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Independent, Identically-Distributed Models for Assets

Independent, Identically-Distributed Models for Assets. Investors
have long followed the old adage “don’t put all your eggs in one basket”
by holding diversified portfolios. However, before Markowitz Portfolio
Theory (MPT) the value of diversification had not been quantified. Key
aspects of MPT are:

1. it uses the return mean as a proxy for reward;
2. it uses volatility as a proxy for risk;
3. it analyzes Markowitz portfolios;
4. it shows diversification can reduce volatility;
5. it identifies the efficient frontier as the place to be.

The orignial form of MPT did not give guidance to investors about where
to be on the efficient frontier.
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Independent, Identically-Distributed Models for Assets

The problem of chosing an optimal portfolio on the efficient frontier was
addressed in the 1960’s, most notably by William Sharpe, who shared the
1990 Nobel Prize in Economics with Harry Markowitz. We will not present
that work here.
Rather, we will build simple stochastic (probabilistic) models that can be
used in conjunction with MPT to address this problem. By doing so, we
will learn that maximizing the return mean is not the best strategy for
maximizing reward.

We begin by building a stochastic model for a single risky asset with a
share price history {s(d)}Dd=0. Let {r(d)}Dd=1 be the associated return
history. Because each s(d) is positive, each r(d) lies in the interval
(−1,∞).
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Independent, Identically-Distributed Models for Assets

An independent, identically-distributed (IID) model for this history simply
independently draws D random numbers {Rd}Dd=1 from (−1,∞) in accord
with a fixed probability density q(R) over (−1,∞). This means that q(R)
is a nonnegative integrable function such that∫ ∞

−1
q(R) dR = 1 , (1.1)

and that the probability that each Rd takes a value inside any sufficiently
nice A ⊂ (−1,∞) is given by

Pr
{

Rd ∈ A
}

=
∫

A
q(R) dR . (1.2)

Here capital letters Rd denote random numbers drawn from (−1,∞) in
accord with the probability density q(R) rather than real return data.
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Independent, Identically-Distributed Models for Assets

IID models are the simplest models consistent with the way any portfolio
selection theory is used. Such theories have three basic steps.

Calibrate a model for asset behavior from historical data.
Use the model to suggest how a set of ideal portfolios might behave.
Use these suggestions to select the portfolio that optimizes an
objective.

This strategy assumes that in the future the market will behave
statistically as it did in the past.
This assumption requires the market statistics to be stable relative to its
dynamics. But this requires future states to decorrelate from past states.
The simplest class of models with this property assumes that future states
are independent of past states, which maximizes this decorrelation. These
are called Markov models.
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Independent, Identically-Distributed Models for Assets

IID models are the simplest Markov models. In addition to assuming that
future returns are independent of past past returns, they assume that the
return for each day is drawn from same probability density q(R) over
(−1,∞), which is the assumption of being identically distrubuted.
It is easy to develop more complicated Markov models. For example, we
could use a different probability density for each day of the week rather
than treating all trading days the same. Because there are usually five
trading days per week, Monday through Friday, such a model would
require calibrating each of the five densities with one fifth as much data.
There would then be greater uncertainty associated with the calibration.
Moreover, we then have to figure out how to treat weeks that have less
than five trading days due to holidays.
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Independent, Identically-Distributed Models for Assets

A simpler Markov model only gives the first and last trading days of each
week should their own probability density, no matter on which day of the
week they fall. The other trading days then share a common probability
density that is generally different from other two. This model requires
calibrating just three probability densities.
A even simpler Markov model only gives the first trading day of each week
should its own probability density, no matter on which day of the week it
falls. All the other trading days then share a common probability density.
We call this the Monday Markov Model.
Before increasing the complexity of a model, we should investigate whether
the costs of doing so outweigh the benefits. For example, we should
investigate whether there is benefit in treating any one trading day of the
week differently than the others before building a more complicated model.
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Expected Values and Variances

Expected Values and Variances. Once we have decided to use an IID
model for a particular asset, you might think the next goal is to pick an
appropriate probability density q(R). One way to do this is to consider an
explicit family of probability densities q(R;β) parametrized by β. The
values of the parameters β are then calibrated so that a sample {Rd}Dd=1
drawn from q(R;β) mimics certain statistics of observed daily return
history {r(d)}Dd=1. Statisticians call this approach parametric.
However, we will take another approach. We will identify statistical
information like the expected value and variance of functions ψ(R) that
shed light upon the market and that can be estimated from a sample
{Rd}Dd=1 drawn from q(R). Ideally this information should be insensitive
to details of q(R) within a large class of probability densities. Statisticians
call this approach nonparametric.
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Expected Values and Variances

For any function ψ : (−1,∞)→ R the expected value of Ψ = ψ(R) is
given by

Ex(Ψ) =
∫ ∞
−1

ψ(R) q(R) dR , (2.3)

provided that |ψ(R)| q(R) is integrable.
Remark. The term “expected value” can be misleading because for most
densities q(R) it is not a value that we would expect to see more than
other values. For example, if q(R) = exp(−1− R) then Ex(R) = 0, but it
is clear that values of R close to −1 are over twice as likely than values of
R close to 0. More dramatically, if q(R) concentrates around the values
R = −0.50 and R = 2.00 with equal propbability then Ex(R) = 0.75,
which is a value that is never seen. However, this terminology is standard,
so we have to live with it. Please keep in mind that an expected value may
not be near the values that we should expect to see.

C. David Levermore (UMD) IID Models for Assets April 20, 2020



IID Models Exp Values & Variances Exp Value Estimators Variance Estimators Variance Uncertainty

Expected Values and Variances

The variance of Ψ = ψ(R) is given by

Var(Ψ) = Ex
((
ψ(R)− Ex(Ψ)

)2)
=
∫ ∞
−1

(
ψ(R)− Ex(Ψ)

)2 q(R) dR ,
(2.4)

provided that |ψ(R)|2 q(R) is integrable.
Remark. This term “variance” is clearly better than that of “expected
value” because the variance is clearly a quantification of how ψ(R)
deviates from Ex(Ψ). Moreover, it is the most commonly used such
measure. However, there are others, so we must always question if its use
is appropriate in any situation.
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Expected Values and Variances

The standard deviation of Ψ = ψ(R) is given by

St(Ψ) =
√

Var(Ψ) , (2.5)

provided that Var(Ψ) exists. The standard deviation is a measure of how
far from Ex(Ψ) that we can expect the value of any given Ψ = ψ(R) to be.
The expected value, variance, and standard deviation all arise naturally in
the Chebyshev inequality, which states that for every λ > St(Ψ) we have

Pr
{
|Ψ− Ex(Ψ)| ≥ λ

}
≤ Var(Ψ)

λ2 . (2.6)

Notice that the left-hand side is always less than or equal to 1, so that the
condition λ > St(Ψ) is required for the bound (2.6) to be meaningful.
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Expected Values and Variances

The proof of the Chebyshev inequality (2.6) is simple. We have

Pr
{
|Ψ− Ex(Ψ)| ≥ λ

}
=
∫
{|ψ(R)−Ex(Ψ)|≥λ}

q(R) dR

≤
∫ ∞
−1

|ψ(R)− Ex(Ψ)|2
λ2 q(R) dR

= Var(Ψ)
λ2 .

The Chebyshev inequality is not sharp, but it is often useful.
By setting λ = δ St(Ψ) it takes the form that for every δ > 1 we have

Pr
{
|Ψ− Ex(Ψ)| ≥ δ St(Ψ)

}
≤ 1
δ2 . (2.7)
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Expected Values and Variances
Among important expected values, variances, and standard deviations are
those of R itself. These are the return mean µ, return variance ξ, and
return standard deviation σ, which are obtained from (2.3), (2.4), and
(2.5) by setting Ψ = ψ(R) = R, yielding

µ = Ex(R) =
∫ ∞
−1

R q(R) dR ,

ξ = Var(R) = Ex
(

(R − µ)2
)

=
∫ ∞
−1

(R − µ)2 q(R) dR ,

σ = St(R) =
√

Var(R) =
√
ξ .

(2.8)

For these to exist we need to require that q(R) satisfies

Ex
(
R2) =

∫ ∞
−1

R2q(R) dR <∞ .

C. David Levermore (UMD) IID Models for Assets April 20, 2020



IID Models Exp Values & Variances Exp Value Estimators Variance Estimators Variance Uncertainty

Expected Values and Variances

Others are the growth rate mean γ, growth rate variance θ, and growth
rate standard deviation ζ, which are obtained from (2.3), (2.4), and (2.5)
by setting Ψ = ψ(R) = log(1 + R), yielding

γ = Ex
(

log(1 + R)
)

=
∫ ∞
−1

log(1 + R) q(R) dR ,

θ = Var
(

log(1 + R)
)

=
∫ ∞
−1

(
log(1 + R)− γ

)2 q(R) dR ,

ζ = St
(

log(1 + R)
)

=
√

Var
(

log(1 + R)
)

=
√
θ .

(2.9)

For these to exist we need to require that q(R) satisfies

Ex
((

log(1 + R)
)2) =

∫ ∞
−1

(
log(1 + R)

)2q(R) dR <∞ .
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Expected Value Estimators

Expected Value Estimators. Because q(R) is unknown, the expected
value of any Ψ = ψ(R) must be estimated from data. Suppose that we
draw a sample {Rd}Dd=1 from the probability density q(R). We claim that
for any choice of positive weights {wd}Dd=1 such that

D∑
d=1

wd = 1 , (3.10)

we can approximate Ex(Ψ) by the weighted average

Êx(Ψ) =
D∑

d=1
wd Ψd , (3.11)

where Ψd = ψ(Rd ). The weighted average (3.11) is the sample mean of
{Ψd}Dd=1 for the weights {wd}Dd=1.
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Expected Value Estimators

We will present three facts that make precise the sense in which the
sample mean Êx(Ψ) approximates Ex(Ψ). They will show that Êx(Ψ) is
more likely to take values closer to Ex(Ψ) for larger samples {Rd}Dd=1.
Therefore we call Êx(Ψ) an estimator of Ex(Ψ).
The first fact is simply the computation of the expected value of the
sample mean Êx(Ψ) given by (3.11).
Fact 1. If Ex(|Ψ|) <∞ then

Ex
(
Êx(Ψ)

)
= Ex(Ψ) . (3.12)

This says that Êx(Ψ) is a so-called unbiased estimator of Ex(Ψ).
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Expected Value Estimators
Proof. Because each draw is independent, probability density over
(−1,∞)D of the sample {Rd}Dd=1 is

q(R1) q(R2) · · · q(RD) .

Therefore we have

Ex
(
Êx(Ψ)

)
=
∫ ∞
−1
· · ·
∫ ∞
−1

D∑
d=1

wd ψ(Rd ) q(R1) · · · q(RD) dR1 · · · dRD

=
D∑

d=1
wd

∫ ∞
−1

ψ(Rd ) q(Rd ) dRd

=
D∑

d=1
wd Ex(Ψ) = Ex(Ψ) .

This proves Fact 1. �
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Expected Value Estimators

The second fact is simply the computation of the variance of the sample
mean Êx(Ψ) given by (3.11).
Fact 2. If Ex

(
Ψ2) <∞ then

Var
(
Êx(Ψ)

)
= w̄D Var(Ψ) , (3.13)

where w̄D is the weighted average of the weights {wd}Dd=1 given by

w̄D =
D∑

d=1
w 2

d . (3.14)

This fact says that the sample mean Êx(Ψ) converges to Ex(Ψ) like
√

w̄D
as D →∞. Because w̄D = 1/D for uniform weights, we see that this rate
of convergence is 1/

√
D as D →∞.
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Expected Value Estimators

Remark. The Cauchy inequality from multivariable calculus states that

D∑
d=1

ad bd ≤
( D∑

d=1
a 2

d

) 1
2
( D∑

d=1
b 2

d

) 1
2

. (3.15)

By using fact (3.10) that the weights {wd}Dd=1 sum to 1 and applying the
Cauchy inequality to ad = 1 and bd = wd we see that

1 =
( D∑

d=1
1 wd

)2

≤
( D∑

d=1
12
)( D∑

d=1
w 2

d

)
= D w̄D .

Therefore 1/D ≤ w̄D for any choice of weights. Because w̄D = 1/D for
uniform weights, we see that the rate of convergence of Êx(Ψ) to Ex(Ψ)
is fastest for uniform weights.
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Expected Value Estimators
Proof. By Fact 1 we have

Ex
(
Êx(Ψ)

)
= Ex(Ψ) ,

whereby

Êx(Ψ)− Ex
(
Êx(Ψ)

)
=

D∑
d=1

wd
(

Ψd − Ex(Ψ)
)
.

By squaring both sides of this equality we obtain(
Êx(Ψ)− Ex

(
Êx(Ψ)

))2

=
D∑

d1=1

D∑
d2=1

wd1 wd2

(
Ψd1 − Ex(Ψ)

) (
Ψd2 − Ex(Ψ)

)
.

By taking the expected value of this relation we find that
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Expected Value Estimators

Var
(
Êx(Ψ)

)
= Ex

((
Êx(Ψ)− Ex

(
Êx(Ψ)

))2
)

= Ex

 D∑
d1=1

D∑
d2=1

wd1 wd2

(
Ψd1 − Ex(Ψ)

) (
Ψd2 − Ex(Ψ)

)
=

D∑
d1=1

D∑
d2=1

wd1 wd2 Ex
((

Ψd1 − Ex(Ψ)
) (

Ψd2 − Ex(Ψ)
))

=
D∑

d=1
w 2

d Ex
((

Ψd − Ex(Ψ)
)2)

=
D∑

d=1
w 2

d Var(Ψ)

= w̄D Var(Ψ) .

This proves Fact 2. �
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Expected Value Estimators
Remark. As in the proof of Fact 1, here we computed expected values by
using the probability density over (−1,∞)D given by

q(R1) q(R2) · · · q(RD) .

The off-diagonal terms in the foregoing double sum vanished because

Ex
((

Ψd1 − Ex(Ψ)
) (

Ψd2 − Ex(Ψ)
))

= 0 when d1 6= d2 ,

while the diagonal terms reduced to

Ex
((

Ψd1 − Ex(Ψ)
) (

Ψd2 − Ex(Ψ)
))

= Ex
((

Ψd − Ex(Ψ)
)2)

when d1 = d2 = d .
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Expected Value Estimators

The third fact is simply the Chebyshev inequality associated with the
sample mean Êx(Ψ) given by (3.11).
Fact 3. If Ex

(
Ψ2) <∞ then for every δ >

√
w̄D we have

Pr
{∣∣∣Êx(Ψ)− Ex(Ψ)

∣∣∣ ≥ δ St(Ψ)
}
≤ w̄D

δ2 . (3.16)

Remark. The proof of this fact is similar to that of the Chebyshev
inequality (2.7). The difference is that here we will integrate over
(−1,∞)D with probability density

q(R1) q(R2) · · · q(RD) ,

rather than (−1,∞) with probability density q(R).
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Expected Value Estimators

Proof. By Fact 2 we have

Pr
{∣∣∣Êx(Ψ)− Ex(Ψ)

∣∣∣ ≥ δ St(Ψ)
}

=
∫
· · ·
∫{∣∣Êx(Ψ)−Ex(Ψ)

∣∣≥δ St(Ψ)
} q(R1) · · · q(RD) dR1 · · · dRD

≤
∫ ∞
−1
· · ·
∫ ∞
−1

|Êx(Ψ)− Ex(Ψ)|2
δ2 St(Ψ)2 q(R1) · · · q(RD) dR1 · · · dRD

=
Var

(
Êx(Ψ)

)
δ2 St(Ψ)2 = w̄D Var(Ψ)

δ2 St(Ψ)2 = w̄D
δ2 .

This proves Fact 3. �
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Expected Value Estimators

Remark. The Chebyshev inequality (3.16) with Ψ = ψ(R) = R implies

Pr
{∣∣∣Êx(R)− Ex(R)

∣∣∣ < δ St(R)
}
> 1− w̄D

δ2 .

This can be used to quantify the uncertainty in the estimator Êx(R) of the
return mean µ = Ex(R) of an asset with standard deviation σ = St(R).
For example, if we use uniform weights with D = 250 then w̄D = 1

250 and:
Êx(R) is within 1

2σ of µ with probability > 0.984;
Êx(R) is within 1

5σ of µ with probability > 0.900;
Êx(R) is within 1

7σ of µ with probability > 0.804;
Êx(R) is within 1

10σ of µ with probability > 0.600;
Êx(R) is within 1

15σ of µ with probability > 0.100.
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Expected Value Estimators

Remark. Fact 3 establishes the law of large numbers, which states that
the sample means Êx(Ψ) converge to Ex(Ψ):

lim
w̄D→0

Êx(Ψ) = Ex(Ψ) .

More precisely, it establishes the weak law of large numbers, which asserts
that the sample means converge in probability.
There is also the strong law of large numbers, which asserts that the
sample means converge almost surely.
These notions of convergence are covered in advanced probability courses.
In practice D is finite, so bounds like the one discussed on the last slide are
often more useful than these limits.
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Variance Estimators

Variance Estimators. Because q(R) is unknown, the variance of any
Ψ = ψ(R) must also be estimated from data. Suppose that we draw a
sample {Rd}Dd=1 from the probability density q(R). We claim that for any
choice of positive weights {wd}Dd=1 such that

D∑
d=1

wd = 1 , (4.17)

we can approximate Var(Ψ) by the sum

V̂ar(Ψ) = 1
1− w̄D

D∑
d=1

wd
(

Ψd − Êx(Ψ)
)2
, (4.18)

where Ψd = ψ(Rd ). This sum is the factor 1/(1− w̄D) times the sample
variance of {Ψd}Dd=1 for the weights {wd}Dd=1.
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Variance Estimators

We will present facts that make more precise the sense in which the
quantity V̂ar(Ψ) approximates Var(Ψ). They will show that V̂ar(Ψ) is
more likely to take values closer to Var(Ψ) for larger samples {Rd}Dd=1.
Therefore we call V̂ar(Ψ) an estimator of Var(Ψ).
We first show that the factor 1/(1− w̄D) multiplying the sample variance
in (4.18) is required if V̂ar(Ψ) is to be an unbiased estimator of Var(Ψ).
Fact 4. If Ex

(
Ψ2) <∞ then

Ex
(
V̂ar(Ψ)

)
= Var(Ψ) . (4.19)

Remark. This fact about V̂ar(Ψ) is the analog of Fact 1 about Êx(Ψ).
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Variance Estimators
Proof. First, verify the identity

D∑
d=1

wd
(

Ψd − Êx(Ψ)
)2

=
D∑

d=1
wd
(

Ψd − Ex(Ψ)
)2

−
(
Êx(Ψ)− Ex(Ψ)

)2
.

Therefore

Ex
( D∑

d=1
wd
(

Ψd − Êx(Ψ)
)2
)

=
D∑

d=1
wd Ex

((
Ψd − Ex(Ψ)

)2)
− Ex

((
Êx(Ψ)− Ex(Ψ)

)2)
= Var(Ψ)−Var

(
Êx(Ψ)

)
.

(4.20)
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Variance Estimators

By Fact 2 we have

Var
(
Êx(Ψ)

)
= w̄D Var(Ψ) .

Therefore (4.20) becomes

Ex
( D∑

d=1
wd
(

Ψd − Êx(Ψ)
)2
)

= (1− w̄D) Var(Ψ) .

Recalling how V̂ar(Ψ) was defined by (4.18), we see that multiplying the
above formula by 1/(1− w̄D) yields relation (4.19). This proves Fact 4. �
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Variance Estimators

The next fact computes the variance of V̂ar(Ψ), the estimator of Var(Ψ).
Fact 5. If Ex

(
Ψ4) <∞ then

Var
(
V̂ar(Ψ)

)
= w̄ − 2w2 + w3

(1− w̄)2 Var
((

Ψ− Ex(Ψ)
)2)

+ 2 w̄2 − w3

(1− w̄)2 Var(Ψ)2 ,

(4.21)

where w̄ , w2, and w3 are given by

w̄ =
D∑

d=1
w 2

d , w2 =
D∑

d=1
w 3

d , w3 =
D∑

d=1
w 4

d . (4.22)

Remark. This fact about V̂ar(Ψ) is the analog of Fact 2 about Êx(Ψ).
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Proof. The first step is to let Ψ̃d = Ψd −Ex(Ψ) and to express V̂ar(Ψ) as

V̂ar(Ψ) = 1
1− w̄

 D∑
d=1

wd Ψ̃ 2
d −

D∑
d1=1

D∑
d2=1

wd1wd2 Ψ̃d1Ψ̃d2

 .

By squaring this expression and relabeling some indices we obtain

V̂ar(Ψ)2 =
D∑

d=1

D∑
d ′=1

wd wd ′

(1− w̄)2 Ψ̃ 2
d Ψ̃ 2

d ′

− 2
D∑

d=1

D∑
d1=1

D∑
d2=1

wd wd1wd2

(1− w̄)2 Ψ̃ 2
d Ψ̃d1Ψ̃d2

+
D∑

d1=1

D∑
d2=1

D∑
d3=1

D∑
d4=1

wd1wd2wd3wd4

(1− w̄)2 Ψ̃d1Ψ̃d2Ψ̃d3Ψ̃d4 .
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Variance Estimators

Next we compute Ex
(
V̂ar(Ψ)2

)
. This task will take the next four slides.

The details are not meant to be absorbed during lecture, but should be
read, studied, and understood.
It should be clear from the previous formula that we will need to compute

Ex
(

Ψ̃ 2
d Ψ̃ 2

d ′

)
, Ex

(
Ψ̃ 2

d Ψ̃d1Ψ̃d2

)
, Ex

(
Ψ̃d1Ψ̃d2Ψ̃d3Ψ̃d4

)
.

These expected values can be evaluated in terms of the Kronecker delta,
δdd ′ , which is defined by

δdd ′ =
{

1 if d = d ′ ,
0 if d 6= d ′ .
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Because Ψ̃d and Ψ̃d ′ are independent when d 6= d ′, and because
Ex
(

Ψ̃d
)

= 0, we find that

Ex
(

Ψ̃ 2
d Ψ̃ 2

d ′

)
= δdd ′ Ex

(
Ψ̃4
)

+
(
1− δdd ′

)
Ex
(

Ψ̃2
)2

,

Ex
(

Ψ̃ 2
d Ψ̃d1Ψ̃d2

)
= δd1d2

(
δdd1 Ex

(
Ψ̃4
)

+
(
1− δdd1

)
Ex
(

Ψ̃2
)2
)
,

Ex
(

Ψ̃d1Ψ̃d2Ψ̃d3Ψ̃d4

)
= δd1d2 δd2d3 δd3d4 Ex

(
Ψ̃4
)

+ δd1d2 δd3d4

(
1− δd1d3

)
Ex
(

Ψ̃2
)2

+ δd1d3 δd4d2

(
1− δd1d4

)
Ex
(

Ψ̃2
)2

+ δd1d4 δd2d3

(
1− δd1d2

)
Ex
(

Ψ̃2
)2

.
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Recalling w̄ , w2, and w3 defined by (4.22), we have the sum evaluations

D∑
d=1

D∑
d ′=1

wd wd ′ δdd ′ = w̄ ,
D∑

d=1

D∑
d ′=1

wd wd ′
(
1− δdd ′

)
= 1− w̄ ,

D∑
d=1

D∑
d1=1

D∑
d2=1

wd wd1wd2 δdd1 δd1d2 = w2 ,

D∑
d=1

D∑
d1=1

D∑
d2=1

wd wd1wd2 δd1d2

(
1− δdd1

)
= w̄ − w2 ,

D∑
d1=1

D∑
d2=1

D∑
d3=1

D∑
d4=1

wd1wd2wd3wd4 δd1d2 δd2d3 δd3d4 = w3 ,

D∑
d1=1

D∑
d2=1

D∑
d3=1

D∑
d4=1

wd1wd2wd3wd4 δd1d2 δd3d4

(
1− δd1d3

)
= w̄2 − w3 .
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Then the expected value of the quantity V̂ar(Ψ)2 given four slides back is

Ex
(
V̂ar(Ψ)2

)
= w̄

(1− w̄)2 Ex
(

Ψ̃4
)

+ 1− w̄
(1− w̄)2 Ex

(
Ψ̃2
)2

− 2 w2

(1− w̄)2 Ex
(

Ψ̃4
)
− 2 w̄ − w2

(1− w̄)2 Ex
(

Ψ̃2
)2

+ w3

(1− w̄)2 Ex
(

Ψ̃4
)

+ 3 w̄2 − w3

(1− w̄)2 Ex
(

Ψ̃2
)2

= w̄ − 2w2 + w3

(1− w̄)2 Ex
(

Ψ̃4
)

+ 1− 3w̄ + 2w2 + 3w̄2 − 3w3

(1− w̄)2 Ex
(

Ψ̃2
)2

.
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Because Ex
(

Ψ̃2
)

= Var(Ψ) and Ex
(

Ψ̃4
)

= Var
(

Ψ̃2
)

+ Var(Ψ)2, we get

Var
(
V̂ar(Ψ)

)
= Ex

(
V̂ar(Ψ)2

)
−
(
Ex
(
V̂ar(Ψ)

))2

= Ex
(
V̂ar(Ψ)2

)
−Var(Ψ)2

= w̄ − 2w2 + w3

(1− w̄)2

(
Var

(
Ψ̃2
)

+ Var(Ψ)2
)

+ −w̄ + 2w2 + 2w̄2 − 3w3

(1− w̄)2 Var(Ψ)2

= w̄ − 2w2 + w3

(1− w̄)2 Var
(

Ψ̃2
)

+ 2 w̄2 − w3

(1− w̄)2 Var(Ψ)2 .

This is equivalent to (4.21), thereby proving Fact 5. �
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The next fact is the Chebychev inequality associated with V̂ar(Ψ).
Fact 6. If Ex

(
Ψ4) <∞ and λ > 0 then

Pr
{∣∣∣V̂ar(Ψ)−Var(Ψ)

∣∣∣ ≥ λ} ≤ 1
λ2 Var

(
V̂ar(Ψ)

)
, (4.23a)

where by Formula (4.21) in Fact 5 we have

Var
(
V̂ar(Ψ)

)
= w̄ − 2w2 + w3

(1− w̄)2 Var
((

Ψ− Ex(Ψ)
)2)

+ 2 w̄2 − w3

(1− w̄)2 Var(Ψ)2 ,

(4.23b)

with w̄ , w2, and w3 given by

w̄ =
D∑

d=1
w 2

d , w2 =
D∑

d=1
w 3

d , w3 =
D∑

d=1
w 4

d .
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Remark. Fact 6 is the analog for V̂ar(Ψ) of Fact 3 for Êx(Ψ)
Proof. If Ex(Ψ4) <∞ then for every λ > 0 we have

Pr
{∣∣∣V̂ar(Ψ)−Var(Ψ)

∣∣∣ ≥ λ}
=
∫
· · ·
∫{∣∣V̂ar(Ψ)−Var(Ψ)

∣∣≥λ} q(R1) · · · q(RD) dR1 · · · dRD

≤
∫ ∞
−1
· · ·
∫ ∞
−1

|V̂ar(Ψ)−Var(Ψ)|2
λ2 q(R1) · · · q(RD) dR1 · · · dRD

= 1
λ2 Var

(
V̂ar(Ψ)

)
.

This proves Fact 6. �
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Variance Uncertainty

Variance Uncertainty. For uniform weights Formula (4.23b) reduces to

Var
(
V̂ar(Ψ)

)
= 1

D Var
((

Ψ− Ex(Ψ)
)2)+ 2

D(D−1) Var(Ψ)2 . (5.24)

Then formula (4.23a) suggests that V̂ar(Ψ) will converge to Var(Ψ) like
D− 1

2 as D →∞ for uniform weights.
In order to study cases with nonuniform weights we will bound the
coefficients of

Var
((

Ψ− Ex(Ψ)
)2) and Var(Ψ)2

that appear in formula (4.23b) for variance of V̂ar(Ψ) with upper bounds
that depend upon w̄ but not upon w2 or w3.
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Remark. The first coefficient in (5.24) is the smallest possible because
the Cauchy inequality (3.15) with ad = 1 and bd = wd (1− wd ) yields( D∑

d=1

(
1− wd

)
wd

)2

≤
( D∑

d=1
12
)( D∑

d=1

(
1− wd

)2w 2
d

)
,

whereby the first coefficient in (4.23b) can be bounded below as

w̄ − 2w2 + w3

(1− w̄)2 = 1
(1− w̄)2

D∑
d=1

(
1− wd

)2w 2
d

≥ 1
(1− w̄)2

1
D

( D∑
d=1

(
1− wd

)
wd

)2

= 1
(1− w̄)2

1
D (1− w̄)2 = 1

D .
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Fact 7. If Ex
(
Ψ4) <∞ and wd ≤ 2

3 for every d then

Var
(
V̂ar(Ψ)

)
≤ w̄D Var

((
Ψ− Ex(Ψ)

)2)+ 2 w̄ 2
D

1− w̄D
Var(Ψ)2 , (5.25)

where w̄D is given by

w̄D =
D∑

d=1
w 2

d . (5.26)

Remark. Here w̄D is what was denoted as w̄ in Fact 6.
Remark. Inequality (5.25) is sharp because for uniform weights w̄D = 1

D ,
whereby we see from (5.24) that it is an equality for uniform weights.
Remark. Inequality (5.25) suggests that V̂ar(Ψ) will converge to Var(Ψ)
like
√

w̄D as w̄D → 0 for general weights.

C. David Levermore (UMD) IID Models for Assets April 20, 2020



IID Models Exp Values & Variances Exp Value Estimators Variance Estimators Variance Uncertainty

Variance Uncertainty

Our proof of Fact 7 uses a version of the Jensen inequality that we now
state and prove.
Jensen Inequality. Let g(z) be a convex (concave) function over an
interval [a, b]. Let the points {zd}Dd=1 lie within [a, b]. Let {wd}Dd=1 be
nonnegative weights that sum to one. Then

g
(
z̄
)
≤ g(z)

(
g(z) ≤ g

(
z̄
))
, (5.27)

where

z̄ =
D∑

d=1
wd zd , g(z) =

D∑
d=1

wd g(zd ) .

Remark. There is an integral version of the Jensen inequality that we do
not give here because we do not need it.
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Proof of the Jensen Inequality. We consider the case when g(z) is
convex and differentiable over [a, b]. Then for every z̄ ∈ [a, b] we have the
inequality

g(z) ≥ g
(
z̄
)

+ g ′
(
z̄
)(

z − z̄
)

for every z ∈ [a, b] .

This inequality simply says that the tangent line to the graph of g at z̄ lies
below the graph of g over [a, b]. By setting z = zd in the above inequality,
multiplying both sides by wd , and summing over d we obtain

D∑
d=1

wd g(zd ) ≥
D∑

d=1
wd
[
g
(
z̄
)

+ g ′
(
z̄
)(

zd − z̄
)]

= g(z̄)
D∑

d=1
wd + g ′(z̄)

( D∑
d=1

wd
(
zd − z̄

))
.

The Jensen inequality then follows from the definitions of z̄ and g(z). �
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Variance Uncertainty

Remark. The proof for the concave case follows from that of the convex
case because if g(z) is concave over [a, b] then −g(z) is convex over [a, b].
Remark. The assumption that g(z) is differentiable simplifies the proof,
but is not required. In the follow proof we will apply the Jensen inequality
only to differentiable functions.
Proof of Fact 7. Because the function g(z) = z3 is convex over the
interval [0, 1], the Jensen inequality (5.27) with zd = wd implies that
w̄3 ≤ w3. Therefore the coefficient of Var(Ψ)2 in formula (4.23b) can be
bounded as

w̄2 − w3

(1− w̄)2 ≤
w̄2 − w̄3

(1− w̄)2 = w̄2

1− w̄ .
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Bounding the coefficient of Var
((

Ψ− Ex(Ψ)
)2) in formula (4.23b) goes

similarly. It can be checked that the function g(z) = z − 2z2 + z3 is
concave over [0, 2

3 ]. Hence, when the weights {wd}Dd=1 all lie within [0, 2
3 ]

the Jensen inequality with zd = wd yields

w − 2w2 + w3 = g(w) ≤ g
(
w̄
)

= w̄ − 2w̄2 + w̄3 .

In that case the coefficient of Var
((

Ψ− Ex(Ψ)
)2) can be bounded as

w̄ − 2w2 + w3

(1− w̄)2 ≤ w̄ − 2w̄2 + w̄3

(1− w̄)2 = w̄ .

Becuase w̄ = w̄D, we have proved Fact 7. �
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The last fact about V̂ar(Ψ) is another analog of Fact 3 about Êx(Ψ).
Fact 8. If Ex

(
Ψ4) <∞ and w̄D ≤ 1

3 then for every δ >
√

w̄D we have

Pr
{∣∣∣V̂ar(Ψ)−Var(Ψ)

∣∣∣ ≥ δ (Dev4(Ψ)
)2} ≤ w̄D

δ2 , (5.28)

where Dev4(Ψ) is the quartic deviation of Ψ that is defined by

Dev4(Ψ) = Ex
((

Ψ− Ex(Ψ)
)4) 1

4
.

Remark. This is similar to inequality (3.16) of Fact 3. The difference is
that the role played by St(Ψ) in (3.16) is played here by the quantity

(
Dev4(Ψ)

)2 =
√

Ex
((

Ψ− Ex(Ψ)
)4)

.

This is the square root of the fourth central moment of Ψ.
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Proof. By inequality (5.25) of Fact 7 and the fact w̄D ≤ 1

3 we have

Var
(
V̂ar(Ψ)

)
≤ w̄D Var

((
Ψ− Ex(Ψ)

)2)+ 2 w̄ 2
D

1− w̄D
Var(Ψ)2

= w̄D

[
Var

((
Ψ− Ex(Ψ)

)2)+ 2 w̄D
1− w̄D

Var(Ψ)2
]

≤ w̄D
[
Var

((
Ψ− Ex(Ψ)

)2)+ Var(Ψ)2
]

= w̄D Ex
((

Ψ− Ex(Ψ)
)4) = w̄D Dev4(Ψ)4 .

Setting λ = δDev4(Ψ)4 in the Chebychev inequality (4.23a) of Fact 6
and using the above inequality gives

Pr
{∣∣∣V̂ar(Ψ)−Var(Ψ)

∣∣∣ ≥ δDev4(Ψ)2
}
≤

Var
(
V̂ar(Ψ)

)
δ2Dev4(Ψ)4 ≤

w̄D
δ2 .

This is (5.28), so Fact 8 is proved. �
C. David Levermore (UMD) IID Models for Assets April 20, 2020



IID Models Exp Values & Variances Exp Value Estimators Variance Estimators Variance Uncertainty

Variance Uncertainty

Remark. The condition w̄D ≤ 1
3 in Fact 8 implies the condition wd ≤ 2

3
for every d in Fact 7 because (5.26) implies that w 2

d ≤ w̄D for every d .
Remark. Fact 8 shows that the estimators V̂ar(Ψ) converge to Var(Ψ):

lim
w̄D→0

V̂ar(Ψ) = Var(Ψ) .

More precisely, it shows that these estimators converge in probability. This
is the analog for variance estimators of the weak law of large numbers for
sample means.
The analog of the strong law of large numbers for sample means asserts
that the variance estimators also converge almost surely.
These notions of convergence are covered in advanced probability courses.
In practice D is finite, so these limit theorems are of limited use.
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