Lecture 8: The Cheeger Constant and the Spectral Gap

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 14, 2020

Spectral Theory ●000	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
Eigenvalues	of Laplacians	5	

Eigenvalues of Laplacians $\Delta, L, \tilde{\Delta}$

Today we discuss the spectral theory of graphs. Recall the Laplacian matrices:

$$\begin{split} \Delta &= D - A \ , \ \Delta_{ij} = \begin{cases} d_i & \text{if} \quad i = j \\ -1 & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \\ L &= D^{-1}\Delta \ , \ L_{i,j} = \begin{cases} 1 & \text{if} \quad i = j \text{ and } d_i > 0 \\ -\frac{1}{d(i)} & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \\ \tilde{\Delta} &= D^{-1/2}\Delta D^{-1/2} \ , \ \tilde{\Delta}_{i,j} = \begin{cases} 1 & \text{if} \quad i = j \text{ and } d_i > 0 \\ -\frac{1}{\sqrt{d(i)d(j)}} & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Spectral Theory ●○○○	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
Eigenvalues $\Delta, L, \tilde{\Delta}$	of Laplacians		

Today we discuss the spectral theory of graphs. Recall the Laplacian matrices:

$$\begin{split} \Delta &= D - A \ , \ \Delta_{ij} = \begin{cases} d_i & \text{if} \quad i = j \\ -1 & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \\ L &= D^{-1}\Delta \ , \ L_{i,j} = \begin{cases} 1 & \text{if} \quad i = j \text{ and } d_i > 0 \\ -\frac{1}{d(i)} & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \\ \tilde{\Delta} &= D^{-1/2}\Delta D^{-1/2} \ , \ \tilde{\Delta}_{i,j} = \begin{cases} 1 & \text{if} \quad i = j \text{ and } d_i > 0 \\ -\frac{1}{\sqrt{d(i)d(j)}} & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Remark: $D^{-1}, D^{-1/2}$ are the pseudoinverses.

< □ > < 同

Spectral Theory ○●○○	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
-			

Eigenvalues of Laplacians $\Delta, L, \tilde{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?

- $\label{eq:alpha} \begin{tabular}{ll} \bullet & \Delta = \Delta^{\mathcal{T}} \geq 0 \mbox{ and hence its eigenvalues are non-negative real numbers. } \end{tabular}$
- eigs($\tilde{\Delta}$) = eigs(L) \subset [0, 2].
- 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

 $\dim \ker(\Delta) = \dim \ker(L) = \dim \ker(\tilde{\Delta}) = \#$ connected components.

Spectral Theory ○●○○	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant

Eigenvalues of Laplacians $\Delta, L, \tilde{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?

- $\Delta = \Delta^T \ge 0$ and hence its eigenvalues are non-negative real numbers.
- eigs($\tilde{\Delta}$) = eigs(L) \subset [0, 2].
- 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

 $\dim \ker(\Delta) = \dim \ker(L) = \dim \ker(\tilde{\Delta}) = \#$ connected components.

Let $0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{n-1}$ be the eigenvalues of $\tilde{\Delta}$. Denote

$$\lambda(G) = \max_{1 \le i \le n-1} |1 - \lambda_i|.$$

Note $\sum_{i=1}^{n-1} \lambda_i = trace(\tilde{\Delta}) = n$. Hence the average eigenvalue is about 1. $\lambda(G)$ is called *the absolute gap* and measures the spread of eigenvalues away from 1. Radu Balan (UMD) Cheeger April 16, 2020

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
0000			

The absolute spectral gap $\lambda(G)$

The main result in [8]) says that for connected graphs w/h.p.:

$$\lambda_1 \geq 1 - rac{\mathcal{C}}{\sqrt{ ext{Average Degree}}} = 1 - rac{\mathcal{C}}{\sqrt{\mathcal{p}(n-1)}} = 1 - \mathcal{C}\sqrt{rac{n}{2m}}.$$

Theorem (For class $\mathcal{G}_{n,p}$)

Fix $\delta > 0$ and let $p > (\frac{1}{2} + \delta)\log(n)/n$. Let d = p(n-1) denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon > 0$, there is a constant $C = C(\delta, \varepsilon)$, so that

$$\max(|1-\lambda_1|,\lambda_{n-1}-1)=\lambda(ilde{G})\leq rac{\mathcal{C}}{\sqrt{d}}=\mathcal{C}\sqrt{rac{n}{2m}}$$

with probability at least $1 - Cn \exp(-(2 - \varepsilon)d) - C \exp(-d^{1/4}\log(n))$.

Connectivity threshold: $p \sim \frac{\log(n)}{n}$

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
0000			

The absolute spectral gap $\lambda(G)$

The main result in [8] says that for connected graphs w/h.p.:

$$\lambda_1 \geq 1 - rac{\mathcal{C}}{\sqrt{ ext{Average Degree}}} = 1 - rac{\mathcal{C}}{\sqrt{\mathcal{p}(n-1)}} = 1 - \mathcal{C}\sqrt{rac{n}{2m}}.$$

Theorem (For class $\Gamma^{n,m}$)

Fix $\delta > 0$ and let $m > \frac{1}{2}(\frac{1}{2} + \delta) n \log(n)$. Let $d = \frac{2m}{n}$ denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon > 0$, there is a constant $C = C(\delta, \varepsilon)$, so that

$$\max(|1-\lambda_1|,\lambda_{n-1}-1)=\lambda(\tilde{G})\leq rac{C}{\sqrt{d}}=C\sqrt{rac{n}{2m}}$$

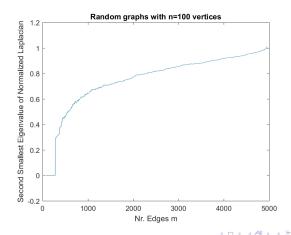
with probability at least $1 - Cn \exp(-(2 - \varepsilon)d) - C \exp(-d^{1/4}\log(n))$.

Connectivity threshold: $m \sim \frac{1}{2}n \log(n)$.

Spectral Theory	Numerical Results ●000	Proof of Concentration	Graph Partitions. Cheeger Constant
Random gr	aphs		

Results for n = 100 vertices: $\lambda_1(\tilde{G}) \approx 1 - \frac{c}{\sqrt{m}}$.

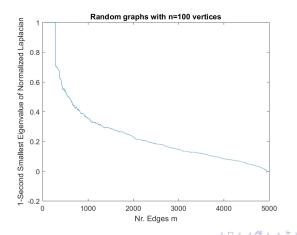
 λ_1 for random graphs



Spectral Theory	Numerical Results ○●○○	Proof of Concentration	Graph Partitions. Cheeger Constant

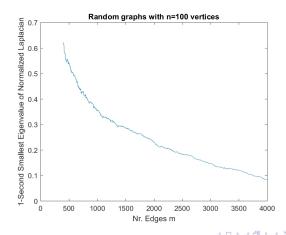
Random graphs $1 - \lambda_1$ for random graphs

Results for
$$n = 100$$
 vertices: $1 - \lambda_1(\tilde{G}) \approx \frac{c}{\sqrt{m}}$.



Spectral Theory	Numerical Results ○○●○	Proof of Concentration	Graph Partitions. Cheeger Constant
Random g $1 - \lambda_1$ for random			

Results for n = 100 vertices: $1 - \lambda_1(\tilde{G}) \approx \frac{C}{\sqrt{m}}$. Detail.



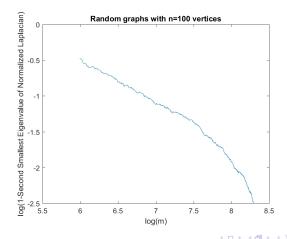
Radu Balan (UMD)

April 16, 2020

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
	0000		

Random graphs $log(1 - \lambda_1)$ vs. log(m) for random graphs

Results for n = 100 vertices: $log(1 - \lambda_1(\tilde{G})) \approx b_0 - \frac{1}{2}log(m)$.



Spectral Theory	Numerical Results	Proof of Concentration ●○	Graph Partitions. Cheeger Constant

The absolute spectral gap Proof

How to obtain such estimates? Following [4]: First note: $\lambda_i = 1 - \lambda_i (D^{-1/2}AD^{-1/2})$. Thus

$$\lambda(G) = \max_{1 \le i \le n-1} |1 - \lambda_i| = \|D^{-1/2}AD^{-1/2}\| = \sqrt{\lambda_{max}((D^{-1/2}AD^{-1/2})^2)}$$

Ideas:

• For
$$X = D^{-1/2}AD^{-1/2}$$
, and any positive integer $k > 0$,

$$\lambda_{max}(X^2) = \left(\lambda_{max}(X^{2k})\right)^{1/k} \le \left(trace(X^{2k})\right)^{1/k}$$

(Markov's inequality)

$$Prob\{\lambda(G) > t\} = Prob\{\lambda(G)^{2k} > t^{2k}\} \leq \frac{1}{t^{2k}}\mathbb{E}[trace(X^{2k})].$$

Spectral Theory	Numerical Results	Proof of Concentration ○●	Graph Partitions. Cheeger Constant
The abcolu	ita spactral g	an	

I he absolute spectral gap Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

$$\mathbb{E}[(X^{2k})] = \frac{1}{d^{2k}} \mathbb{E}[trace(A^{2k})].$$

The expectation turns into numbers of 2k-cycles and loops. Combinatorial kicks in ...

Spectral Theory	Numerical Results	Proof of Concentration ○●	Graph Partitions. Cheeger Constant

The absolute spectral gap Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

$$\mathbb{E}[(X^{2k})] = \frac{1}{d^{2k}} \mathbb{E}[trace(A^{2k})].$$

The expectation turns into numbers of 2k-cycles and loops. Combinatorial kicks in ...

Remark

Bernstein's "trick" (Chernoff bound) for $X \ge 0$,

s>0

$$Prob\{X \le t\} = Prob\{e^{-sX} \ge e^{-st}\} \le \min_{s \ge 0} \frac{\mathbb{E}[e^{-sX}]}{e^{-st}}$$
$$= \min_{s \ge 0} e^{st} \int_0^\infty e^{-sx} p_X(x) dx$$

Spectral Theory	Numerical Results	Proof of Concentration ○●	Graph Partitions. Cheeger Constant

The absolute spectral gap Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

$$\mathbb{E}[(X^{2k})] = \frac{1}{d^{2k}} \mathbb{E}[trace(A^{2k})].$$

The expectation turns into numbers of 2k-cycles and loops. Combinatorial kicks in ...

Remark

Bernstein's "trick" (Chernoff bound) for $X \ge 0$,

$$\mathsf{Prob}\{X \leq t\} = \mathsf{Prob}\{e^{-sX} \geq e^{-st}\} \leq \min_{s \geq 0} \frac{\mathbb{E}[e^{-sX}]}{e^{-st}}$$

$$=\min_{s\geq 0}e^{st}\int_0^\infty e^{-sx}p_X(x)dx$$

(the "Laplace" method). It gives exponential decay instead of $\frac{1}{t}$ or $\frac{1}{t^2}$.

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant •000000
The Cheeg	ger constant		

Fix a graph $G = (\mathcal{V}, \mathcal{E})$ with *n* vertices and *m* edges. We try to find an optimal partition $\mathcal{V} = A \cup B$ that minimizes a certain quantity. Here are the concepts:

For two disjoint sets of vertices A and B, E(A, B) denotes the set of edges that connect vertices in A with vertices in B:

$$E(A,B) = \{(x,y) \in \mathcal{E} \ , \ x \in A \ , \ y \in B\}.$$

The *volume* of a set of vertices is the sum of its degrees:

$$vol(A) = \sum_{x \in A} d_x.$$

③ For a set of vertices A, denote $\overline{A} = \mathcal{V} \setminus A$ its complement.

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
The Cheeg	er constant		

The Cheeger constant h_G is defined as

$$h_G = \min_{S \subset \mathcal{V}} \frac{|E(S,\bar{S})|}{\min(vol(S), vol(\bar{S}))}.$$

Remark

It is a min edge-cut problem: This means, find the minimum number of edges that need to be cut so that the graph becomes disconnected, while the two connected components are not too small. There is a similar min vertex-cut problem, where $E(S, \overline{S})$ is replaced by $\delta(S)$, the set of boundary points of S (the constant is denoted by g_G).

Remark

The graph is connected iff $h_G > 0$.

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
The Cheeg	er inequalities	5	

See [2](ch.2):

Theorem

 h_G and λ_1

For a connected graph

$$2h_G \geq \lambda_1 > 1 - \sqrt{1 - h_G^2} > \frac{h_G^2}{2}.$$

Equivalently:

$$\sqrt{2\lambda_1} > \sqrt{1-(1-\lambda_1)^2} > h_{\mathsf{G}} \geq rac{\lambda_1}{2}.$$

Why is it interesting: finding the exact h_G is a NP-hard problem.

• • = • • = •

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant

The Cheeger inequalities Proof of upper bound

Why the upper bound: $2h_G \ge \lambda_1$? All starts from understanding what λ_1 is:

$$\Delta 1 = 0
ightarrow ilde{\Delta} D^{1/2} 1 = 0$$

Hence the eigenvector associated to $\lambda_0 = 0$ is

$$g^0 = (\sqrt{d_1}, \sqrt{d_2}, \cdots, \sqrt{d_n})^T.$$

The eigenpair (λ_1, g^1) is given by a solution of the following optimization problem:

$$\lambda_1 = \min_{h\perp g^0} rac{\langle ilde{\Delta} h, h
angle}{\langle h, h
angle}$$

In particular any h so that $\langle h, g^0
angle = \sum_{k=1}^n h_k \sqrt{d_k} = 0$ satisfies

$$\langle \tilde{\Delta}h,h\rangle \geq \lambda_1 \|h\|^2.$$

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
			0000000

The Cheeger inequalities Proof of upper bound (2)

Assume that we found the optimal partition (A = S, B = S) of V that minimizes the edge-cut.

Define the following particular *n*-vector:

$$h_k = \begin{cases} \frac{\sqrt{d_k}}{\operatorname{vol}(A)} & \text{if} \quad k \in A = S\\ -\frac{\sqrt{d_k}}{\operatorname{vol}(B)} & \text{if} \quad k \in B = \mathcal{V} \setminus S \end{cases}$$

One checks that $\sum_{k=1}^{n} h_k \sqrt{d_k} = 1 - 1 = 0$, and $||h||^2 = \frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)}$. But:

$$\langle \tilde{\Delta}h,h\rangle = \sum_{(i,j):A_{i,j}=1} \left(\frac{h_i}{\sqrt{d_i}} - \frac{h_j}{\sqrt{d_j}}\right)^2 = |E(A,B)| \left(\frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)}\right)^2$$

Thus:

$$2h_G = \frac{2|E(A,B)|}{\min(vol(A),vol(B))} \ge |E(A,B)| \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right) \ge \lambda_1.$$

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
Min-cut P	roblems		

The proof of the upper bound in Cheeger inequality reveals a "good" initial guess of the optimal partition:

- Compute the eigenpair (λ_1, g^1) associated to the second smallest eigenvalue;
- 2 Form the partition:

$$S = \{k \in \mathcal{V} \ , \ g_k^1 \ge 0\} \ , \ ar{S} = \{k \in \mathcal{V} \ , \ g_k^1 < 0\}$$

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant
Min-cut Pi Weighted Graph			

The Cheeger inequality holds true for weighted graphs, $G = (\mathcal{V}, \mathcal{E}, W)$.

• $\Delta = D - W$, $D = diag(w_i)_{1 \le i \le n}$, $w_i = \sum_{j \ne i} w_{i,j}$

•
$$\tilde{\Delta} = D^{-1/2} \Delta D^{-1/2} = I - D^{-1/2} W D^{-1/2}$$

•
$$eigs(\tilde{\Delta}) \subset [0, 2]$$

• $h_G = \min_S \frac{\sum_{x \in S, y \in \tilde{S}} W_{x,y}}{\min(\sum_{x \in S} D_{x,x}, \sum_{y \in \tilde{S}} D_{y,y})}; D = diag(W \cdot 1).$

•
$$2h_G \ge \lambda_1 \ge 1 - \sqrt{1 - h_G^2}$$

 Good initial guess for optimal partition: Compute the eigenpair (λ₁, g¹) associated to the second smallest eigenvalue of Δ̃; set:

$$S = \{k \in \mathcal{V} \ , \ g_k^1 \ge 0\} \ , \ ar{S} = \{k \in \mathcal{V} \ , \ g_k^1 < 0\}$$

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant

References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
- F. Chung, Spectral Graph Theory, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat.Acad.Sci. 2002.
- F. Chung, L. Lu, V. Vu, The spectra of random graphs with Given Expected Degrees, Internet Math. 1(3), 257–275 (2004).
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- P. Erdös, A. Rényi, On The Evolution of Random Graphs
- G. Grimmett, **Probability on Graphs. Random Processes on Graphs and Lattices**, Cambridge Press 2010.

Spectral Theory	Numerical Results	Proof of Concentration	Graph Partitions. Cheeger Constant

- C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.
- J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, $\mathbf{1}(1)$ 2007.