Lecture 10: Dimension Reduction and Data Embedding Techniques

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 28 and May 5, 2020

(中) (종) (종) (종) (종) (종)

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
•0						

Input Data

Available Information:

- Geometric Graph: For a threshold $\tau \ge 0$, $\mathcal{G}_{\tau} = (\mathcal{V}, \mathcal{E}, \mu)$ where \mathcal{V} is the set of *n* vertices (nodes), \mathcal{E} is the set of edges between nodes *i* and *j* if $||x_i x_j|| \le \tau$ and $\mu : \mathcal{E} \to \mathbb{R}$ the set of distances $||x_i x_j||$ between nodes connected by en edge.
- Weighted graph: G = (V, W) a undirected weighted graph with n nodes and weight matrix W, where W_{i,j} is inverse monotonically dependent to distances ||x_i x_j||; the smaller the distance ||x_i x_j|| the larger the weight W_{i,j}.
- Unweighted graph: For a threshold τ ≥ 0, U_τ = (V, E) where V is the set of n nodes, and E is the set of edges connected node i to node j if ||x_i x_j|| ≤ τ. Note the distance information is not available.

Thus we look for a dimension d > 0 and a set of points $\{y_1, y_2, \dots, y_n\} \subset \mathbb{R}^d$ so that all $d_{i,j} = ||y_i - y_j||$'s are *compatible* with input data as defined above.

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
00						

Approaches

Popular Approaches:

- Principal Component Analysis
- Independent Component Analysis
- 3 Laplacian Eigenmaps
- 4 Local Linear Embeddings (LLE)
- Isomaps

If points were supposed to belong to a lower dimensional manifold, the problem is known under the term *manifold learning*. If the manifold is linear (affine), then the Principal Component Analysis (PCA) or Independent Component Analysis (ICA) would suffice. However, if the manifold is not linear, then nonlinear methods are needed. In this respect, Laplacian Eigenmaps, LLE and ISOMAP can be thought of as *nonlinear PCA*. Also known as *nonlinear embeddings*.

Principal Component Analysis Approach

Data: We are given a set $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^N$ of *n* points in \mathbb{R}^N . Goal: We want to find a linear (or affine) subspace *V* of dimension *d* that best approximates this set. Specifically, if $P = P_V$ denotes the orthogonal projection onto *V*, then the goal is to minimize

$$J(V) = \sum_{k=1}^{n} ||x_k - P_V x_k||_2^2.$$

If V is linear space (i.e. passes through the origin) then P is $N \times N$ linear operator (i.e. matrix) that satisfies $P = P^T$, $P^2 = P$, and Ran(P) = V. If V is an affine space (i.e. a linear space shifted by a constant vector), then the projection onto the affine space is T(x) = Px + b where b is a constant vector (the "shift").

The affine space case can be easily reduced to the linear space: just append 1 to the bottom of each vector x_k : $\tilde{x}_k = [x_k; 1]$. Now *b* becomes a column of the extended matrix $\tilde{P} = [P \ b]$.

Principal Component Analysis Algorithm

Algorithm (Principal Component Analysis)

Input: Data vectors $\{x_1, \cdots, x_n\} \in \mathbb{R}^N$; dimension d.

- If affine subspace is the goal, append '1' at the end of each data vector.
- **Organization Organization Organization Organization**

$$R = \sum_{k=1}^{n} x_k x_k^T$$

2 Solve the eigenproblems $Re_k = \sigma_k^2 e_k$, $1 \le k \le N$, order eigenvalues $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_N^2$ and normalize the eigenvectors $||e_k||_2 = 1$.

Principal Component Analysis Algorithm - cont'ed

Algorithm (Principal Component Analysis)

Onstruct the co-isometry

$$\mathcal{U} = \begin{bmatrix} e_1^T \\ \vdots \\ e_d^T \end{bmatrix}$$

Project the input data

$$y_1 = Ux_1 , y_2 = Ux_2 , \cdots , y_n = Ux_n.$$

Output: Lower dimensional data vectors $\{y_1, \dots, y_n\} \in \mathbb{R}^d$.

The orthogonal projection is given by $P = \sum_{k=1}^{d} e_k e_k^T$ and the optimal subspace is V = Ran(P).

Radu Balan (UMD)

Principal Component Analysis Derivation

Here is the derivation in the case of linear space. The reduced dimensional data is given by Px_k . Expand the criterion J(V):

$$J(V) = \sum_{k=1}^{n} ||x_k||^2 - \sum_{k=1}^{n} \langle Px_k, x_k \rangle = \sum_{k=1}^{n} ||x_k||^2 - trace(PR)$$

where $R = \sum_{k=1}^{n} x_k x_k^T$. It follows the minimizer of J(V) maximizes trace(PR) subject to $P = P^T$, $P^2 = P$ and trace(P) = d. It follows the optimal P is given by the orthogonal projection onto the top d eigenvectors, hence the algorithm.

Independent Component Analysis Approach

Model (Setup): x = As, where A is an unknown invertible $N \times N$ matrix, and $s \in \mathbb{R}^N$ is a random vector of *independent* components. Data: We are given a set of measurement $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^N$ of n

points in \mathbb{R}^N of the model $x_k = As_k$, where each $\{s_1, \dots, s_n\}$ is drawn from the same distribution $p_s(s)$ of N-vectors with independent components. Goal: We want to estimate the invertible matrix A and the (source) signals $\{s_1, \dots, s_n\}$. Specifically, we want a square matrix W such that Wx has independent components.

Principle: Perform PCA first so the decorrelated signals have unit variance. Then find an orthogonal matrix (that is guaranteed to preserve decorrelation) that creates statistical independence as much as possible. Caveat: Two inherent ambiguities: (1) Permutation: If W is a solution to the unmixing problem so is ΠW , where Π is a permutation matrix; (2) Scaling: If W is a solution to unmixing problem, so is DW where D is a diagonal matrix.

Radu Balan (UMD)

Problem Formulation

PCA ICA

Laplacian Eigenmaps

Locally Linear Embedding

Isomap Simulations

Independent Component Analysis Algorithm

Algorithm (Independent Component Analysis)

Input: Data vectors $\{x_1, \cdots, x_n\} \in \mathbb{R}^N$.

- Compute the sample mean $b = \frac{1}{n} \sum_{k=1}^{n} x_k$, and sample covariance matrix $R = \frac{1}{n} \sum_{k=1}^{n} (x_k b)(x_k b)^T$.
- Solve the eigenproblem RE = EΛ, where E is the N × N orthogonal matrix whose columns are eigenvectors, and Λ is the diagonal matrix of eigenvalues.
- Compute $F = R^{-1/2} := E\Lambda^{-1/2}E^T$ and apply it on data, $z_k = F(x_k b), \ 1 \le k \le n.$

• Compute the orthogonal matrix Q using the JADE algorithm below.

5 Apply Q on whitened data, $\hat{s}_k = Qz_k$, $1 \le k \le n$. Compute W = QF.

Output: Matrix W and independent vectors $\{\hat{s}_1, \hat{s}_2, \dots, \hat{s}_n\}$.

Problem Formulation PCA

A ICA

Laplacian Eigenmaps

Locally Linear Embedding

Isomap Simulations

Independent Component Analysis – Cont. Joint Approximate Diagonalization of Eigenmatrices (JADE)

Algorithm (Cardoso's 4th Order Cumulants Algorithm'92)

Input: Whitened data vectors $\{z_1, \cdots, z_n\} \in \mathbb{R}^N$.

O Compute the sample 4th order symmetric cumulant tensor

$$F_{ijkl} = \frac{1}{N} \sum_{t=1}^{N} z_t(i) z_t(j) z_t(k) z_t(l) - \delta_{i,j} \delta_{k,l} - \delta_{i,k} \delta_{j,l} - \delta_{i,l} \delta_{j,k}.$$

2 Compute N eigenmatrices $M_{i,j}$, so that $F(M_{i,j}) = \lambda_{i,j}M_{i,j}$.

Maximize the criterion

$$J_{JADE}(Q) = \sum_{i,j} |\lambda_{i,j}|^2 \|diag(QM_{i,j}Q^T)\|_2^2$$

over orthogonal matrices Q by performing successive rotations marching through all pairs (a, b) of distinct indices in $\{1, \dots, N\}$.

Radu Balan (UMD)

Independent Component Analysis – Cont. Wang-Amari Natural Stochastic Gradient Algorithm of Bell-Sejnowski MaxEntropy

Algorithm (Wang-Amari'97; Bell-Sejnowski'95)

Input: Sphered data vectors $\{z_1, \dots, z_n\} \in \mathbb{R}^N$; Cumulative distribution functions g_k of each component of s; Learning rate η .

1 Initialize $W^{(0)} = F$.

2 Repeat until convergence, or until maximum number of steps reached:

Draw a data vector z randomly from data vectors, and compute

$$W^{(t+1)} = W^{(t)} + \eta (I + (1 - 2g(z))z^T)W^{(t)}.$$

2 increment $t \leftarrow t + 1$.

Output: Unmixing $N \times N$ matrix $W = W^{(T)}$.

< ロ > < 同 > < 三 > < 三 >

Problem Formulation P 00 0 A ICA

Laplacian Eigenmaps

Locally Linear Embedding

Isomap Simulations

Independent Component Analysis

Radu Balan (UMD)

Dimension Reduction using Laplacian Eigenmaps Idea

First, convert any relevant data into an undirected weighted graph, hence a symmetric weight matrix W.

Assume $\mathcal{G} = (\mathcal{V}, W)$ is a undirected weighted graph with *n* nodes and weight matrix *W*.

We interpret $W_{i,j}$ as the *similarity* between nodes *i* and *j*. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.

Thus we look for a dimension d > 0 and a set of points

 $\{y_1, y_2, \cdots, y_n\} \subset \mathbb{R}^d$ so that $d_{i,j} = ||y_i - y_j||$'s is small for large weight $W_{i,j}$.

Dimension Reduction using Laplacian Eigenmaps Idea

First, convert any relevant data into an undirected weighted graph, hence a symmetric weight matrix W.

Assume $\mathcal{G} = (\mathcal{V}, W)$ is a undirected weighted graph with *n* nodes and weight matrix W.

We interpret $W_{i,j}$ as the *similarity* between nodes *i* and *j*. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.

Thus we look for a dimension d > 0 and a set of points

 $\{y_1, y_2, \cdots, y_n\} \subset \mathbb{R}^d$ so that $d_{i,j} = ||y_i - y_j||$'s is small for large weight $W_{i,j}$.

A natural optimization criterion candidate:

$$J(y_1, y_2, \cdots, y_n) = \sum_{1 \le i, j \le n} W_{i,j} ||y_i - y_j||^2,$$

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
	0000	00000	000000000000000000000000000000000000000	0000000	000	00000000

Lemma

$$J(y_1, y_2, \cdots, y_n) = \frac{1}{2} \sum_{1 \le i,j \le n} W_{i,j} ||y_i - y_j||^2$$

is convex in (y_1, \cdots, y_n) .

Proof Idea: Write it as a positive semidefinite quadratic criterion:

$$J = \sum_{i=1}^{n} ||y_i||^2 \sum_{j=1}^{n} W_{i,j} - \sum_{i,j=1}^{n} W_{i,j} \langle y_i, y_j \rangle$$

Let $Y = [y_1| \cdots | y_n]$ be the $d \times n$ matrix of coordinates. Let $D = diag(d_k)$, with $d_k = \sum_{i=1}^n W_{k,i}$, be a $n \times n$ diagonal matrix. A little algebra shows:

$$J(Y) = trace\left\{Y(D-W)Y^T\right\}$$

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
			000000000000000000000000000000000000000			

Equivalent forms:

$$J(Y) = trace \left\{ Y(D - W)Y^T \right\} = trace \left\{ Y\Delta Y^T \right\} = trace \left\{ \Delta G \right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex. Also: J is linear in G.

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
			000000000000000000000000000000000000000			

Equivalent forms:

$$J(Y) = trace \left\{ Y(D - W)Y^T \right\} = trace \left\{ Y\Delta Y^T \right\} = trace \left\{ \Delta G \right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in Y that behave similarly?

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
			000000000000000000000000000000000000000			

Equivalent forms:

$$J(Y) = trace\left\{Y(D - W)Y^{T}\right\} = trace\left\{Y\Delta Y^{T}\right\} = trace\left\{\Delta G\right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in *Y* that behave similarly? Answer: Yes! Examples:

$$J(y_1,\cdots,y_n)=\sum_{1\leq i,j\leq n}W_{i,j}\|y_i-y_j\|$$

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
			000000000000000000000000000000000000000			

Equivalent forms:

$$J(Y) = trace\left\{Y(D - W)Y^{T}\right\} = trace\left\{Y\Delta Y^{T}\right\} = trace\left\{\Delta G\right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in *Y* that behave similarly? Answer: Yes! Examples:

$$J(y_1, \dots, y_n) = \sum_{1 \le i,j \le n} W_{i,j} \| y_i - y_j \|$$
$$J(y_1, \dots, y_n) = \left(\sum_{1 \le i,j \le n} W_{i,j} \| y_i - y_j \|^p \right)^{1/p} , p \ge 1$$

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
			000000000000000000000000000000000000000			

Constraints

Absent any constraint,

minimize trace
$$\left\{ Y \Delta Y^T \right\}$$

has solution Y = 0. To avoid this trivial solution, we impose a normalization constraint. Choices:

$$YY^T = I_d$$

 $YDY^T = I_d$

What does this mean?

$$\sum_{k=1}^{n} y_k y_k^{\mathsf{T}} = I_d \quad \Rightarrow \quad \mathsf{Parseval frame}$$

 $\sum_{k=1}^{n} d_k y_k y_k^{T} = I_d \quad \Rightarrow \quad \text{Parseval weighted frame}$

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps	Locally Linear Embedding	Isomap 000	Simulations

The Optimization Problem

Combining one criterion with one constraint:

$$LE) : \begin{array}{l} \text{minimize} & trace\left\{Y\Delta Y^{T}\right\}\\ \text{subject to} & YDY^{T} = I_{d} \end{array}$$

called the Laplacian Eigenmap problem.

Alternative problem:

$$(UnLE) : \begin{array}{l} \text{minimize} & trace \left\{ Y \Delta Y^T \right\} \\ \text{subject to} & YY^T = I_d \end{array}$$

called the unnormalized Laplacian eigenmap problem.

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
	0000		000000000000000000000000000000000000000			

The optimization problem

How to solve the Laplacian eigenmap problem:

$$(LE) : \begin{array}{ll} \text{minimize} & trace \left\{ Y \Delta Y^T \right\} \\ \text{subject to} & Y D Y^T = I_d \end{array}$$

First note the problem is not convex, because of the equality constraint. How to make it convex? How to solve?

1. First absorb the scaling D into the solution:

$$\tilde{Y} = YD^{1/2}$$

Problem becomes:

$$\begin{array}{ll} \text{minimize} & \textit{trace}\left\{\tilde{Y}D^{-1/2}\Delta D^{-1/2}\tilde{Y}^{T}\right\} = \textit{trace}\left\{\tilde{Y}\tilde{\Delta}\tilde{Y}^{T}\right\} \\ \text{subject to} & \tilde{Y}\tilde{Y}^{T} = \textit{I}_{d} \end{array}$$

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps ○○○○○○●○○○○○○○○○○	Locally Linear Embedding	lsomap 000	Simulations

The optimization problem

2. Consider the optimization problem for P:

$$\begin{array}{ll} \text{minimize} & trace \left\{ \tilde{\Delta} P \right\} \\ \text{subject to} & P = P^T \geq 0 \\ & P \leq I_n \\ & trace(P) = d \end{array}$$

Proposition

Claims:

A. The above optimization problem is a convex SDP. B. At optimum: $P = \tilde{Y}^T \tilde{Y}$.

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps ○○○○○○●○○○○○○○○	Locally Linear Embedding	lsomap 000	Simulations
Eigenproble	em					

The optimum solutions of the (LE) and (UnLE) problems are given by appropriate eigenvectors:

$$\begin{array}{ll} \text{minimize} & trace\left\{\tilde{Y}\tilde{\Delta}\tilde{Y}^{T}\right\}\\ \text{subject to} & \tilde{Y}\tilde{Y}^{T}=I_{d} \end{array}$$

Solution:

$$ilde{Y} = \left[egin{array}{c} e_1^T \ dots \ e_d^T \end{array}
ight] \ , \ ilde{\Delta} e_k = \lambda_k e_k$$

where $0 = \lambda_1 \leq \cdots \lambda_d$ are the smallest *d* eigenvalues, and $||e_k|| = 1$ are the normalized eigenvectors.

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
			000000000000000000000000000000000000000			

Generalized Eigenproblem

$$(LE) : \begin{array}{c} \text{minimize} & \text{trace} \left\{ Y \Delta Y^T \right\} \\ \text{subject to} & Y D Y^T = I_d \end{array} \Rightarrow Y = \tilde{Y} D^{-1/2}$$

the rows of \tilde{Y} are eigenvectors of the normalized Laplacian $\tilde{\Delta}e_k = \lambda_k e_k$. Let f_k be the (transpose) rows of Y:

$$Y = \begin{bmatrix} f_1^T \\ \vdots \\ f_d^T \end{bmatrix} , \quad f_k = D^{-1/2} e_k$$

Thus: $\tilde{\Delta}D^{1/2}f_k = \lambda_k D^{1/2}f_k$, or: $D^{1/2}\tilde{\Delta}D^{1/2}f_k = \lambda_k Df_k$, or:

$$\Delta f_k = \lambda_k D f_k$$

This is called generalized eigenproblem associated to (Δ, D) .

Radu Balan (UMD)

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps ०००००००००●०००००००	Locally Linear Embedding	lsomap 000	Simulations
Eigenproble	em					

Consider the unnormalized Laplacian eigenmap problem:

$$(UnLE) : \begin{array}{l} \text{minimize} & trace \left\{ Y \Delta Y^T \right\} \\ \text{subject to} & YY^T = I_d \end{array}$$

The solution Y^{unLE} is the $d \times n$ matrix whose rows are eigenvectors of the unnormalized Laplacian $\Delta = D - W$, $\Delta g_k = \mu_k g_k$, $||g_k|| = 1$, $0 = \mu_1 \leq \cdots \leq \mu_d$, and

$$Y^{unLE} = \begin{bmatrix} g_1^T \\ \vdots \\ g_d^T \end{bmatrix}$$

What eigenspace to choose?

In most implementations one skips the eigenvectors associated to 0 eigenvalue. Why? In the unnormalized case, $g_1 = \frac{1}{\sqrt{n}} [1, 1, \dots, 1]^T$, hence no new information.

In your class projects, skip the bottom eigenvector.

Problem Formulation

PCA ICA

Laplacian Eigenmaps

Locally Linear Embedding

Isomap Simulations

Laplacian Eigenmaps Embedding Algorithm

Algorithm (Laplacian Eigenmaps)

Input: Weight matrix W, target dimension d

- Construct the diagonal matrix $D = diag(D_{ii})_{1 \le i \le n}$, where $D_{ii} = \sum_{k=1}^{n} W_{i,k}$.
- **2** Construct the normalized Laplacian $\tilde{\Delta} = I D^{-1/2} W D^{-1/2}$.
- Compute the bottom d + 1 eigenvectors e_1, \dots, e_{d+1} , $\tilde{\Delta}e_k = \lambda_k e_k$, $0 = \lambda_1 \cdots \lambda_{d+1}$.

Isomap Simulations

Laplacian Eigenmaps Embedding Algorithm-cont's

Algorithm (Laplacian Eigenmaps - cont'd)

• Construct the $d \times n$ matrix Y,

$$Y = \begin{bmatrix} e_2 \\ \vdots \\ e_{d+1} \end{bmatrix} D^{-1/2}$$

The new geometric graph is obtained by converting the columns of Y into n d-dimensional vectors:

$$\left[\begin{array}{cccc} y_1 & | & \cdots & | & y_n \end{array}\right] = Y$$

Output: Set of points $\{y_1, y_2, \cdots, y_n\} \subset \mathbb{R}^d$.

Dimension Reduction using Laplacian Eigenmaps Idea

Given a high dimensional geometric graph $\{x_1, \dots, x_n\} \subset \mathbb{R}^N$ we seek a lower dimensional geometric set of points $\{y_1, \dots, y_n\} \subset \mathbb{R}^d$ whose pairwise distances are compatible with the original graph. First, convert input data into an undirected weighted graph, hence a symmetric weight matrix W. For instance, for each pair $1 \leq i < j \leq n$,

$$W_{i,j} = exp(-lpha \|x_i - x_j\|^2)$$
, if $\|x_i - x_j\| \le au$, $W_{i,j} = 0$, otherwise

The Laplacian eigenmaps solve the following optimization problem:

$$(LE) : \begin{array}{ll} \text{minimize} & trace \left\{ Y \Delta Y^T \right\} \\ \text{subject to} & Y D Y^T = I_d \end{array}$$

where $\Delta = D - W$ with D the diagonal matrix $D_{ii} = \sum_{k=1}^{n} W_{i,k}$ The $d \times n$ matrix $Y = [y_1| \cdots |y_n]$ contains the embedding. Simulations

Problem Formulation

PCA ICA

Laplacian Eigenmaps

Locally Linear Embedding

Isomap Simulations

Dimension Reduction using Laplacian Eigenmaps Algorithm

Algorithm (Dimension Reduction using Laplacian Eigenmaps)

Input: A geometric graph $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^N$. Parameters: threshold τ , weight coefficient α , and dimension d.

Compute the set of pairwise distances ||x_i - x_j|| and convert them into a set of weights:

$$W_{i,j} = \begin{cases} exp(-\alpha ||x_i - x_j||^2) & if \quad ||x_i - x_j|| \le \tau \\ 0 & if \quad otherwise \end{cases}$$

2 Compute the d + 1 bottom eigenvectors of the normalized Laplacian matrix $\tilde{\Delta} = I - D^{-1/2} W D^{-1/2}$, $\tilde{\Delta} e_k = \lambda_k e_k$, $1 \le k \le d + 1$, $0 = \lambda_0 \le \cdots \le \lambda_{d+1}$, where $D = diag(\sum_{k=1}^n W_{i,k})_{1 \le i \le n}$.

イロト イヨト イヨト

Dimension Reduction using Laplacian Eigenmaps Algorithm - cont'd

Algorithm (Dimension Reduction using Laplacian Eigenmaps-cont'd)

Output Construct the $d \times n$ matrix Y,

$$Y = \begin{bmatrix} e_2^T \\ \vdots \\ e_{d+1}^T \end{bmatrix} D^{-1/2}$$

The new geometric graph is obtained by converting the columns of Y into n d-dimensional vectors:

$$\left[\begin{array}{cccc} y_1 & | & \cdots & | & y_n \end{array}\right] = Y$$

Output: $\{y_1, \cdots, y_n\} \subset \mathbb{R}^d$.

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps ००००००००००००००००	Locally Linear Embedding	lsomap 000	Simulations
Example						

see:

$\label{eq:http://www.math.umd.edu/ rvbalan/TEACHING/AMSC663Fall2010/PROJECTS/P5/index.html$

∃ ▶ ∢

Dimension Reduction using LLE The Idea

Presented in [1]. If data is sufficiently dense, we expect that each data point and its neighbors to lie on or near a (locally) linear patch. We assume we are given the set $\{x_1, \dots, x_n\}$ in the high dimensional space \mathbb{R}^N . Step 1. Find a set of local weights $w_{i,j}$ that best explain the point x_i from its local neighbors:

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} \|x_i - \sum_j w_{i,j} x_j\|^2 \\ \text{subject to} & w_{i,j} \geq 0 \ , \ \sum_j w_{i,j} = 1 \ , \ i = 1, \cdots, n \end{array}$$

Step 2. Find the points $\{y_1, \cdots, y_n\} \subset \mathbb{R}^d$ that minimize

minimize
$$\sum_{i=1}^{n} \|y_i - \sum_j w_{i,j}y_j\|^2$$
subject to
$$\sum_{i=1}^{n} y_i = 0$$
$$\frac{1}{n} \sum_{i=1}^{n} y_i y_i^T = I_d$$

Dimension Reduction using LLE Derivations (1)

Step 1. The weights are obtained by solving a constrained least-squares problem. The optimization problem decouples for each *i*. The Lagrangian at fixed $i \in \{1, 2, \dots, n\}$ is

$$L((w_{i,j})_{j \in N}, \lambda) = \|x_i - \sum_{j \in N} w_{i,j} x_j\|^2 + \lambda (\sum_{j \in N} w_{i,j} - 1) + \sum_{j \in N} \mu_j w_{i,j}$$

where N denotes its K-neighborhood of closest K vertices.

IF the nonegative constraint is not enforced, the Lagrangian simplifies to:

$$L() = \left\|\sum_{j \in \mathbb{N}} w_{i,j}(x_i - x_j)\right\|^2 + \lambda(\sum_{j \in \mathbb{N}} w_{i,j} - 1) = w^T C w + \lambda w^T \cdot 1 - \lambda$$

where C is the $K \times K$ covariance matrix $C_{j,k} = \langle x_j - x_i, x_k - x_i \rangle$. Set $\nabla_w L = 0$ and solve for w. $\nabla_w L = 2C \cdot w + \lambda 1$.

Problem Formulation	PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
				0000000		

Dimension Reduction using LLE Derivations (2)

$$w = -\frac{\lambda}{2}C^{-1} \cdot 1$$

The multiplier λ is obtained from the constraint $w^T \cdot 1 = 1$: $\lambda = -\frac{2}{1^T \cdot C^{-1} \cdot 1}$. Thus $w = \frac{C^{-1} \cdot 1}{1^T C^{-1} 1}$

IF the nonnegativity constrained is kept, then the problem is case as a Quadratic Optimization problem ('quadpro').

Step 2. The embedding in the lower dimensional space is obtained as follows. First denote $Y = [y_1| \cdots |y_n]$ a $d \times n$ matrix. Then

$$\sum_{i=1}^{n} \left\| y_{i} - \sum_{j} w_{i,j} y_{j} \right\|^{2} = \sum_{i=1}^{n} \langle y_{i}, y_{i} \rangle - 2 \sum_{i=1}^{n} \sum_{j} w_{i,j} \langle y_{i}, y_{j} \rangle + \sum_{i=1}^{n} \sum_{j,k} w_{i,j} w_{i,k} \langle y_{j}, y_{k} \rangle$$
$$= trace(YY^{T}) - 2trace(YWY^{T}) + trace(YW^{T}WY^{T}) =$$

Dimension Reduction using LLE Derivations (3)

$$= trace(Y(I-W)^{T}(I-W)Y^{T}).$$

where W is the $n \times n$ (non-symmetric) matrix of weights. The optimization problem becomes:

minimize
$$trace(Y(I - W)^{T}(I - W)Y^{T})$$

subject to $Y \cdot 1 = 0$
 $YY^{T} = I_{d}$

Radu Balan (UMD)

Dimension Reduction using LLE Algorithm

Algorithm (Dimension Reduction using Locally Linear Embedding -Without non-negativity constraints)

Input: A geometric graph $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^N$. Parameters: neighborhood size K and dimension d.

• Finding the weight matrix w: For each point i do the following:

- Find its closest K neighbors, say V_i; Let r : V_i → {1, 2, · · · , K} denote the indexing map;
- **2** Compute the $K \times K$ local covariance matrix C,

$$C_{r(j),r(k)} = \langle x_j - x_i, x_k - x_i \rangle.$$

Solve for u,

 $\begin{array}{ll} \text{minimize} & u^{T}Cu\\ \text{subject to} & u \geq 0 \ , \ u^{T} \cdot 1 = 1 \end{array}$

where 1 denotes the K-vector of 1's.

3 Set
$$w_{i,j} = u_{r(j)}$$
 for $j \in \mathcal{V}_i$.

Dimension Reduction using LLE Algorithm - cont'd

Algorithm (Dimension Reduction using Locally Linear Embedding)

- **2** Solving the Eigen Problem:
 - Create the (typically sparse) matrix $L = (I W)^T (I W)$;
 - **∂** Find the bottom d + 1 eigenvectors of L (the bottom eigenvector whould be [1, ..., 1]^T associated to eigenvalue 0) {e₁, e₂, ..., e_{d+1}};
 - O Discard the last vector and insert all other eigenvectors as rows into matrix Y

$$\mathbf{Y} = \begin{bmatrix} e_2' \\ \vdots \\ e_{d+1}^T \end{bmatrix}$$

Output: $\{y_1, \cdots, y_n\} \subset \mathbb{R}^d$ as columns from

$$\left[\begin{array}{cccc} y_1 & | & \cdots & | & y_n \end{array}\right] = Y$$

Dimension Reduction using LLE Algorithm

Algorithm (Dimension Reduction using Locally Linear Embedding -With non-negativity constraints)

Input: A geometric graph $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^N$. Parameters: neighborhood size K and dimension d.

• Finding the weight matrix w: For each point i do the following:

- Find its closest K neighbors, say V_i ;
- **2** Compute the $K \times K$ local covariance matrix C,

$$C_{j,k} = \langle x_j - x_i, x_k - x_i \rangle.$$

Solve $C \cdot u = 1$ for u (1 denotes the K-vector of 1's).

• Rescale
$$u = u/(u^T \cdot 1)$$

5 Set
$$w_{i,j} = u_j$$
 for $j \in \mathcal{V}_i$.

Dimension Reduction using LLE Algorithm - cont'd

Algorithm (Dimension Reduction using Locally Linear Embedding)

- **2** Solving the Eigen Problem:
 - Create the (typically sparse) matrix $L = (I W)^T (I W)$;
 - **∂** Find the bottom d + 1 eigenvectors of L (the bottom eigenvector whould be [1, ..., 1]^T associated to eigenvalue 0) {e₁, e₂, ..., e_{d+1}};
 - O Discard the last vector and insert all other eigenvectors as rows into matrix Y

$$\mathbf{Y} = \left[egin{array}{c} e_2^T \ dots \ e_{d+1}^T \end{array}
ight]$$

Output: $\{y_1, \cdots, y_n\} \subset \mathbb{R}^d$ as columns from

$$\left[\begin{array}{cccc}y_1 & | & \cdots & | & y_n\end{array}\right] = Y$$

Dimension Reduction using Isomaps The Idea

Presented in [2]. The idea is to first estimate all pairwise distances, and then use the nearly isometric embedding algorithm with full data that we will describe in the next lecture.

For each node in the graph we define the distance to the nearest K neighbors using the Euclidean metric. The distance to further nodes is defined as the geodesic distance w.r.t. these local distances.

Dimension Reduction using Isomaps Algorithm

Algorithm (Dimension Reduction using Isomap)

Input: A geometric graph $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^N$. Parameters: neighborhood size K and dimension d.

O Construct the symmetric matrix *S* of squared pairwise distances:

- Construct the sparse matrix T, where for each node i find the nearest K neighbors \mathcal{V}_i and set $T_{i,j} = ||x_i x_j||_2$, $j \in \mathcal{V}_i$.
- **2** For any pair of two nodes (i, j) compute $d_{i,j}$ as the length of the shortest path, $\sum_{p=1}^{L} T_{k_{p-1},k_p}$ with $k_0 = i$ and $k_L = j$, using e.g. Dijkstra's algorithm.

3 Set
$$S_{i,j} = d_{i,j}^2$$
.

Dimension Reduction using Isomaps Algorithm (Read this part of the algorithm after learning Isometric Embeddings)

Algorithm (Dimension Reduction using Isomap - cont'd)

2 Compute the Gram matrix G:

$$G = \frac{1}{2}\nu \cdot 1^{T} + \frac{1}{2}1 \cdot \nu^{T} - \frac{1}{2}S$$

So Find the top d eigenvectors of G, say e_1, \dots, e_d so that $GE = E\Lambda$, form the matrix Y and then collect the columns:

$$Y = \Lambda^{1/2} \begin{bmatrix} e_1^T \\ \vdots \\ e_d^T \end{bmatrix} = \begin{bmatrix} y_1 & | & \cdots & | & y_n \end{bmatrix}$$

Output: $\{y_1, \cdots, y_n\} \subset \mathbb{R}^d$.

Radu Balan (UMD)

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps	Locally Linear Embedding	lsomap 000	Simulations •0000000

Data Sets The Swiss Roll

<ロト < 同ト < ヨト < ヨト

Problem Formulation	PCA 0000	ICA 00000	Laplacian Eigenmaps	Locally Linear Embedding	lsomap 000	Simulations 0000000

Data Sets The Circle

< □ > < 同

▶ < Ξ

Dimension Reduction for the Swiss Roll Laplacian Eigenmap

Parameters: d = 3, $W_{i,j} = exp(-0.1||x_i - x_j||^2)$, for all j, j.

Dimension Reduction for the Swiss Roll Local Linear Embedding (LLE)

Parameters:
$$d = 3$$
, $K = 2$.

Radu Balan (UMD)

Dimension Reduction for the Swiss Roll

Parameters: d = 3, K = 10.

Dimension Reduction for the Circle Laplacian Eigenmap

Parameters: d = 3, $W_{i,j} = exp(-0.1 ||x_i - x_j||^2)$, for all j, j.

Radu Balan (UMD)

MATH 420: Dimension Reduction

March 5, 2020

Dimension Reduction for the Circle Local Linear Embedding (LLE)

Parameters:
$$d = 3$$
, $K = 2$.

Radu Balan (UMD)

March 5, 2020

Dimension Reduction for the Circle

Parameters: d = 3, K = 10.

Problem Formulation PCA	ICA	Laplacian Eigenmaps	Locally Linear Embedding	Isomap	Simulations
					0000000

References

- S.T. Roweis, L.K. Saul, Locally linear embedding, Science 290, 2323–2326 (2000).
- J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290, 2319–2323 (2000).