Math 420, Spring 2020
 Second Team Homework

due Tuesday, 25 February 2020
Consider the text files Pair_psb420.dist and MeasuredPair_psb420.dist assigned to the last homework, as well as the new 18 data files entitled SparseXPair_psb420.dist and SparseNoisyXPair_psb420.dist, with X one of $1,2,3, \ldots, 9$, all these attached to this homework. The new files (i.e., those starting with 'Sparse..') have the following format:

```
line 1: n m
line 2: i1 j1 d(i1,j1)
line 3: i2 j2 d(i2,j2)
line 4: i3 j3 d(i3,j3)
line m+1: im jm d(im,jm)
```

where n denotes the number of vertices of a geometric graph, m denotes the number of available edge distances. Lines 2 to $m+1$ list these distances: $i 1, j 1, i 2, j 2, \ldots, i m, j m$ denote vertices (from 1 to n), and $d(i 1, j 1), d(i 2, j 2), \ldots$, $d(i m, j m)$ represent the distances respectively between these pairs of vertices, $(i 1, j 1),(i 2, j 2)$, and so on.

The digit X from file name contains approximatly the fraction of available number of pairwise distances. Roughly, $m=(X / 10) n(n-1) / 2$ (i.e., $10 X \%$).

The files whose name contains 'Noisy' include noisymeasurements of these pairwise distances.

Your homework is to implement a MAtlab code, obtain the Gram matrix of the full graph, as well as a 3-dimensional embedding of this graph, for each of the 18 data files assigned to this homework. Then compare your results to the data embedding using the full set of pairwise distances (i.e., the results from previous homework).

Specifically, write a Matlab script and modularize various computations into functions, and apply on these 18 files:

1. Apply the SDP based Algorithm to compute the estimated Gramm matrix G; For this you need to choose a tolerance for the inequality constraints; use two values: $\varepsilon=0.1$ and $\varepsilon=1$.
2. Apply Algorithm 1 from previous homework on the full data files (Pair_psb420.dist and MeasuredPair_psb420.dist, respectively) to obtain $G_{\text {true }}$ and $G_{n o i s y}$ as the "target" Gram matrices.
3. Compute the Frobenius norm of the difference between your estimated G and the "target" Gram matrix. Let $\operatorname{Error}(X, \varepsilon)=\left\|G-G_{\text {true }}\right\|_{F}$ and $\operatorname{Error} N \operatorname{Noisy}(X, \varepsilon)=\left\|G-G_{n o i s y}\right\|_{F}$ denote the respective errors. The two matrices are indexed by X, that runs from 1 to 9 , and ε, the two values (or more if needed) indicated above.
4. Plot in the same figure Error and ErrorNoisy as function of X, the percentage of available distances. You shall obtain one figure for each ε.

In addition to the plots requested above, your homework should contain answers to the following questions:

1. Can you determine the decay rate of error vs. number ofdistances m ? Is it of the form Error $\sim \frac{1}{m^{\alpha}}$ or Error $\sim e^{-\beta m}$? Can you estimate α and β that best fit in some sense (e.g., least-squares but in log-log plot, for polynomial fitting, and semi-log for the exponential fitting).
2. What difference does ε make?
3. It is possible that CVX might not find a feasible solution if ε is too small. Comment on the trade-off between precision (feasibility) and feasibility of finding solutions.
