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Input Data
Available Information:

1 Geometric Graph: For a threshold τ ≥ 0, Gτ = (V, E , µ) where V is
the set of n vertices (nodes), E is the set of edges between nodes i
and j if ‖xi − xj‖ ≤ τ and µ : E → R the set of distances ‖xi − xj‖
between nodes connected by en edge.

2 Weighted graph: G = (V,W ) a undirected weighted graph with n
nodes and weight matrix W , where Wi ,j is inverse monotonically
dependent to distances ‖xi − xj‖; the smaller the distance ‖xi − xj‖
the larger the weight Wi ,j .

3 Unweighted graph: For a threshold τ ≥ 0, Uτ = (V, E) where V is the
set of n nodes, and E is the set of edges connected node i to node j if
‖xi − xj‖ ≤ τ . Note the distance information is not available.

Thus we look for a dimension d > 0 and a set of points
{y1, y2, · · · , yn} ⊂ Rd so that all di ,j = ‖yi − yj‖’s are compatible with
input data as defined above.
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Approaches

Popular Approaches:
1 Principal Component Analysis
2 Independent Component Analysis
3 Laplacian Eigenmaps
4 Local Linear Embeddings (LLE)
5 Isomaps

If points were supposed to belong to a lower dimensional manifold, the
problem is known under the term manifold learning. If the manifold is
linear (affine), then the Principal Component Analysis (PCA) or
Independent Component Analysis (ICA) would suffice. However, if the
manifold is not linear, then nonlinear methods are needed. In this respect,
Laplacian Eigenmaps, LLE and ISOMAP can be thought of as nonlinear
PCA. Also known as nonlinear embeddings.
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Principal Component Analysis
Approach

Data: We are given a set {x1, x2, · · · , xn} ⊂ RN of n points in RN .
Goal: We want to find a linear (or affine) subspace V of dimension d that
best approximates this set. Specifically, if P = PV denotes the orthogonal
projection onto V , then the goal is to minimize

J(V ) =
n∑

k=1
‖xk − PV xk‖22.

If V is linear space (i.e. passes through the origin) then P is N × N linear
operator (i.e. matrix) that satisfies P = PT , P2 = P, and Ran(P) = V . If
V is an affine space (i.e. a linear space shifted by a constant vector), then
the projection onto the affine space is T (x) = Px + b where b is a
constant vector (the ”shift”).
The affine space case can be easily reduced to the linear space: just
append 1 to the bottom of each vector xk : x̃k = [xk ; 1]. Now b becomes a
column of the extended matrix P̃ = [P b].
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Principal Component Analysis
Algorithm

Algorithm (Principal Component Analysis)
Input: Data vectors {x1, · · · , xn} ∈ RN ; dimension d.

0 If affine subspace is the goal, append ’1’ at the end of each data
vector.

1 Compute the sample covariance matrix

R =
n∑

k=1
xkxT

k

2 Solve the eigenproblems Rek = σ2
kek , 1 ≤ k ≤ N, order eigenvalues

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N and normalize the eigenvectors ‖ek‖2 = 1.
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Principal Component Analysis
Algorithm - cont’ed

Algorithm (Principal Component Analysis)
3 Construct the co-isometry

U =

 eT
1
...

eT
d

 .
4 Project the input data

y1 = Ux1 , y2 = Ux2 , · · · , yn = Uxn.

Output: Lower dimensional data vectors {y1, · · · , yn} ∈ Rd .

The orthogonal projection is given by P =
∑d

k=1 ekeT
k and the optimal

subspace is V = Ran(P).
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Principal Component Analysis
Derivation

Here is the derivation in the case of linear space. The reduced dimensional
data is given by Pxk . Expand the criterion J(V ):

J(V ) =
n∑

k=1
‖xk‖2 −

n∑
k=1
〈Pxk , xk〉 =

n∑
k=1
‖xk‖2 − trace(PR)

where R =
∑n

k=1 xkxT
k . It follows the minimizer of J(V ) maximizes

trace(PR) subject to P = PT , P2 = P and trace(P) = d . It follows the
optimal P is given by the orthogonal projection onto the top d
eigenvectors, hence the algorithm.
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Independent Component Analysis
Approach

Model (Setup): x = As, where A is an unknown invertible N × N matrix,
and s ∈ RN is a random vector of independent components.
Data: We are given a set of measurement {x1, x2, · · · , xn} ⊂ RN of n
points in RN of the model xk = Ask , where each {s1, · · · , sn} is drawn from
the same distribution ps(s) of N-vectors with independent components.
Goal: We want to estimate the invertible matrix A and the (source) signals
{s1, · · · , sn}. Specifically, we want a square matrix W such that Wx has
independent components.
Principle: Perform PCA first so the decorrelated signals have unit variance.
Then find an orthogonal matrix (that is guaranteed to preserve
decorrelation) that creates statistical independence as much as possible.
Caveat: Two inherent ambiguities: (1) Permutation: If W is a solution to
the unmixing problem so is ΠW , where Π is a permutation matrix; (2)
Scaling: If W is a solution to unmixing problem, so is DW where D is a
diagonal matrix.
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Independent Component Analysis
Algorithm

Algorithm (Independent Component Analysis)
Input: Data vectors {x1, · · · , xn} ∈ RN .

1 Compute the sample mean b = 1
n

∑n
k=1 xk , and sample covariance

matrix R = 1
n

∑n
k=1(xk − b)(xk − b)T .

2 Solve the eigenproblem RE = EΛ, where E is the N × N orthogonal
matrix whose columns are eigenvectors, and Λ is the diagonal matrix
of eigenvalues.

3 Compute F = R−1/2 := EΛ−1/2E T and apply it on data,
zk = F (xk − b), 1 ≤ k ≤ n.

4 Compute the orthogonal matrix Q using the JADE algorithm below.
5 Apply Q on whitened data, ŝk = Qzk , 1 ≤ k ≤ n. Compute W = QF .

Output: Matrix W and independent vectors {ŝ1, ŝ2, · · · , ŝn}.
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Independent Component Analysis – Cont.
Joint Approximate Diagonalization of Eigenmatrices (JADE)

Algorithm (Cardoso’s 4th Order Cumulants Algorithm’92)
Input: Whitened data vectors {z1, · · · , zn} ∈ RN .

1 Compute the sample 4th order symmetric cumulant tensor

Fijkl = 1
N

N∑
t=1

zt(i)zt(j)zt(k)zt(l)− δi ,jδk,l − δi ,kδj,l − δi ,lδj,k .

2 Compute N eigenmatrices Mi ,j , so that F (Mi ,j) = λi ,jMi ,j .
3 Maximize the criterion

JJADE (Q) =
∑
i ,j
|λi ,j |2‖diag(QMi ,jQT )‖22

over orthogonal matrices Q by performing successive rotations
marching through all pairs (a, b) of distinct indices in {1, · · · ,N}.

Output: Orthogonal N × N matrix Q.
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Independent Component Analysis – Cont.
Wang-Amari Natural Stochastic Gradient Algorithm of Bell-Sejnowski MaxEntropy

Algorithm (Wang-Amari’97; Bell-Sejnowski’95)
Input: Sphered data vectors {z1, · · · , zn} ∈ RN ; Cumulative distribution
functions gk of each component of s; Learning rate η.

1 Initialize W (0) = F .
2 Repeat until convergence, or until maximum number of steps reached:

1 Draw a data vector z randomly from data vectors, and compute

W (t+1) = W (t) + η(I + (1− 2g(z))zT )W (t).

2 increment t ← t + 1.

Output: Unmixing N × N matrix W = W (T ).
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Independent Component Analysis
Derivation
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Dimension Reduction using Laplacian Eigenmaps
Idea

First, convert any relevant data into an undirected weighted graph, hence
a symmetric weight matrix W .
Assume G = (V,W ) is a undirected weighted graph with n nodes and
weight matrix W .
We interpret Wi ,j as the similarity between nodes i and j . The larger the
weight the more similar the nodes, and the closer they are in a geometric
graph embedding.
Thus we look for a dimension d > 0 and a set of points
{y1, y2, · · · , yn} ⊂ Rd so that di ,j = ‖yi − yj‖’s is small for large weight
Wi ,j .

A natural optimization criterion candidate:

J(y1, y2, · · · , yn) =
∑

1≤i ,j≤n
Wi ,j‖yi − yj‖2,
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Optimization Criteria

Lemma

J(y1, y2, · · · , yn) = 1
2

∑
1≤i ,j≤n

Wi ,j‖yi − yj‖2

is convex in (y1, · · · , yn).

Proof Idea: Write it as a positive semidefinite quadratic criterion:

J =
n∑

i=1
‖yi‖2

n∑
j=1

Wi ,j −
n∑

i ,j=1
Wi ,j〈yi , yj〉

Let Y = [y1| · · · |yn] be the d × n matrix of coordinates. Let D = diag(dk),
with dk =

∑n
i=1 Wk,i , be a n × n diagonal matrix. A little algebra shows:

J(Y ) = trace
{

Y (D −W )Y T
}
.
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Optimization Criteria
Equivalent forms:

J(Y ) = trace
{

Y (D −W )Y T
}

= trace
{

Y ∆Y T
}

= trace {∆G}

where G = Y T Y is the n × n Gram matrix. Thus: J is quadratic in Y ,
and positive semidefnite, hence convex.
Also: J is linear in G .

Question: Are there other convex functions in Y that behave similarly?
Answer: Yes! Examples:

J(y1, · · · , yn) =
∑

1≤i ,j≤n
Wi ,j‖yi − yj‖

J(y1, · · · , yn) =

 ∑
1≤i ,j≤n

Wi ,j‖yi − yj‖p
1/p

, p ≥ 1
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Constraints
Absent any constraint,

minimize trace
{

Y ∆Y T
}

has solution Y = 0. To avoid this trivial solution, we impose a
normalization constraint.
Choices:

YY T = Id
YDY T = Id

What does this mean?
n∑

k=1
ykyT

k = Id ⇒ Parseval frame

n∑
k=1

dkykyT
k = Id ⇒ Parseval weighted frame
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The Optimization Problem

Combining one criterion with one constraint:

(LE ) : minimize trace
{

Y ∆Y T
}

subject to YDY T = Id

called the Laplacian Eigenmap problem.

Alternative problem:

(UnLE ) : minimize trace
{

Y ∆Y T
}

subject to YY T = Id
called the unnormalized Laplacian eigenmap problem.
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The optimization problem
How to solve the Laplacian eigenmap problem:

(LE ) : minimize trace
{

Y ∆Y T
}

subject to YDY T = Id

First note the problem is not convex, because of the equality constraint.
How to make it convex? How to solve?
1. First absorb the scaling D into the solution:

Ỹ = YD1/2

Problem becomes:

minimize trace
{

Ỹ D−1/2∆D−1/2Ỹ T
}

= trace
{

Ỹ ∆̃Ỹ T
}

subject to Ỹ Ỹ T = Id

Radu Balan (UMD) MATH 420: Dimension Reduction March 5, 2020



Problem Formulation PCA ICA Laplacian Eigenmaps Locally Linear Embedding Isomap Simulations

The optimization problem

2. Consider the optimization problem for P:

minimize trace
{

∆̃P
}

subject to P = PT ≥ 0
P ≤ In
trace(P) = d

Proposition
Claims:
A. The above optimization problem is a convex SDP.
B. At optimum: P = Ỹ T Ỹ .
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Eigenproblem

The optimum solutions of the (LE) and (UnLE) problems are given by
appropriate eigenvectors:

minimize trace
{

Ỹ ∆̃Ỹ T
}

subject to Ỹ Ỹ T = Id

Solution:

Ỹ =

 eT
1
...

eT
d

 , ∆̃ek = λkek

where 0 = λ1 ≤ · · ·λd are the smallest d eigenvalues, and ‖ek‖ = 1 are
the normalized eigenvectors.
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Generalized Eigenproblem

(LE ) : minimize trace
{

Y ∆Y T
}

subject to YDY T = Id
⇒ Y = Ỹ D−1/2

the rows of Ỹ are eigenvectors of the normalized Laplacian ∆̃ek = λkek .
Let fk be the (transpose) rows of Y :

Y =

 f T
1
...

f T
d

 , fk = D−1/2ek

Thus: ∆̃D1/2fk = λkD1/2fk , or: D1/2∆̃D1/2fk = λkDfk , or:

∆fk = λkDfk

This is called generalized eigenproblem associated to (∆,D).
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Eigenproblem

Consider the unnormalized Laplacian eigenmap problem:

(UnLE ) : minimize trace
{

Y ∆Y T
}

subject to YY T = Id
.

The solution Y unLE is the d × n matrix whose rows are eigenvectors of the
unnormalized Laplacian ∆ = D −W , ∆gk = µkgk , ‖gk‖ = 1,
0 = µ1 ≤ · · · ≤ µd , and

Y unLE =

 gT
1
...

gT
d

 .
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What eigenspace to choose?

In most implementations one skips the eigenvectors associated to 0
eigenvalue. Why? In the unnormalized case, g1 = 1√

n [1, 1, · · · , 1]T , hence
no new information.
In your class projects, skip the bottom eigenvector.
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Laplacian Eigenmaps Embedding
Algorithm

Algorithm (Laplacian Eigenmaps)
Input: Weight matrix W , target dimension d

1 Construct the diagonal matrix D = diag(Dii )1≤i≤n, where
Dii =

∑n
k=1 Wi ,k .

2 Construct the normalized Laplacian ∆̃ = I − D−1/2WD−1/2.
3 Compute the bottom d + 1 eigenvectors e1, · · · , ed+1, ∆̃ek = λkek ,

0 = λ1 · · ·λd+1.
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Laplacian Eigenmaps Embedding
Algorithm-cont’s

Algorithm (Laplacian Eigenmaps - cont’d)
4 Construct the d × n matrix Y ,

Y =

 e2
...

ed+1

 D−1/2

5 The new geometric graph is obtained by converting the columns of Y
into n d-dimensional vectors:[

y1 | · · · | yn
]

= Y

Output: Set of points {y1, y2, · · · , yn} ⊂ Rd .
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Dimension Reduction using Laplacian Eigenmaps
Idea

Given a high dimensional geometric graph {x1, · · · , xn} ⊂ RN we seek a
lower dimensional geometric set of points {y1, · · · , yn} ⊂ Rd whose
pairwise distances are compatible with the original graph.
First, convert input data into an undirected weighted graph, hence a
symmetric weight matrix W . For instance, for each pair 1 ≤ i < j ≤ n,

Wi ,j = exp(−α‖xi − xj‖2) , if ‖xi − xj‖ ≤ τ , Wi ,j = 0 , otherwise

The Laplacian eigenmaps solve the following optimization problem:

(LE ) : minimize trace
{

Y ∆Y T
}

subject to YDY T = Id

where ∆ = D −W with D the diagonal matrix Dii =
∑n

k=1 Wi ,k
The d × n matrix Y = [y1| · · · |yn] contains the embedding.

Radu Balan (UMD) MATH 420: Dimension Reduction March 5, 2020



Problem Formulation PCA ICA Laplacian Eigenmaps Locally Linear Embedding Isomap Simulations

Dimension Reduction using Laplacian Eigenmaps
Algorithm

Algorithm (Dimension Reduction using Laplacian Eigenmaps)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters: threshold τ ,
weight coefficient α, and dimension d.

1 Compute the set of pairwise distances ‖xi − xj‖ and convert them
into a set of weights:

Wi ,j =
{

exp(−α‖xi − xj‖2) if ‖xi − xj‖ ≤ τ
0 if otherwise

2 Compute the d + 1 bottom eigenvectors of the normalized Laplacian
matrix ∆̃ = I − D−1/2WD−1/2, ∆̃ek = λkek , 1 ≤ k ≤ d + 1,
0 = λ0 ≤ · · · ≤ λd+1, where D = diag(

∑n
k=1 Wi ,k)1≤i≤n.
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Dimension Reduction using Laplacian Eigenmaps
Algorithm - cont’d

Algorithm (Dimension Reduction using Laplacian Eigenmaps-cont’d)
3 Construct the d × n matrix Y ,

Y =

 eT
2
...

eT
d+1

 D−1/2

4 The new geometric graph is obtained by converting the columns of Y
into n d-dimensional vectors:[

y1 | · · · | yn
]

= Y

Output: {y1, · · · , yn} ⊂ Rd .
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Example

see:
http://www.math.umd.edu/ rvbalan/TEACHING/AMSC663Fall2010/
PROJECTS/P5/index.html
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Dimension Reduction using LLE
The Idea

Presented in [1]. If data is sufficiently dense, we expect that each data
point and its neighbors to lie on or near a (locally) linear patch. We
assume we are given the set {x1, · · · , xn} in the high dimensional space RN .
Step 1. Find a set of local weights wi ,j that best explain the point xi from
its local neighbors:

minimize
∑n

i=1 ‖xi −
∑

j wi ,jxj‖2

subject to wi ,j ≥ 0 ,
∑

j wi ,j = 1 , i = 1, · · · , n

Step 2. Find the points {y1, · · · , yn} ⊂ Rd that minimize

minimize
∑n

i=1 ‖yi −
∑

j wi ,jyj‖2

subject to
∑n

i=1 yi = 0
1
n

∑n
i=1 yi yT

i = Id
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Dimension Reduction using LLE
Derivations (1)

Step 1. The weights are obtained by solving a constrained least-squares
problem. The optimization problem decouples for each i . The Lagrangian
at fixed i ∈ {1, 2, · · · , n} is

L((wi ,j)j∈N , λ) = ‖xi −
∑
j∈N

wi ,jxj‖
2 + λ(

∑
j∈N

wi ,j − 1) +
∑
j∈N

µjwi ,j

where N denotes its K -neighborhood of closest K vertices.
IF the nonegative constraint is not enforced, the Lagrangian simplifies to:

L() = ‖
∑
j∈N

wi ,j(xi − xj)‖
2 + λ(

∑
j∈N

wi ,j − 1) = wT Cw + λwT · 1− λ

where C is the K × K covariance matrix Cj,k = 〈xj − xi , xk − xi〉. Set
∇w L = 0 and solve for w . ∇w L = 2C · w + λ1.
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Dimension Reduction using LLE
Derivations (2)

w = −λ2 C−1 · 1

The multiplier λ is obtained from the constraint wT · 1 = 1:
λ = − 2

1T ·C−1·1 . Thus

w = C−1 · 1
1T C−11

IF the nonnegativity constrained is kept, then the problem is case as a
Quadratic Optimization problem (’quadpro’).
Step 2. The embedding in the lower dimensional space is obtained as
follows. First denote Y = [y1| · · · |yn] a d × n matrix. Then

n∑
i=1
‖yi −

∑
j

wi ,jyj‖
2 =

n∑
i=1
〈yi , yi〉−2

n∑
i=1

∑
j

wi ,j〈yi , yj〉+
n∑

i=1

∑
j,k

wi ,jwi ,k〈yj , yk〉

= trace(YY T )− 2trace(YWY T ) + trace(YW T WY T ) =
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Dimension Reduction using LLE
Derivations (3)

= trace(Y (I −W )T (I −W )Y T ).

where W is the n × n (non-symmetric) matrix of weights. The
optimization problem becomes:

minimize trace(Y (I −W )T (I −W )Y T )
subject to Y · 1 = 0

YY T = Id
Just as the graph Laplacian, the solution is given by the eigenvectors
corresponding to the smallest eigenvalues of (I −W )T (I −W ). The
condition Y · 1 = 0 rules out the lowest eigenvector (which is 1), and
requires rows in Y to be orthogonal to this eigenvector. Therefore, the
rows in Y are taken to be the eigenvectors associated to the smallest
d + 1 eigenvalues, except the smallest eigenvalue.
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Dimension Reduction using LLE
Algorithm

Algorithm (Dimension Reduction using Locally Linear Embedding -
Without non-negativity constraints)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters:
neighborhood size K and dimension d.

1 Finding the weight matrix w: For each point i do the following:
1 Find its closest K neighbors, say Vi ; Let r : Vi → {1, 2, · · · ,K} denote

the indexing map;
2 Compute the K × K local covariance matrix C,

Cr(j),r(k) = 〈xj − xi , xk − xi〉.
3 Solve for u,

minimize uT Cu
subject to u ≥ 0 , uT · 1 = 1

where 1 denotes the K-vector of 1’s.
4 Set wi,j = ur(j) for j ∈ Vi .
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Dimension Reduction using LLE
Algorithm - cont’d

Algorithm (Dimension Reduction using Locally Linear Embedding)
2 Solving the Eigen Problem:

1 Create the (typically sparse) matrix L = (I −W )T (I −W );
2 Find the bottom d + 1 eigenvectors of L (the bottom eigenvector

whould be [1, · · · , 1]T associated to eigenvalue 0) {e1, e2, · · · , ed+1};
3 Discard the last vector and insert all other eigenvectors as rows into

matrix Y

Y =

 eT
2
...

eT
d+1


Output: {y1, · · · , yn} ⊂ Rd as columns from[

y1 | · · · | yn
]

= Y
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Dimension Reduction using LLE
Algorithm

Algorithm (Dimension Reduction using Locally Linear Embedding -
With non-negativity constraints)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters:
neighborhood size K and dimension d.

1 Finding the weight matrix w: For each point i do the following:
1 Find its closest K neighbors, say Vi ;
2 Compute the K × K local covariance matrix C,

Cj,k = 〈xj − xi , xk − xi〉.
3 Solve C · u = 1 for u (1 denotes the K-vector of 1’s).
4 Rescale u = u/(uT · 1).
5 Set wi,j = uj for j ∈ Vi .
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Dimension Reduction using LLE
Algorithm - cont’d

Algorithm (Dimension Reduction using Locally Linear Embedding)
2 Solving the Eigen Problem:

1 Create the (typically sparse) matrix L = (I −W )T (I −W );
2 Find the bottom d + 1 eigenvectors of L (the bottom eigenvector

whould be [1, · · · , 1]T associated to eigenvalue 0) {e1, e2, · · · , ed+1};
3 Discard the last vector and insert all other eigenvectors as rows into

matrix Y

Y =

 eT
2
...

eT
d+1


Output: {y1, · · · , yn} ⊂ Rd as columns from[

y1 | · · · | yn
]

= Y

Radu Balan (UMD) MATH 420: Dimension Reduction March 5, 2020



Problem Formulation PCA ICA Laplacian Eigenmaps Locally Linear Embedding Isomap Simulations

Dimension Reduction using Isomaps
The Idea

Presented in [2]. The idea is to first estimate all pairwise distances, and
then use the nearly isometric embedding algorithm with full data that we
will describe in the next lecture.
For each node in the graph we define the distance to the nearest K
neighbors using the Euclidean metric. The distance to further nodes is
defined as the geodesic distance w.r.t. these local distances.
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Dimension Reduction using Isomaps
Algorithm

Algorithm (Dimension Reduction using Isomap)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters:
neighborhood size K and dimension d.

1 Construct the symmetric matrix S of squared pairwise distances:
1 Construct the sparse matrix T , where for each node i find the nearest

K neighbors Vi and set Ti,j = ‖xi − xj‖2, j ∈ Vi .
2 For any pair of two nodes (i , j) compute di,j as the length of the

shortest path,
∑L

p=1 Tkp−1,kp with k0 = i and kL = j , using e.g.
Dijkstra’s algorithm.

3 Set Si,j = d2
i,j .
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Dimension Reduction using Isomaps
Algorithm (Read this part of the algorithm after learning Isometric Embeddings)

Algorithm (Dimension Reduction using Isomap - cont’d)
2 Compute the Gram matrix G:

ρ = 1
2n 1T · S · 1 , ν = 1

n (S · 1− ρ1)

G = 1
2ν · 1

T + 1
21 · νT − 1

2S

3 Find the top d eigenvectors of G, say e1, · · · , ed so that GE = EΛ,
form the matrix Y and then collect the columns:

Y = Λ1/2

 eT
1
...

eT
d

 =
[

y1 | · · · | yn
]

Output: {y1, · · · , yn} ⊂ Rd .
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Data Sets
The Swiss Roll
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Data Sets
The Circle

Radu Balan (UMD) MATH 420: Dimension Reduction March 5, 2020



Problem Formulation PCA ICA Laplacian Eigenmaps Locally Linear Embedding Isomap Simulations

Dimension Reduction for the Swiss Roll
Laplacian Eigenmap

Parameters: d = 3, Wi ,j = exp(−0.1‖xi − xj‖2), for all i , j .
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Dimension Reduction for the Swiss Roll
Local Linear Embedding (LLE)

Parameters: d = 3, K = 2.
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Dimension Reduction for the Swiss Roll
ISOMAP

Parameters: d = 3, K = 10.
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Dimension Reduction for the Circle
Laplacian Eigenmap

Parameters: d = 3, Wi ,j = exp(−0.1‖xi − xj‖2), for all i , j .
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Dimension Reduction for the Circle
Local Linear Embedding (LLE)

Parameters: d = 3, K = 2.
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Dimension Reduction for the Circle
ISOMAP

Parameters: d = 3, K = 10.
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