Q1(R)

)pdR
) 1

p
.

For simplicity we will stick to the Kolmogorov-Smirnov and Kuiper
measures.
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Comparing Distributions

Now we return to our original question. Given two samples, {r1(d)}D1
d=1

and {r2(d)}D2
d=1, we construct their so-called emperical distributions

Q̂1(R) = #
{

d : r1(d) ≤ R
}

D1
, Q̂2(R) = #

{
d : r2(d) ≤ R

}
D2

.

Here #S denotes the number of elements in a set S. These approximate
the unknown true distributions Q1 and Q2 because

Q1(R) = Pr
{

r1(d) ≤ R
}
, Q2(R) = Pr

{
r2(d) ≤ R

}
.

Then the Kolmogorov-Smirnov and Kuiper measures of the difference
Q̂2 − Q̂1 give us a way to quantify the likelihood that samples are drawn
from similar distributions.
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Comparing Distributions

Because Q̂1 and Q̂2 are step functions, we see that

‖Q̂2 − Q̂1‖KS = max
{
|Q̂2(R)− Q̂1(R)| : R ∈ (−1,∞)

}
.

‖Q̂2 − Q̂1‖Ku = max
{

Q̂2(R)− Q̂1(R) : R ∈ (−1,∞)
}

+ max
{

Q̂1(R)− Q̂2(R) : R ∈ (−1,∞)
}
.

Fortunately statisticians have provided software that efficiently computes
these values given any two samples {r1(d)}D1

d=1 and {r2(d)}D2
d=1. These are

called respectively the two-sample KS test and the two-sample Kuiper test.
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Assessing Identical Distribution

Assessing Identical Distribution. We will now present three ways to
assess how much a given return history {r(d)}Dd=1 is consistent with the
identical distribution assumption. More specifically, we will present:

a graphical assessment,
a mean and a variance assessment,
two distribution assessments.

The first is purely visual, but can be used to build understanding of the
data. The other two are analytical. They will yield measures ωm, ωv, ωKS,
and ωKu of how consistent the given data is with the identical distribution
assumption. As before, these measures will take values in the interval [0, 1]
with higher values indicating greater consistency with the identical
distribution assumption.
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Assessing Identical Distribution

Graphical Assessment. In an IID model the random numbers {Rd}Dd=1
are each drawn from (−1,∞) in accord with the same probability density
q(R). Therefore, if we plot the points {(d ,Rd )}Dd=1 in the dr -plane they
will usually be distributed in a way that looks uniform in d .
Therefore if the return history {r(d)}Dd=1 is mimiced by such a model then
the points {(d , r(d))}Dd=1 scatter plotted in the dr-plane should appear to
be distributed in a way that is uniform in d.

Remark. Of course, determining whether such a scatter plot is distributed
in a way that is uniform in d simply by looking at it is subjective.
However, sometimes this graphical approach can make it quite clear that
the identical distribution assumption is flawed! Henceforth, we will present
quantitative approaches.
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Assessing Identical Distribution

Mean and Variance Assessments. Given any two samples {r1(d)}D1
d=1

and {r2(d)}D2
d=1, we can compute their sample means and variances as

m1 = 1
D1

D1∑
d=1

r1(d) , m2 = 1
D2

D2∑
d=1

r2(d) ,

v1 = 1
D1

D1∑
d=1

(
r1(d)−m1

)2
, v2 = 1

D2

D2∑
d=1

(
r2(d)−m2

)2
.

Our goal is to develop measures of how close m1 is to m2 and v1 is to v2.
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Assessing Identical Distribution
We begin by assessing the closeness of v1 and v2 because it is easier. We
will assume that D1 and D2 are sufficiantly large to insure that v1 and v2
are positive. Then the relative difference of v1 and v2 is

v1 − v2
v1 + v2

.

This ratio takes values in the interval (−1, 1). When its absolute value is
small then v1 and v2 are relatively close.
When this ratio is squared and subtracted from 1 we get

1− (v1 − v2)2

(v1 + v2)2 = 4v1v2
(v1 + v2)2 . (3.1)

This quantity takes values in the interval (0, 1]. Its value is closer to 1
when v1 and v2 are relatively closer.
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Assessing Identical Distribution
We now assess the closeness of m1 and m2. Using relative difference does
not work because m1 and m2 might have opposite signs and m1 + m2
might be zero or nearly zero. Rather, because the variances associated
with m1 and m2 are estimated by 1

D1
v1 and 1

D2
v2, we use the ratio

(m1 −m2)2

1
D1

v1 + 1
D2

v2
.

This ratio takes values in the interval [0,∞). It is close to 0 when
|m1 −m2| is small compared to either standard deviation.
When this ratio is added to 1 and the reciprocal taken we get(

1 + (m1 −m2)2

1
D1

v1 + 1
D2

v2

)−1
. (3.2)

This quantity takes values in the interval (0, 1]. Its value is closer to 1
when m1 and m2 are relatively closer.
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Assessing Identical Distribution

Finally, given return histories over a year {r(d)}Dd=1, we can split the year
into quarters and compare the mean and variance of each quarter with
that of another quarter or with that of the other three quarters combined.
The maximum of all such comparisons made is the score for the year. For
example, motivated by (3.2) and (3.1), for each year we might define

ωm = min
{(

1 + (m1 −m2)2

1
D1

v1 + 1
D2

v2

)−1
: all comparisons made

}
,

ωv = min
{ 4v1v2

(v1 + v2)2 : all comparisons made
}
.

(3.3)

If we compare quarters with each other then six comparisons are made. If
we compare each quarter with the other three quarters combined then four
comparisons are made. Notice that the means are closer when ωm is
nearer 1, and that the variances are closer when ωv is nearer 1.
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Assessing Identical Distribution

Distribution Assessments. Similarly, given return histories over a year
{r(d)}Dd=1, we can split the year into quarters and compare the emperical
distribution of each quarter with that of another quarter or with that of
the other three quarters combined. The maximum of all such comparisons
made is the score for the year. For example, for each year we might define

ωKS = 1−max
{
‖Q̂2 − Q̂1‖KS : all comparisons made

}
,

ωKu = 1−max
{
‖Q̂2 − Q̂1‖Ku : all comparisons made

}
.

If we choose to compare quarters with each other then six comparisons are
made. If we choose to compare each quarter with the other three quarters
combined then four comparisons are made. Notice that ωKu ≤ ωKS ≤ 1,
and that the distributions are closer when ωKu is nearer 1.
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Stationary Autoregression Models

Stationary Autoregression Models. One way to quantify how well a
return history {r(d)}Dd=1 is mimicked by an IID model is to fit it to a more
complicated model and then measure how far that fit is from an IID
model. We illustrate this approach using the family of stationary
autoregression models. These models have the form

Rd = a + b Rd−1 + Zd for d = 1, · · · ,D , (4.4)

where a and b are real numbers, R0 is a random variable and {Zd}∞d=1 is a
sequence of IID random variable with mean zero.
Definition. An autoregression model in the form (4.4) is called stationary
when for every d ∈ {1, · · · ,∞} the random variable Rd has the same
statistical behavior as R0.
Remark. We will see that stationarity implies that |b| < 1.
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Stationary Autoregression Models

Let µ and ξ be the mean and variance of the random variable R0. Then
stationarity implies that

Ex(Rd ) = µ , Var(Rd ) = ξ , for every d ∈ {0, · · · ,∞} . (4.5a)

Let ξd denote the covariance of Rd with R0, so that

ξd = Cov(R0,Rd ) = Ex((R0 − µ) (Rd − µ))
for every d ∈ {0, · · · ,∞} .

(4.5b)

(Notice that ξ0 = ξ.) Then stationarity implies that

Cov(Rd ,Rd ′) = Ex((Rd − µ) (Rd ′ − µ)) = ξ|d−d ′| ,

for every d , d ′ ∈ {0, · · · ,∞} .
(4.5c)
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Stationary Autoregression Models

Let η be the variance of the IID mean-zero variables Zd . Then

Ex(Zd ) = 0 , Var(Zd ) = η , for every d ∈ {1, · · · ,∞} . (4.6a)

Because the random variables {Zd}∞d=1 are IID, we have

Cov(Zd ,Zd ′) = Ex(Zd Zd ′) = 0 ,
for every d , d ′ ∈ {1, · · · ,∞} with d 6= d ′ .

(4.6b)

Because the random variable R0 is independent of each Zd , we have

Cov(R0,Zd ) = Ex((R0 − µ) Zd ) = 0 ,
for every d ∈ {1, · · · ,∞} .

(4.6c)
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Stationary Autoregression Models

Given the five parameters a, b, µ, ξ, and η we will now derive two
relationships between these parameters as well as formulas in terms of
these parameters for the covariances

Cov(Rd ,Rd ′) for every d , d ′ ∈ {1, · · · ,∞} ,
Cov(Rd ,Zd ′) for every d , d ′ ∈ {1, · · · ,∞} .

We will thereby show that the mean-variance statistics of stationary
autoregression models in the form (4.4) are specified by just three
parameters.
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Stationary Autoregression Models
Because each Zd has mean zero, by taking expected values in (4.4) while
using (4.6) we see that

µ = Ex(Rd ) = a + b Ex(Rd−1) + Ex(Zd ) = a + bµ .

Therefore a, b, and µ are related by

µ = a + bµ . (4.7)

By using this relation to eliminate a from the form (4.4), we obtain

Rd = µ+ b (Rd−1 − µ) + Zd for d = 1, · · · ,∞ ,

which can be recast as

Rd − µ = b (Rd−1 − µ) + Zd for d = 1, · · · ,∞ . (4.8)
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Stationary Autoregression Models

Multiplying (4.8) by Zd ′ and taking expected values we obtain

Ex((Rd − µ) Zd ′) = b Ex((Rd−1 − µ) Zd ′) + Ex(Zd Zd ′) ,
for every d , d ′ ∈ {1, · · · ,∞} .

(4.9)

By using (4.6b) we see from (4.9) that

Ex((Rd − µ) Zd ′) = b Ex((Rd−1 − µ) Zd ′) ,
for every d , d ′ ∈ {1, · · · ,∞} with d < d ′ .

Then by using (4.6c) we can prove by induction that

Cov(Rd ,Zd ′) = Ex((Rd − µ) Zd ′) = 0 ,
for every d , d ′ ∈ {0, · · · ,∞} with d < d ′ .

(4.10)
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Stationary Autoregression Models
By squaring (4.8) and taking expected values while using (4.5), (4.6), and
(4.10), we see that

ξ = Var(Rd ) = Ex
(

(Rd − µ)2
)

= Ex
((

b (Rd−1 − µ) + Zd
)2)

= b2Ex
(

(Rd−1 − µ)2
)

+ 2b Ex((Rd−1 − µ) Zd ) + Ex
(

Z 2
d

)
= b2Var(Rd−1) + Var(Zd ) = b2ξ + η .

Therefore b, ξ, and η are related by

(1− b2)ξ = η . (4.11)

Because the variances ξ and η are positive, we see that

b2 < 1 , η ≤ ξ .

Notice that if b = 0 then ξ = η and the stationary autoregression model
(4.8) reduces to an IID model.
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Stationary Autoregression Models

By multiplying (4.8) by (R0 − µ) and taking expected values while using
(4.5b) and (4.6c) we see that

ξd = Ex((R0 − µ) (Rd − µ))
= b Ex((R0 − µ) (Rd−1 − µ)) + Ex((R0 − µ) Zd )
= b ξd−1 .

Because ξ0 = ξ, by induction we can show that

ξd = ξ bd for every d ∈ {1, · · · ,∞} . (4.12)

Because |b| < 1, we see that ξd decays as d increases.
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Stationary Autoregression Models

By setting d ′ = d in (4.9) while using (4.5a) and (4.10) we obtain

Cov(Rd ,Zd ) = Var(Zd ) = η , for every d ∈ {1, · · · ,∞} . (4.13)

By using (4.6b) we see from (4.9) that

Ex((Rd − µ) Zd ′) = b Ex((Rd−1 − µ) Zd ′) ,
for every d , d ′ ∈ {1, · · · ,∞} with d ′ < d .

Then by using (4.13) we can prove by induction that

Cov(Rd ,Zd ′) = Ex((Rd − µ) Zd ′) = η bd−d ′
,

for every d , d ′ ∈ {1, · · · ,∞} with d ′ ≤ d .
(4.14)

Because |b| < 1, we see that Cov(Rd ,Zd ′) decays as d increases.
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Stationary Autoregression Models
The autocorrelation time tar of the stationary autoregression model (4.4)
is defined by

1
tar

= log
( 1
|b|

)
, (4.15)

so that by (4.12) we have

|ξd | = ξ exp
(
− d

tar

)
, for every d ∈ {0, · · · ,∞} ,

and by (4.14) we have

|Cov(Rd ,Zd ′)| = η exp
(
−d − d ′

tar

)
,

for every d , d ′ ∈ {1, · · · ,∞} with d ′ ≤ d .

The smaller tar the closer the stationary autoregression model is to an IID
model.
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Stationary Autoregression Models

In summary: from (4.5a) we have for every d ∈ {0, · · · ,∞} that

Ex(Rr ) = µ , Var(Rr ) = ξ ; (4.16a)

from (4.12) we have for every d , d ′ ∈ {0, · · · ,∞} that

Cov(Rd ,Rd ′) = ξ b|d−d ′| ; (4.16b)

from (4.10) and (4.14) we have for every d ∈ {0, · · · ,∞} and
d ′ ∈ {1, · · · ,∞} that

Cov(Rd ,Zd ′) =
{

0 if d < d ′ ,
η bd−d ′ if d ′ ≤ d .

(4.16c)
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Stationary Autoregression Models

We have seen that a stationary autoregression model in the form (4.4) is
specified by three parameters. These can be a ∈ R, b ∈ (−1, 1), and
η > 0, in which case µ, ξ, and ξ1 are given by

µ = a
1− b , ξ = η

1− b2 , ξ1 = η b
1− b2 .

Alternatively, they can be µ ∈ R, ξ > 0, and ξ1 ∈ (−ξ, ξ), in which case a,
b, and η are given by

a =
(

1− ξ1
ξ

)
µ , b = ξ1

ξ
, η = ξ − ξ 2

1
ξ
.

In the next section we will show how to pick the parameters to best fit a
given data set.
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Fitting Stationary Autoregression Models
Fitting Stationary Autoregression Models. Given a return history
{r(d)}Dd=0 and a choice of positive weights {wd}Dd=1 that sum to 1 we can
use least squares to fit a stationary autoregression model of the form (4.4).
Specifically, this approach constructs estmators â and b̂ such

(
â, b̂

)
= arg min

{ D∑
d=1

wd |r(d)− a − b r(d − 1)|2
}
, (5.17)

and then construct the estmator η̂ by

η̂ = min
{ D∑

d=1
wd |r(d)− a − b r(d − 1)|2

}

=
D∑

d=1
wd |r(d)− â − b̂ r(d − 1)|2 .

(5.18)
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Fitting Stationary Autoregression Models
It is helpful to define the return sample means

m0 =
D∑

d=1
wd r(d) , m1 =

D∑
d=1

wd r(d − 1) , (5.19a)

the return sample variances

v00 =
D∑

d=1
wd
(
r(d)−m0

)2
, v11 =

D∑
d=1

wd
(
r(d − 1)−m1

)2
, (5.19b)

and the return sample autocovariance

v10 =
D∑

d=1
wd
(
r(d − 1)−m0

)(
r(d)−m1

)
. (5.19c)

It is also helpful to replace a with ã that is defined by
a = m0 − b m1 + ã . (5.20)
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Fitting Stationary Autoregression Models

Then
z(d) = r(d)− a − b r(d − 1)

=
(
r(d)−m0

)
− b

(
r(d − 1)−m1

)
+ ã

= r̃0(d)− br̃1(d) + ã ,

where we define

r̃0(d) = r(d)−m0 , r̃1(d) = r(d − 1)−m1 . (5.21)

Therefore

|z(d)|2 = |r̃0(d)|2 + b2|r̃1(d)|2 + ã2

− 2b r̃1(d) r̃0(d) + 2ã r̃0(d)− 2ãb r̃1(d) .
(5.22)
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Fitting Stationary Autoregression Models
It is evident from (5.19) and (5.21) that {r̃0(d)}Dd=1 and {r̃1(d)}Dd=1 satisfy

D∑
d=1

wd r̃0(d) = 0 ,
D∑

d=1
wd r̃1(d) = 0 ,

D∑
d=1

wd |r̃0(d)|2 = v00 ,
D∑

d=1
wd |r̃1(d)|2 = v11 ,

D∑
d=1

wd r̃1(d) r̃0(d) = v10 .

By using these facts we see from (5.22) that
D∑

d=1
wd |z(d)|2 = v00 + b2v11 + ã2 − 2b v10 .
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Because v11 > 0, the foregoing quantity is clearly minimized when

ã = 0 , b = v10
v11

,

and that

min
{ D∑

d=1
wd |z(d)|2

}
= v00 −

v 2
10

v11
.

Recalling (5.17), (5.18), and (5.20), this suggests using the estimators

â = m0 −
v10
v11

m1 , b̂ = v10
v11

, η̂ = v00 −
v 2

10
v11

. (5.23)
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However, the estimators (5.23) given by the least squares fit have a
problem. Specifically, the formula for b̂ can give values that lie outside of
the interval (−1, 1). So rather than use the estimators (5.23), we will use
the estimators

â = m0 −
v10
v11

m1 , b̂ = v10√v00 v11
, η̂ = v00 −

v 2
10

v11
. (5.24)

These estimators will satisfy b̂ ∈ (−1, 1) and η̂ > 0 if and only if the
autocovariance matrix V is positive definite, where

V =
(

v00 v10
v10 v11

)
. (5.25)

This condition is always met in practice.
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Remark. Given a return history {r(d)}Dd=0 of any market index, we can
use the autoregression estimator b̂ given by (5.24) to estimate a
autocorrelation time for that index. Motivated by formula (4.15), we
define t̂ar by

1
t̂ar

= log
(

1
|b̂|

)
. (5.26)

Because the history has length D, we would like t̂ar � D in order to have
some confidence in our estimators of the return mean µ and the return
variance ξ.
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Assessing Independence. We will now present three ways to assess how
much a given return history {r(d)}Dd=1 that is consistent with the identical
distribution assumption of an IID model is also consistent with the
independence assumption of an IID model. More specifically, we will
present:

a graphical assessment,
an autoregression assessment,
an autocovariance assessment.

The first is purely visual, but can be used to build understanding of the
data. The other two are analytical. They will yield measures ωar and ωac

of how consistent the given data is with the independence assumption. As
before, these measures will take values in the interval [0, 1] with higher
values indicating greater consistency with the independence assumption.
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Graphical Assessment. In an IID model the random numbers {Rd}Dd=1
are drawn from (−1,∞) in accord with the probability density q(R)
independent of each other. This means that there is no correlation
between Rd and Rd ′ when d 6= d ′. Because of this, if we scatter plot the
points {(Rd ,Rd+c)}D−c

d=1 in the rr ′-plane for any c > 0 then they will be
distributed in accord with the probability density q(R)q(R ′).
Therefore if the return history {r(d)}Dd=1 is mimiced by such a model then
when the points {(r(d), r(d + c))}D−c

d=1 are scatter plotted in the rr ′-plane
they should appear to be distributed in a way consistant with the
probability density q(r)q(r ′).

We expect that the strongest correlation should be seen when c = 1
because the behavior of an asset price on any given trading day seems to
correlate with its behavior on the previous trading day.
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Autoregression Assessment. Given a return history {r(d)}Dd=0 and a
choice of positive weights {wd}Dd=1 that sum to 1, we define the return
sample means

m0 =
D∑

d=1
wd r(d) , m1 =

D∑
d=1

wd r(d − 1) ,

the return sample variances

v00 =
D∑

d=1
wd
(
r(d)−m0

)2
, v11 =

D∑
d=1

wd
(
r(d − 1)−m1

)2
,

and the return sample autocovariance

v10 =
D∑

d=1
wd
(
r(d − 1)−m0

)(
r(d)−m1

)
.

This is often done with uniform weights wd = 1/D.
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The estimators (5.24) for the autoregression model of the return history
{r(d)}Dd=0 are then given by

â = m0 −
v10
v11

m1 , b̂ = v10√v00 v11
, η̂ = v00 −

v 2
10

v11
. (6.27)

Notice that the last two estimators satisfy

η̂ = v00
(

1− b̂2
)
.

Because v00 is the sample variance of {r(d)}Dd=1 while η̂ is the sample
variance of {z(d)}Dd=1, we see that:

b̂2 is the fraction of the sample variance of {r(d)}Dd=1 that is
contributed by the autoregression term;
1− b̂2 is the fraction of the sample variance of {r(d)}Dd=1 that is
contributed by the the nugget term.
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This suggests that a natural measure of how well the history {r(d)}Dd=1
can be mimicked by an IID model is

ωar = 1− b̂2 = 1− v 2
10

v00 v11
. (6.28)

The closer ωar is to 1, the better the IID model.
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Autocovariance Assessment. Consider the 2× 2 autocovariance matrix

V =
(

v00 v10
v10 v11

)
. (6.29)

This matrix is symmetric and is usually positive definite. If the data was
drawn from an IID process with mean µ and variance ξ then it can be
shown that

Ex(V ) = ξW , where W =
(

1− w̄ −w̄1
−w̄1 1− w̄

)
, (6.30)

with

w̄ =
D∑

d=1
w 2

d , w̄1 =
D∑

d=2
wd wd−1 .
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The matrix W is known. For uniform weights wd = 1/D we have

w̄ = 1
D , w̄1 = D−1

D2 ,

whereby

W =

1− 1
D −D−1

D2

−D−1
D2 1− 1

D

 .

It can be shown for D > 1 that in general we have

0 < w̄1 < w̄ , w̄ + w̄1 < 1 , (6.31)

which implies that the symmetric matrix W given by (6.30) is always
diagonally dominant and thereby is always positive definite.
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The deviation of V given by (6.29) from the form (6.30) measures of how
well an IID model mimics the data. For example, its size can be measured
with the Frobenius norm, which for any real matrix A is determined by

‖A‖ 2
F = tr

(
ATA

)
.

We first estimate ξ in the form (6.30) to give the best least squares fit
with respect to this norm. In other words, we set

ξ̂ = arg min
{

tr
(
(V − ξW )2)}

Because
tr
(
(V − ξW )2) = tr

(
V 2)− 2ξ tr(W V ) + ξ2 tr

(
W 2) ,

we see that
ξ̂ = tr(W V )

tr
(
W 2) . (6.32)
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When the estimator ξ̂ is expressed in terms of the entries of the matrices
V and W given by (6.29) and (6.30) we have

ξ̂ = (1− w̄)
(
v00 + v11

)
− 2w̄1v10

2
(
(1− w̄)2 + w̄ 2

1
) .

The fact that ξ̂ > 0 whenever V 6= 0 is can be seen directly from (6.32)
and the following general fact, the proof of which is left as an exercise.
Fact. If A and B are symmetric matrices of the same size such that A is
positive definite, B is nonnegative definite, and B 6= 0 then tr(AB) > 0.
Moreover, it is evident from (6.30) and (6.32) that

Ex(ξ̂) = tr
(
W Ex(V )

)
tr
(
W 2) = tr

(
ξW 2)

tr
(
W 2) = ξ .

Therefore ξ̂ is an unbiased estimator of ξ.
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The size of the deviation of V given by (6.29) from the form (6.30) is
thereby quantified by

‖V − ξ̂W ‖2F
‖V ‖2F

= 1− tr(W V )2

tr
(
V 2) tr

(
W 2) .

Therfore we defined the measure

ωac = tr(W V )2

tr
(
V 2) tr

(
W 2) . (6.33)

This is the square of the cosine of the angle between V and W as
determined by the Frobenius scalar product. The closer ωac is to 1, the
better an IID model mimics the data.
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Remark. From (6.33) we can show by using (6.29) and (6.30) that

1− ωac = δ2 +
(

1− δ2
)

cos(φ)2 ,

where
δ2 = (v00 − v11)2

(v00 − v11)2 + (v00 + v11)2 + 4v 2
10
,

cos(φ)2 =
(
2(1− w̄)v10 + ŵ1(v00 + v11)

)2(
(1− w̄)2 + w̄ 2

1
)(

(v00 + v11)2 + 4v 2
10
) .

This shows that ωac is near 1 if and only if both δ and cos(φ) are small.
The first condition holds if and only if v00 and v11 are relatively close. The
second holds if and only if the vectors (1− w̄ , w̄1) and (2v10, v00 + v11) are
nearly orthogonal.
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