Math 420, Spring 2020 Fourth Team Homework

Exercise 1. Consider an Erdös-Rényi random graph G with $n=100$ vertices and probability $p=0.9$ for each edge, i.e. $G \in \mathcal{G}_{100,0.9}$.

1. (1pt) What is the expected number of edges?
2. (1pt) For each vertex v, the degree $\operatorname{deg}(v)$ is defined as the number of edges that have v as one of end points. (Thus in a complete graph with n verticies, each vertex has degree $n-1$). For the random graph G, compute the expected degree of each vertex.
3. (1pt) Assume each edge of G is colored either in red, or in blue. Given an edge, assume the probability of being red is 30% whereas the probability of being blue is 70%. Determine the expected numbers of red edges and of blue edges.
4. (1pt) Detemine the expected number of 3-cliques.
5. (1pt) Detemine the expected number of 4-cliques.

Exercise 2. (5pts) Write a Matlab script (call it teamXhw4.m) and a Matlab function (call it cliques.m) that perform the following steps:

1. [2pts] The Matlab function cliques.m should have the following preamble: function $\mathrm{qp}=\operatorname{cliques}(\mathrm{E}, \mathrm{n}, \mathrm{m}, \mathrm{p})$
\% CLIQUES computes cumulative count of cliques of a given ordered graph.
\% Use:
$\% \quad q p=\operatorname{cliques}(E, n, m, 3)$
\% Inputs:
$\% \quad \mathrm{E}$ is a mx2 matrix of ordered edges (matrix of integers).
$\% \mathrm{n}$ is the number of vertices (integer)
$\% \mathrm{~m}$ is the number of edges (integer)
$\% \mathrm{p}$ is the clique order (integer); for now p should be set to 3.
\% Outputs:
qp is a m-vector of integers. $\mathrm{qp}(\mathrm{k})$ should contain the number of p -cliques
of the graph whose set of edges is $\mathrm{E}(1: \mathrm{k}, 1: 2)$
\%

The function should compute the cumulative count of 3-cliques of a given graph. Its inputs are:

1. the ordered sequence of unoriented edges $E(1: m, 1: 2)$, where the $k^{t h}$ edge is between vertex $E(k, 1)$ and $E(k, 2)$;
2. the number of vertices n;
3. the number of edges m (somewhat redundant, since it can be read from size $(E, 1))$;
4. the clique order p, that should be set to 3 for now. (In the subsequent homework you will be asked to implement the case $p=4$).

Its output is a length m vector of integers, call it $q p$, that has the following significance: $q p(k)$ is the number of p-cliques (3-cliques in this homework) in the graph over n vertices that has k edges, namely $E(1: k, 1: 2)$, that is, $\{(E(1,1), E(1,2)),(E(2,1), E(2,2)),(E(3,1), E(3,2)), \ldots,(E(k, 1), E(k, 2))\}$.

In this homework the function cliques() should work for $p=3$.
2. The Matlab script teamXhw4.m should do the following:

1 pt Load data file and turns into an ordered sequence of edges. If the raw data is a weight matrix (such as BKFRAT), then use the weights to order the edges (from highest to smallest weight); if data set is sequence of links (such as in the ca-*** arXiv preprint list server), then use that sequence of links as the ordered sequence of edges. For testing purposes use BKFRAT until you get a different dataset to work with. See description of BKFRAT in the Discovery Lecture 1, "From Data to Weighted Graphs and Graph Laplacian".

1 pt Call cliques() Matlab function you wrote at part 1) to construct the sequence of 3-cliques on this ordered edges.

1 pt Plot the cumulative count of 3 -cliques $q p(1: m)$ against the number of edges 1:m.

