# Lecture 3: Geometric Graph Embeddings with Partial Data

#### Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

February 18, 2020

## **Embedding Problems**

Problem Statement and Ambiguities

### Main Problem

Isometric Embedding: Given the set of all squared-distances  $\{d_{i,j}^2; 1 \leq i,j \leq n\}$  find a dimension d and a set of n points  $\{y_1,\cdots,y_n\} \subset \mathbb{R}^d$  so that  $\|y_i-y_j\|^2 = d_{i,j}^2$ ,  $1 \leq i,j \leq n$ .

### Main Problem

Nearly Isometric Embedding: Given the set of all squared-distances  $\{d_{i,j}^2;\ 1\leq i,j\leq n\}$  find a dimension d and a set of n points  $\{y_1,\cdots,y_n\}\subset\mathbb{R}^d$  so that  $\|y_i-y_j\|^2\approx d_{i,j}^2,\ 1\leq i,j\leq n$ .

Note the set of points is unique up to rigid transformations: translations, rotations and reflections:  $\mathbb{R}^d \times O(d)$ . This means two sets of n points in  $\mathbb{R}^d$  have the same pairwise distances if and only if one set is obtained from the other set by a combination of rigid transformations.

## Isometric Embeddings with Partial Data

Dimension estimation

Consider now the case that only a subset of the pairwise squared-distances are known, indexed by  $\Theta$ . Assume that only m distances (out of n(n-1)/2 possible values) are known – this means the cardinal of  $\Theta$  is m.

### Remark

Minimum number of measurements:  $m \geq nd - \frac{d(d+1)}{2}$ , because: nd is the number of degrees of freedom (coordinates) needed to describe n points in  $\mathbb{R}^d$ ; d(d+1)/2 is the the dimension of the Lie group of Euclidean transformations: translations in  $\mathbb{R}^d$  of dimension d and orthogonal transformations O(d) of dimension d(d-1)/2 (the dimension of the Lie algebra of anti-symmetric matrices).

In the absence of noise, for sufficiently large m but less than n(n-1)/2, exact (i.e. isometric) embedding is possible.

## Geometry of the (Lie) Group O(d)

Recall the definition of orthogonal matrices: A matrix  $U \in \mathbb{R}^{d \times d}$  is called orthogonal if  $UU^T = I_d$ . Note this means the matrix U is invertible,  $U^{-1} = U^T$  and therefore  $U^T U = I_d$ . Hence if U is an orthogonal matrix so is  $U^T$ .

Let O(n) denote the set of all  $d \times d$  orthogonal matrices. Notice that it satisfies the following properties:

- **1**  $I_d := eye(d)$  is an orthogonal matrix,  $I_d \in O(d)$ ;
- ② If  $U \in O(d)$  then  $U^T \in O(d)$  and  $UU^T = U^T U = I_d$ ;
- 3 If  $U, V, W \in O(d)$  then:

$$(UV)W = U(VW)$$

• If  $U, V \in O(d)$  then  $UV \in O(d)$  because:

$$(UV)(UV)^T = UVV^TU^T = UU^T = I_d$$

These 3+2 properties say that  $(O(d), \cdot)$  forms a *group*. Here  $\cdot$  denotes the matrix multiplication.

In addition to abstract algebraic properties, the O(d) group admits more analytical and geometric properties. All these make O(d) a prime example of a *Lie group*. Specifically:

- the set O(d) has the structure of a manifold (generalization of the concepts of "curve" and "surface" from  $\mathbb{R}^3$ );
- the matrix multiplication and inversion are differentiable maps.

In addition to abstract algebraic properties, the O(d) group admits more analytical and geometric properties. All these make O(d) a prime example of a *Lie group*. Specifically:

- the set O(d) has the structure of a manifold (generalization of the concepts of "curve" and "surface" from  $\mathbb{R}^3$ );
- ② the matrix multiplication and inversion are differentiable maps.

Two properties of matrix determinant:

- i) For any  $A, B \in \mathbb{R}^{d \times d}$ , det(AB) = det(A)det(B).
- ii) For any  $A \in \mathbb{R}^{d \times d}$ ,  $det(A^T) = det(A)$ .

This implies: for any  $U \in O(d)$ ,

$$1 = det(I) = det(UU^{T}) = det(U)det(U^{T}) = (det(U))^{2}$$

Thus  $det(U) = \pm 1$ . We define:

$$SO(d) = \{U \in O(d); \ det(U) = 1\} = \{U \in \mathbb{R}^{d \times d}, \ UU^T = I, \ det(U) = 1\}$$

called the *special orthogonal group of order d*.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

SO(d) represents the connected component of O(d), that is, the set of orthogonal matrices that can be connected by a continuous path to the identity. As we shall see later, the continuous path can be constructed using the matrix exponential map. The remaining set  $O(d) \setminus SO(d)$  is also a connected component (but not subgroup of O(d)).

Consider a differentiable path  $\gamma: [-1,1] \to SO(d), \ \gamma(0) = I$ . We want to find the tangent vector of this curve at t = 0. The set of such vectors is called the tangent space to manifold SO(d) (and implicitly to manifold O(d)). We denote this tangent space by so(d).

Let's compute them:

$$\gamma(t)\gamma(t)^T = I \rightarrow \frac{d}{dt} \left( \gamma(t)\gamma(t)^T \right)|_{t=0} = 0$$

Using the product rule and the fact that  $\gamma(0) = I$ , the above identity reduces to:

$$\frac{d\gamma(t)}{dt}(0) + \frac{d\gamma(t)}{dt}(0)^T = 0.$$

Hence:

$$so(d) = \{A \in \mathbb{R}^{d \times d} , A + A^T = 0\}$$

is the set of anti-symmetric matrices. We are going to use this information (the tangent space) to determine the *dimension* of the group O(d), or SO(d).

First, notice the following properties:

- **1** so(d) is a vector space: if A, B are anti-symmetric matrices so is A + B as well as cA, for anay  $c \in \mathbb{R}$ .
- ② Since so(d) is a vector space, subspace of  $\mathbb{R}^{d\times d}$ , it has a finite dimension. Let p=dim(so(d)). Since all anti-symmetric matrices have 0 on the main diagonal, and the upper elements are repeated on the lower half of the matrix, with sign changed, the dimension of so(d) must be

$$p = dim(so(d)) = \frac{d(d-1)}{2}$$



In addition to the vector space structure, so(d) has an additional internal operation, the *Lie bracket* (or the *commutator*):

$$A, B \in so(d) \rightarrow [A, B] = AB - BA \in so(d)$$

It is bilinear, anti-symmetric and satisfies a 3-term identity (called the Jacobi identity): for every  $A, B, C \in so(d)$ ,  $\alpha, \beta, \gamma \in \mathbb{R}$ ,

- (A, A) = 0

These tree properties define a *Lie algebra*. Thus so(d) is a Lie algebra of dimension  $\frac{d(d-1)}{2}$ .

In general any Lie group  $(G, \cdot)$  admits a Lie algebra (g, +, [,]) of some dimension p. The converse is also true (one of Lie theorems).

## Isometric Embeddings with Partial Data Linear constraints

Given any set of vectors  $\{y_1, \dots, y_n\}$  and their associated matrix  $Y = [y_1|\dots|y_n]$  their invariant to the action of the rigid transformations (translations, rotations, and reflections) is the Gram matrix of the centered system (L is an orthogonal projection):

$$G = (I - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^T) Y^T Y (I - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^T) =: L Y^T Y L , L = I - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^T.$$

On the other hand, the distance between points i and j can be computed by:

$$d_{i,j}^2 = \|y_i - y_j\|^2 = G_{i,i} - G_{i,j} + G_{j,j} - G_{j,i} = e_{ij}^T G e_{ij}$$

where

$$e_{ij} = \delta_i - \delta_j = [0 \cdots 0 1 \cdots - 1 0 \cdots 0]^T$$

where 1 is on position i, -1 is on position j, and 0 everywhere else.

## Almost Isometric Embeddings with Partial Data The SDP Problem

Reference [10] proposes to find the matrix G by solving the following Semi-Definite Program:

$$G = G^T \geq 0$$
  $G1 = 0$   $|\langle \textit{Ge}_{ij}, \textit{e}_{ij} 
angle - ilde{d}_{i,j}^2| \leq arepsilon \; , \; (i,j) \in \Theta$ 

where  $\tilde{d}_{i,j}^2$  are noisy estimates  $d_{i,j}$  and  $\varepsilon$  is the maximum noise level. The trace promotes low rank in this optimization. However, this is basically a feasibility problem: Decrease  $\varepsilon$  to the minimum value where a feasible solution exists. With probability 1 that is unique.

How to do this: Use CVX with Matlab.



## Nearly Isometric Embeddings with Partial Data Stability to Noise

[10] proves the following stability result in the case of partial measurements. Here we denote  $\Theta_r = \{(i,j), \|y_i - y_j\| \le r\}$  the set of all pairs of points at distance at most r.

#### **Theorem**

Let  $\{y_1, \cdots, y_n\}$  be n nodes distributed uniformly at random in the hypercube  $[-0.5, 0.5]^d$ . Further, assume that we are given noisy measurement of all distances in  $\Theta_r$  for some  $r \geq 10\sqrt{d}(\log(n)/n)^{1/d}$  and the induced geometric graph of edges is connected. Let  $\tilde{d}_{i,j}^2 = d_{i,j}^2 + \nu_{i,j}$  with  $|\nu_{i,j}| \leq \varepsilon$ . Then with high probability, the error distance between the estimated  $\hat{Y} = [\hat{y}_1, |\cdots|\hat{y}_n]$  returned by the SDP-based algorithm and the correct coordinate matrix  $Y = [y_1|\cdots|y_n]$  is upper bounded as

$$\|L\hat{Y}^T\hat{Y}L - LY^TYL\|_1 \leq C_1(nr^d)^5 \frac{\varepsilon}{r^4}.$$

### Convex Sets. Convex Functions

A set  $S \subset \mathbb{R}^n$  is called a *convex set* if for any points  $x, y \in S$  the line segment  $[x, y] := \{tx + (1 - t)y, 0 \le t \le 1\}$  is included in S,  $[x, y] \subset S$ .

A function  $f: S \to \mathbb{R}$  is called *convex* if for any  $x, y \in S$  and  $0 \le t \le 1$ ,  $f(tx + (1-t)y) \le t f(x) + (1-t)f(y)$ .

Here S is supposed to be a convex set in  $\mathbb{R}^n$ .

Equivalently, f is convex if its epigraph is a convex set in  $\mathbb{R}^{n+1}$ . Epigraph:  $\{(x, u) ; x \in S, u \geq f(x)\}$ .

A function  $f: S \to \mathbb{R}$  is called *strictly convex* if for any  $x \neq y \in S$  and 0 < t < 1, f(tx + (1 - t)y) < t f(x) + (1 - t)f(y).

### Convex Optimization Problems

The general form of a convex optimization problem:

$$\min_{x \in S} f(x)$$

where S is a closed convex set, and f is a convex function on S. Properties:

- Any local minimum is a global minimum. The set of minimizers is a convex subset of *S*.
- ② If *f* is strictly convex, then the minimizer is unique: there is only one local minimizer.

In general  ${\it S}$  is defined by equality and inequality constraints:

$$S = \{g_i(x) \le 0 , 1 \le i \le p\} \cap \{h_j(x) = 0 , 1 \le j \le m\}$$
. Typically  $h_j$  are required to be affine:  $h_i(x) = a^T x + b$ .



### Convex Programs

The hiarchy of convex optimization problems:

- Linear Programs: Linear criterion with linear constraints
- Quadratic Programs: Quadratic Criterion with Linear Constraints;
   Quadratically Constrained Quadratic Problems (QCQP);
   Second-Order Cone Program (SOCP)
- Semi-Definite Programs(SDP)

Typical SDP:

$$X = X^T \ge 0$$
 $trace(XB_k) = y_k , 1 \le k \le p$ 
 $trace(XC_j) \le z_j , 1 \le j \le m$ 

```
Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined" Convex Programming – à la Boyd [2].
```

cvx end

cvx\_end

 $|trace(E_2X) - d_2| < \varepsilon$ 

abs(trace(E2\*X)-d2)<=epsx;

### References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
  - S. Boyd, L. Vandenberghe, **Convex Optimization**, available online at: http://stanford.edu/boyd/cvxbook/
- F. Chung, **Spectral Graph Theory**, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat.Acad.Sci. 2002.
- F. Chung, L. Lu, V. Vu, The spectra of random graphs with Given Expected Degrees, Internet Math. 1(3), 257–275 (2004).
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- P. Erdös, A. Rényi, On The Evolution of Random Graphs



- G. Grimmett, **Probability on Graphs. Random Processes on Graphs and Lattices**, Cambridge Press 2010.
- C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.
- [10]A. Javanmard, A. Montanari, Localization from Incomplete Noisy Distance Measurements, arXiv:1103.1417, Nov. 2012; also ISIT 2011.
- J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, 1(1) 2007.