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Full Data Embeddings

Embeddings with Full Data
Problem Statement and Ambiguities

Main Problem
Isometric Embedding: Given the set of all squared-distances
{d2

i ,j ; 1 ≤ i , j ≤ n} find a dimension d and a set of n points
{y1, · · · , yn} ⊂ Rd so that ‖yi − yj‖2 = d2

i ,j , 1 ≤ i , j ≤ n .

Main Problem
Nearly Isometric Embedding: Given the set of all squared-distances
{d2

i ,j ; 1 ≤ i , j ≤ n} find a dimension d and a set of n points
{y1, · · · , yn} ⊂ Rd so that ‖yi − yj‖2 ≈ d2

i ,j , 1 ≤ i , j ≤ n .

Note the set of points is unique up to rigid transformations: translations,
rotations and reflections: Rd × O(d). This means two sets of n points in
Rd have the same pairwise distances if and only if one set is obtained from
the other set by a combination of rigid transformations.
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Isometric Embeddings with Full Data
Converting pairwise distances into the Gram matrix

Let S = (Si ,j)1≤i ,j≤n denote the n × n symmetric matrix of squared
pairwise distances:

Si ,j = d2
i ,j ,Si ,i = 0

Denote by 1 the n-vector of 1’s (the Matlab ones(n, 1)). Let
ν = (‖yi‖2)1≤i≤n denote the unknown n-vector of squared-norms. Finally,
let G = (〈yi , yj〉)1≤i ,j≤n denote the Gram matrix of scalar products
between yi and yj .
We can remove the translation ambiguity by fixing the center:

n∑
i=1

yi = 0

Radu Balan (UMD) Geometric Graph Embeddings February 19, 2020



Full Data Embeddings

Isometric Embeddings with Full Data
Converting pairwise distances into the Gram matrix

Expand the square:
d2

i ,j = ‖yi − yj‖2 = ‖yi‖2+‖yj‖2−2〈yi , yj〉 ⇒ 2〈yi , yj〉 = ‖yi‖2+‖yj‖2−d2
i ,j

Rewrite the system as:
2G = ν · 1T + 1 · νT − S (∗)

The center condition reads: G · 1 = 0, which implies:
0 = 2nνT · 1− 1T · S · 1

Let ρ := νT · 1 =
∑n

i=1 ‖yi‖2. We obtain:

ρ = 1
2n 1T · S · 1 = 1

2n

n∑
i=1

n∑
j=1

d2
i ,j

ν = 1
n (S · 1− ρ1) = 1

n (S − ρI) · 1

that you substitute back into (*).
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Isometric Embeddings with Full Data
Converting pairwise squared-distances into the Gram matrix: Algorithm

Algorithm (Alg 1)
Input: Symmetric matrix of squared pairwise distances S = (d2

i ,j)1≤i ,j≤n.
1 Compute:

ρ = 1
2n 1T · S · 1 = 1

2n

n∑
i=1

n∑
j=1

d2
i ,j

2 Set:
ν = 1

n (S · 1− ρ1) = 1
n (S − ρI) · 1

3 Compute:

G = 1
2ν ·1

T + 1
21 ·νT− 1

2S = 1
2n (S−ρI)1 ·1T + 1

2n 1 ·1T (S−ρI)− 1
2S.

Output: Symmetric Gram matrix G
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Isometric/Nearly Isometric Embeddings with Full Data
Factorization of the G matrix

In the absence of noise (i.e. if Si ,j are indeed the Euclidean distances), the
Gram matrix G should have rank d , the minimum dimension of the
isometric embedding.
If S is noisy, then G has approximate rank d .
To find d and Y , the matrix of coordinates, perform the
eigendecomposition:

G = QΛQT

where Λ is the diagonal matrix of eigenvalues, ordered monotonically
decreasing. Choose d as the number of significant positive eigenvalues
(i.e. truncate to zero the negative eigenvalues, as well as the smallest
positive eigenvalues). Note G has always at least one zero eigenvalue:
rank(G) ≤ n − 1.
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Isometric Embeddings with Full Data
Factorization of the G matrix

Then we obtain an approximate factorization of G (exact in the absence of
noise):

G ≈ Q1Λ1QT
1

where Q1 is the n × d submatrix of Q containing the first d columns.
Set Y = Λ1/2

1 QT
1 , so that G ≈ Y T Y .

The d × n matrix Y contains the embedding vectors y1, · · · , yn as columns:

Y = [y1|y2| · · · |yn] .

Question: What optimization problem is solved by the
eigendecomposition? We shall discuss it after Algorithm 2.
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Isometric Embeddings with Full Data
Gram matrix factorization: Algorithm
Algorithm (Alg 2)
Input: Symmetric n × n Gram matrix G.

1 Compute the eigendecomposition of G, G = QΛQT with diagonal of
Λ sorted in a descending order;

2 Determine the number d of significant positive eigevalues;
3 Partition

Q = [Q1 Q2] , and Λ =
[

Λ1 0
0 Λ2

]
where Q1 contains the first d columns of Q, and Λ1 is the d × d
diagonal matrix of significant positive eigenvalues of G.

4 Compute:
Y = Λ1/2

1 QT
1

Output: Dimension d and d × n matrix Y of vectors Y = [y1| · · · |yn]
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Optimality of Eigendecompositions

Assume A ∈ Rn×n is a symmetric matrix, A = AT .
Fix 1 ≤ d ≤ n. Consider the following problem: Find d vectors
f̂1, · · · , f̂d ∈ Rn that minimize

J = minimize ‖A−
∑d

k=1 fk f T
k ‖F

{f1, · · · , fd} ⊂ Rn
(1.1)

where the Frobenius norm is defined by ‖X‖F =
(∑

1≤i ,j≤n |Xi ,j |2
)1/2

.
Claim 1: Without loss of generality (W.L.O.G.) we can assume
{f̂1, · · · , f̂d} is orthogonal, i.e., 〈f̂i , f̂j〉 = 0 for i 6= j .
Why?

I = minimize ‖A−
∑d

k=1 gkgT
k ‖F

{g1, · · · , gd} orhogonal set
(1.2)

i) Obviously: J ≤ I because less constraints in (1.1).
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Optimality of Eigendecompositions
Equivalence betwen I and J

ii) For the converse inequality I ≤ J , we proceed as follows.
Let {f̂1, · · · , f̂d} be an optimizer of (1.1). Consider the eigenfacorization of
matrix R =

∑d
k=1 f̂k f̂ T

k . Say R = ED1RT where R is the n × d matrix
formed by the first d eigenvectors of R and D1 is the d × d matrix of top
d eigenvalues of R. Note that R has rank at most d (its range is the span
of d vectors), hence at most d eigenvalues are nonzero; the other n − d
eigenvalues are 0. Let {e1. · · · , ed} be the normalized eigenvectors of R
that are columns in E , so that E = [e1| · · · |ed ]. Let λ1, · · · , λd be the top
eigenvalues of R that are also on the diagonal of D1. Then, for
g1 =

√
λ1e1,...,gd =

√
λd ed , we have R = g1gT

1 + g2gT
2 + · · · gd gT

d . On
the other hand 〈gi , gj〉 =

√
λ1λj〈ei , ej〉 = 0, where the last equality comes

from the fact that we the eigenvectors {e1, · · · , ed} were chosen
orthonormal. It follows {g1, · · · , gd} is a feasible set for problem (1.2).
Hence I ≤ ‖A− R‖F = J .
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Optimality of Eigendecompositions
Reduction to one vector

Assume (f̂1, · · · , f̂d ) is an orthogonal set minimizer in (1.2). Then f̂d is the
minimizer of

H = minimize ‖A−
∑d−1

k=1 f̂k f̂ T
k − ff T‖F

f ∈ Rn
(1.3)

Why?: Similarly, J ≤ H (because less constraints). And H ≤ I (because
less constraints).
Consequence: we can solve the sequential optimization problems, i.e.,
peel-off one rank one at a time:

minimize ‖Ak − ff T‖F
f ∈ Rn

(1.4)

where A0 = A and Ak = Ak−1 − f̂ f̂ T .
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Optimality of Eigendecompositions
Solution for one vector optimization

We are left to solve the minimization of ‖A− xxT‖F for a symmetric
matrix A = AT ∈ Rn×n and x ∈ Rn.
Expand the Frobenius norm:

‖A− xxT‖2F = trace((A− xxT )(A− xxT )) = trace(A2)− 2trace(AxxT )+

+trace(xxT xxT ) == ‖A‖2F − 2〈Ax , x〉+ ‖x‖4

(check!)
Let x = t · e where t > 0 is a scalar and e ∈ Rn is a unit vector ‖e‖ = 1,
i.e., t = ‖x‖ and e = x

‖x‖ . Then

‖A− xxT‖2F = ‖A‖2F − 2t2〈Ae, e〉+ t4

Minimization over t produces a bi-quadratic problem whose solution is

t̂ =
√

max(0, 〈Ae, e〉)
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Optimality of Eigendecompositions
Solution for one vector optimization - 2

Substitute back f̂ into ‖A− xxT‖2F :

‖A− xxT‖2F =
{

‖A‖2F if 〈Ax , x〉 < 0
‖A‖2F − (〈Ax , x〉)2 if 〈Ax , x〉 ≥ 0

Finally, consider the optimization problem
maximize 〈Ae, e〉

e ∈ Rn, ‖e‖ = 1

Use Lagrange multiplier technique to solve it:
L(e, λ) = 〈Ae, e〉 − λ(〈e, e〉 − 1)⇒ ∇L = 0

Obtain:
Ae − λe = 0 , 〈e, e〉 − 1 = 0

Hence (λ, e) is an eigenpair. Solution: ê is the principal unit-norm
eigenvector of matrix A.
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Optimality of Eigendecompositions
Summary

Theorem
Let A = AT ∈ Rn×n be a symmetric matrix. Fix an integer 1 ≤ d ≤ n. Let
{(λk , ek); 1 ≤ k ≤ d} be the top d eigenpairs, i.e. Aek = λkek , ‖ek‖ = 1
and {λ1, · · · , λd} the largest d eigenvalues. An optimizer of the problem:

J = minimize ‖A−
∑d

k=1 fk f T
k ‖F

{f1, · · · , fd} ⊂ Rn
(1.5)

is given by f̂k =
√

max(0, λk)ek , 1 ≤ k ≤ d. Equivalently, the optimizer of
the problem J = minimize ‖A− R‖F

R = RT ∈ Rn×n

rank(R) = d
R ≥ 0

(1.6)

is given by R =
∑d

k=1 max(0, λk)ekeT
k .
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Review of the Eigenproblems Theory
Definitions

Recall: An eigenpair (λ, v) of a square matrix A ∈ Cn×n is pair composed
of a non-zero vector v (called eigenvector) and a scalar λ (called
eigenvalue) that satisfy Av = λv . In general, we normalize v so that
‖v‖ = 1.
Any n × n matrix admits exactly n (maybe complex and repeated)
eigenvalues. They all are roots of the characteristic polynomial,
PA(z) = det(zI − A). If A admits n linearly independent eigenvectors
{v1, · · · , vn} then A diagonalizes, that is, with V = [v1|v2| · · · |vn] and
Λ = diag(λ1, · · · , λn), A = V ΛV−1.
It is a remarkable fact that all symmetric matrices ALWAYS diagonalize.
In fact more can be said about these matrices.
First, a bit of terminology:
A real matrix A ∈ Rn×n is said symmetric, or self-adjoint, if A = AT .
A complex matrix A ∈ Cn×n is said hermitian, or self-adjoint, if A = ĀT

(i.e., complex-conjugate and transpose). In general, we denote A∗ = ĀT .
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Review of the Eigenproblems Theory
Matrix Factorization

Theorem (Factorization of self-adjoint matrices)
Assume A = A∗ (either real or complex matrix).

1 All eigenvalues of A are real, i.e., the characteristic polynomial pA(z)
has exactly n real zeros.

2 There exists an orthonormal basis {e1, e2, · · · , en} composed of
eigenvectors associated to eigenvalues λ1, · · · , λn} so that, with
E = [e1|e2| · · · |en] and Λ = diag(λ1, · · · , λn),

A = EΛE ∗

Furthermore, if A is a real matrix then all eigenvectors have real
entries.

3 For every x , y ∈ Cn, 〈Ax , y〉 = 〈x ,Ay〉, and 〈Ax , x〉 ∈ R is always a
real number.
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Review of the Eigenproblems Theory
Matrix Factorization

The last property allows us to define a non-negative matrix, also called
positive semi-definite (PSD) matrix A, that matrix so that: A = A∗ (i.e., it
is self-adjoint), and for every x ∈ Cn, 〈Ax , x〉 ≥ 0. We denote this by
A ≥ 0. If, in addition, the matrix satisfies, for every x ∈ Cn, x 6= 0,
〈Ax , x〉 > 0 then A is said positive definite (or just positive). We denote
this by A > 0.
Given the factorization in this theorem, we conclude that:
Corollary
Assume A = A∗. Then,

1 A ≥ 0 if and only if all eigenvalues satisfy λ ≥ 0.
2 A > 0 if and only if all eigenvalues satisfy λ > 0.

As a side remark: If a matrix A ∈ Cn×n satisfies, for every x ∈ Cn,
〈Ax , x〉 ∈ R then A = A∗.
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Review of the Eigenproblems Theory
Optimization Problems solved by Eigenpairs

Assume A = A∗ ∈ Rn×n (the hermitian case is similar, but for ease of
notation we assume all valiables are real).
Consider the following optimization problems:

maximize 〈Ax , x〉
‖x‖ = 1 (1.7)

and
minimize 〈Ax , x〉
‖x‖ = 1 (1.8)

Both problems can be solved using the Lagrange multiplier technique:

L(x , λ) = 〈Ax , x〉 − λ(〈x , x〉 − 1)⇒ ∇L = 0

which produces eigenproblems for A: Ax = λx . The first optimization
problem has solution the largest eigenvalue of A, whereas the second
problem has solution the smallest eigenvalue of A.
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Review of the Eigenproblems Theory
Optimization Problems solved by Eigenpairs

To summarize:
Theorem
Let A = A∗ ∈ Rn×n be a self-adjoint matrix. Let {(λk , ek); 1 ≤ k ≤ n} be
the eigenpairs with λ1 ≥ · · · ≥ λn and ‖ek‖ = 1. Then for any vector
x ∈ Rn, with ‖x‖ = 1,

λn = 〈Aen, en〉 ≤ 〈Ax , x〉 ≤ 〈Ae1, e1〉 = λ1.

If A is not symmetric, then it can be replaced by its symmetrization via

〈Ax , x〉 = 1
2〈Ax , x〉+ 1

2〈x ,A
∗x〉 = 〈12(A + A∗)x , x〉

Hence:

λmax

(1
2(A + A∗)

)
= maximize 〈Ax , x〉

‖x‖ = 1
, λmin

(1
2(A + A∗)

)
= minimize 〈Ax , x〉

‖x‖ = 1
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