Math 420, Spring 2020 Fourth Team Homework

due Thursday, 9 April, 2020

Recall that if $\{R_d\}_{d=1}^D$ are values drawn from an IID process then given any function $\Psi: (-1, \infty) \to \mathbb{R}$ and any positive weights $\{w_d\}_{d=1}^D$ that sum to 1, unbiased estmators for the expected value and variance of $\Psi(R)$ are given by

$$\widehat{\mathrm{Ex}}(\Psi) = \sum_{d=1}^{D} w_d \, \Psi(R_d) \,, \qquad \widehat{\mathrm{Var}}(\Psi) = \frac{1}{1 - \bar{w}} \sum_{d=1}^{D} w_d \left(\Psi(R_d) - \widehat{\mathrm{Ex}}(\Psi) \right)^2 \,,$$

where

$$\bar{w} = \sum_{d=1}^{D} w_d^2.$$

Then a (biased) estimator of the standard deviation of $\widehat{Ex}(\Psi)$ is

$$\widehat{\mathrm{Std}}\Big(\widehat{\mathrm{Ex}}(\Psi)\Big) = \sqrt{\bar{w}}\sqrt{\widehat{\mathrm{Var}}(\Psi)}$$
.

In the following exercises consider the risky assets in groups (A), (B), and (C) of your Project Two. For each asset consider its daily return history $\{r(d)\}_{d=1}^{D}$ over each of the five years over the period 2015-2019. Treat these values as if they are drawn from an IID process.

Exercise 1. For each asset and each year use uniform weights to compute and compare $\widehat{\operatorname{Ex}}(R)$ and $\widehat{\operatorname{Std}}\Big(\widehat{\operatorname{Ex}}(R)\Big)$. The signal-to-noise ratio for $\widehat{\operatorname{Ex}}(R)$ is

$$\frac{\widehat{\mathrm{Ex}}(R)}{\widehat{\mathrm{Std}}\Big(\widehat{\mathrm{Ex}}(R)\Big)}.$$

Based on this, for each year identify the asset with the greatest certainity in $\widehat{Ex}(R)$.

Exercise 2. For each asset and each year use uniform weights to compute and compare $\widehat{\operatorname{Ex}}\big(\log(1+R)\big)$ and $\widehat{\operatorname{Std}}\big(\widehat{\operatorname{Ex}}\big(\log(1+R)\big)\big)$. The signal-to-noise ratio for $\widehat{\operatorname{Ex}}\big(\log(1+R)\big)$ is

$$\frac{\widehat{\operatorname{Ex}}\big(\log(1+R)\big)}{\widehat{\operatorname{Std}}\big(\widehat{\operatorname{Ex}}\big(\log(1+R)\big)\big)}.$$

Based on this, for each year identify the asset with the greatest certainity in $\widehat{\mathrm{Ex}}(\log(1+R))$. (Here log is the natural logorithm.)

Exercise 3. What relationship do you observe between $\widehat{Ex}(R)$ and $\widehat{Ex}(\log(1+R))$? Can you explain it?