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Linear Stat Models Least Squares Estimation

1. Introduction to Linear Statistical Models

In modeling one is often faced with the problem of fitting data with
some analytic expression. Let us suppose that we are studying a
phenomenon that evolves over time. Given a set of n times {tj}nj=1 such
that at each time tj we take a measurement yj of the phenomenon. We
can represent this data as the set of ordered pairs{

(tj , yj )
}n

j=1 .

Each yj might be a single number or a vector of numbers. For
simplicity, we will first treat the univariate case when it is a single
number. The more complicated multivariate case when it is a vector
will be treated later.

The basic problem we will examine is the following.
How can this data set be used to make a reasonable guess about what
a measurment of this phenomenon might yield at any other time?
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Model Complexity and Overfitting

Of course, you can always find functions f (t) such that yj = f (tj ) for
every j = 1, · · · , n. For example, you can use Lagrange interpolation to
construct a unique polynomial of degree at most n − 1 that does this.
However, such a polynomial often exhibits wild oscillations that make it
a useless fit. This phenomena is called overfitting.

There are two reasons why such difficulties arise.

The times tj and measurements yj are subject to error, so finding a
function that fits the data exactly is not a good strategy.
The assumed form of f (t) might be ill suited for matching the
behavior of the phenomenon over the time interval being
considered.
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Model Fitting

One strategy to help avoid these difficulties is to draw f (t) from a family
of suitable functions, which is called a model in statistics. If we denote
this model by f (t ;β1, · · · , βm) where m << n then the idea is to find
values of β1, · · · , βm such that the graph of f (t ;β1, · · · , βm) best fits the
data. More precisely, we will define the residuals rj (β1, · · · , βm) by the
relation

yj = f (tj ;β1, · · · , βm) + rj (β1, · · · , βm) , for every j = 1, · · · , n ,

and try to minimize the rj (β1, · · · , βm) in some sense.

The problem is simplified by restricting ourselves to models in which
the parameters appear linearly — so-called linear models. Such a
model is specified by the choice of a basis {fi (t)}mi=1 and takes the form

f (t ;β1, · · · , βm) =
m∑

i=1

βi fi (t) .
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Polynomial and Periodic Models

Example. The most classic linear model is the family of all
polynomials of degree less than m. This family is often expressed as

f (t ;β0, · · · , βm−1) =
m−1∑
i=0

βi t i .

Notice that here the index i runs from 0 to m − 1 rather than from 1 to
m. This indexing convention is used for polynomial models because it
matches the degree of each term in the sum.

Example. If the underlying phenomena is periodic with period T then
a classic linear model is the family of all trigonometric polynomials of
degree at most L. This family can be expressed as

f (t ;α0, · · · , αl , β1, · · · , βl ) = α0 +
L∑

k=1

(
αk cos(kωt) + βk sin(kωt)

)
,

where ω = 2π/T its fundamental frequency. Note that here m = 2L + 1.
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Translation Invariant Models

Remark. Linear models are linear in the parameters, but are typically
nonlinear in the independent variable t . This is illustrated by the
foregoing examples: the family of all polynomials of degree less than
m is nonlinear in t for m > 2; the family of all trigonometric polynomials
of degree at most L is nonlinear in t for L > 0.

Remark. When there is no preferred instant of time it is best to pick a
model f (t ;β1, · · · , βm) that is translation invariant. This means for every
choice of parameter values (β1, · · · , βm) and time shift s there exist
parameter values (β′1, · · · , β′m) such that

f (t + s;β1, · · · , βm) = f (t ;β′1, · · · , β′m) for every t .

Both models given on the previous slide are translation invariant. Can
you show this? Can you find models that are not translation invariant?
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Linear Models

It is as easy to work in the more general setting in which we are given
data {

(xj , yj )
}n

j=1 ,

where the xj lie within a bounded domain X ⊂ Rd and the yj lie in R.
We call x the independent variable and y the dependent variable.

The problem we will examine now becomes the following.
How can this data set be used to make a reasonable guess about the
value of y when x is any point in X?
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Linear Models

We will consider linear statistical models with m real parameters in the
form

f (x;β1, · · · , βm) =
m∑

i=1

βi fi (x) ,

where each basis function fi (x) is defined over X and takes values in R.

Example. A classic model in this setting is the family of all affine
functions. If xi denotes the i th entry of x then this family can be written
as

f (x; a,b1, · · · ,bd ) = a +
d∑

i=1

bi xi .

Alternatively, it can be expressed in vector notation as

f (x; a,b) = a + b · x ,

where a ∈ R and b ∈ Rd . In this case m = d + 1.
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Linear Models

Example. Similarly, the family of all quadratic functions can be
expressed in vector notation as

f (x; a,b,C) = a + b · x + x · Cx ,

where a ∈ R, b ∈ Rd and C ∈ Rd∨d . Here Rd∨d denotes the set of all
d × d symmetric matrices. In this case m = 1

2 (d + 1)(d + 2).

Remark. Dimension m for the family of polynomials in d variables of
degree at most ` is

m =
(d + `)!

d ! `!
=

(d + 1)(d + 2) · · · (d + `)
`!

.

This grows like d ` as the dimension d grows. This means that these
models can become impractical when the dimension d is large. In
such cases we can use custom built models rather than general ones.
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Model Residuals or Modeling Noise

Recall that given the data {(xj , yj )}nj=1 and any model f (x;β1, · · · , βm),
the residual associated with each (xj , yj ) is defined by the relation

yj = f (xj ;β1, · · · , βm) + rj (β1, · · · , βm) .

The linear model given by the basis functions {fi (x)}mi=1 is

f (x;β1, · · · , βm) =
m∑

i=1

βi fi (x) ,

for which the residual rj (β1, · · · , βm) is given by

rj (β1, · · · , βm) = yj −
m∑

i=1

βi fi (xj ) .

The idea is to determine the parameters β1, · · · , βm in the statistical
model by minimizing the residuals rj (β1, · · · , βm). In general m� n so
the residuals may not all vanish.
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Linear Models and Residuals: Matrix Notation

This so-called fitting problem can be recast in terms of vectors. Define
the m-vector ββ, the n-vectors y and r, and the n×m-matrix F by

ββ =

β1
...
βm

 , y =

y1
...

yn

 , r =

r1
...
rn

 ,

F =

f1(x1) · · · fm(x1)
...

...
...

f1(xn) · · · fm(xn)

 .

We will assume the matrix F has rank m. The fitting problem is the
problem of finding a value of ββ that minimizes the "size" of

r(ββ) = y− Fββ .

But what does “size” mean?
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2. Linear Euclidean Least Squares Fitting

A popular notion of the size of a vector is the Euclidean norm, which is

‖r(ββ)‖ =
√

r(ββ)Tr(ββ) =

√√√√ n∑
j=1

rj (β1, · · · , βm)2 .

Minimizing ‖r(ββ)‖ is equivalent to minimizing ‖r(ββ)‖2, which is the sum
of the “squares” of the residuals.
For linear models ‖r(ββ)‖2 is a quadratic function of ββ that is easy to
minimize, which is why the method is popular. Specifically, because
r(ββ) = y− Fββ, we minimize

q(ββ) = 1
2‖r(ββ)‖2 = 1

2r(ββ)Tr(ββ) = 1
2 (y− Fββ)T(y− Fββ)

= 1
2yTy− ββTFTy + 1

2ββTFTFββ .

We will use multivariable calculus to minimize this quadratic function.
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The Gradient

Recall that the gradient (if it exists) of a real-valued function q(ββ) with
respect to the m-vector ββ is the (unique) m-vector ∂

ββ
q(ββ) such that

d
ds

q(ββ + sγγ)
∣∣∣
s=0

= γγT∂
ββ
q(ββ) for every γγ ∈ Rm .

For the quadratic q(ββ) from our least squares problem we have

q(ββ + sγγ) = q(ββ) + sγγT(FTFββ − FTy
)

+ 1
2s2γγTFTFγγ .

By differentiating this with respect to s and setting s = 0 we obtain

d
ds

q(ββ + sγγ)
∣∣∣
s=0

= γγT(FTFββ − FTy
)
,

from which we read off that the gradient of q(ββ) is

∂
ββ
q(ββ) = FTFββ − FTy .
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The Hessian

Similarly, the derivative (if it exists) of the vector-valued function ∂
ββ
q(ββ)

with respect to the m-vector ββ is the m×m-matrix ∂
ββββ

q(ββ) such that

d
ds
∂

ββ
q(ββ + sγγ)

∣∣∣
s=0

= ∂
ββββ

q(ββ)γγ for every γγ ∈ Rm .

The symmetric matrix-valued function ∂
ββββ

q(ββ) is the Hessian of q(ββ).

For the quadratic q(ββ) from our least squares problem we have

∂
ββ
q(ββ + sγγ) = FTF(ββ + sγγ)− FTy = ∂

ββ
q(ββ) + s FTFγγ .

By differentiating this with respect to s and setting s = 0 we obtain
d

ds
∂

ββ
q(ββ + sγγ)

∣∣∣
s=0

=
d

ds
(
∂

ββ
q(ββ) + s FTFγγ

)∣∣∣
s=0

= FTFγγ ,

from which we read off that the Hessian of q(ββ) is

∂
ββββ

q(ββ) = FTF .
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ββββ

q(ββ) such that

d
ds
∂

ββ
q(ββ + sγγ)

∣∣∣
s=0

= ∂
ββββ

q(ββ)γγ for every γγ ∈ Rm .

The symmetric matrix-valued function ∂
ββββ

q(ββ) is the Hessian of q(ββ).
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∂
ββ
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ββ
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∣∣∣
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ds
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∂

ββ
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Convexity and Strict Convexity

We now show that the m×m-matrix FTF is positive definite. We have

γγTFTFγγ = (Fγγ)TFγγ = ‖Fγγ‖2 ≥ 0 for every γγ ∈ Rm ,

whereby FTF is nonnegative definite. It will be positive definite if we
can show that

γγTFTFγγ = 0 =⇒ γγ = 0 .

However, because γγTFTFγγ = ‖Fγγ‖2, it is clear that

γγTFTFγγ = 0 =⇒ ‖Fγγ‖ = 0 =⇒ Fγγ = 0 .

Because F has rank m, its columns are linearly independent, whereby

Fγγ = 0 =⇒ γγ = 0 .

Therefore FTF is positive definite.
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The Minimizer

Because ∂
ββββ

q(ββ) = FTF is positive definite, the function q(ββ) is strictly
convex, whereby it has a unique global minimizer where its gradient
vanishes. Upon setting the gradient of q(ββ) equal to zero, we see that
the minimizer satisfies

∂
ββ
q(ββ) = FTFββ − FTy = 0 .

Because the matrix FTF is positive definite, it is invertible. The solution
of the above equation is thereby ββ = β̂̂β where

β̂̂β = (FTF)−1FTy .

Remark. In practice you should not compute (FTF)−1 when m > 2.
Rather, you should think of the right-hand side above as notation for
the solution of the linear algebraic system FTFββ = FTy. All that you
need to compute is the solution β̂̂β of this system.
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The Minimizer

The fact that β̂̂β is a global minimizer can be seen from the identity

q(ββ) = q
(
β̂̂β + (ββ − β̂̂β)

)
= 1

2yTy− 1
2 β̂̂β

T
FTFβ̂̂β + 1

2 (ββ − β̂̂β)TFTF(ββ − β̂̂β)

= q(β̂̂β) + 1
2 (ββ − β̂̂β)TFTF(ββ − β̂̂β) .

Specifically, because FTF is positive definite, we see that:

• q(ββ) ≥ q(β̂̂β) for every ββ ∈ Rm ,

• q(ββ) = q(β̂̂β) ⇐⇒ ββ = β̂̂β .
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Geometric Interpretation: Orthogonal Projections

The least squares fit has a beautiful geometric interpretation with
respect to the associated Euclidean inner product

(p |q) = pTq .

Define r̂ = r(β̂̂β) = y− Fβ̂̂β. Observe that

y = Fβ̂̂β + r̂ = F(FTF)−1FTy + r̂ .

The matrix P = F(FTF)−1FT has the properties

P2 = P , PT = P .
This means that Py is the orthogonal projection of y onto the subspace
of Rn spanned by the columns of F.
Because FTP = FT and y = Py + r̂, we see that FTr̂ = 0. Hence,
y = Fβ̂̂β + r̂ is the orthogonal decomposition of y with respect to the
subspace spanned by the columns of F.
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A 2-dimensional Example

Example. Least Squares for the affine model f (t ;α, β) = α + βt and
data {(tj , yj )}nj=1. Matrix F has the form

F =
(
1 t

)
, where 1 =

1
...
1

 , t =

t1
...
tn

 .

Define

t̄ =
1
n

n∑
j=1

tj , t2 =
1
n

n∑
j=1

t 2
j , σ 2

t =
1
n

n∑
j=1

(tj − t̄ )2 ,

To obtain:
FTF =

(
1T1 1Tt
tT1 tTt

)
= n

(
1 t̄
t̄ t2

)
,

det
(
FTF

)
= n2(t2 − t̄2) = n2σ 2

t > 0 .

Notice that t̄ and σ 2
t are the sample mean and variance of t

respectively.
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The 2-dimensional Example: Explicit Formulas

Then the α̂ and β̂ that give the least squares fit are given by(
α̂

β̂

)
= β̂̂β = (FTF)−1FTy =

1
n

1
σ 2

t

(
t2 −t̄
−t̄ 1

)(
1T

tT

)
y

=
1
σ 2

t

(
t2 −t̄
−t̄ 1

)(
ȳ
ty

)
=

1
σ 2

t

(
t2 ȳ − t̄ ty
ty − t̄ ȳ

)
,

where

ȳ =
1
n

1Ty =
1
n

n∑
j=1

yj , yt =
1
n

tTy =
1
n

n∑
j=1

yj tj .

These formulas for α̂ and β̂ can be expressed simply as

β̂ =
yt − ȳ t̄
σ 2

t
, α̂ = ȳ − β̂ t̄ .

Notice that β̂ is the ratio of the covariance of y and t to the variance of t .
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Least Squares for the General Linear Model

The best fit is thereby

f̂ (t) = α̂ + β̂t = ȳ + β̂(t − t̄ ) = ȳ +
yt − ȳ t̄
σ 2

t
(t − t̄ ) .

Remark. In the above example we inverted the matrix FTF to obtain β̂̂β.
This was easy because our model had only two parameters in it, so
FTF was only 2×2. The number of paramenters m does not have to be
too large before this approach becomes slow or unfeasible. However
for fairly large m you can obtain β̂̂β by using Gaussian elimination or
some other direct method to efficiently solve the linear system

FTFββ = FTy .

Such methods work because the matrix FTF is positive definite. As we
will soon see, this step can be simplified by constructing the basis
{fi (t)}mi=1 so that FTF is diagonal.
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Further Questions

We have seen how to use least squares to fit linear statistical models
with m parameters to data sets containing n pairs when m << n.
Among the questions that arise are the following.

How does one pick a basis that is well suited to the given data?
How can one avoid overfitting?
Do these methods extended to nonlinear statistical models?
Can one use other notions of smallness of the residual? Maximum
Likelihood Estimation.
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