Math 420, Spring 2020
First Team Homework
due Tuesday, 18 February 2020

I. (8pts) Consider the text files Pair_psb420.dist and MeasuredPair_psb420.dist, both attached to this homework. The files have the following format:

```
line 1: n
line 2: d11
line 3: d12
line 4: d13
line n^2+1: dnn
```

where n denotes the number of vertices of a geometric graph, $d 11, \ldots, d n n$ represents the pairwise distances between the n points. Note the following: the file Pair_psb420.dist contains the noiseless distances (in particular, dii $=0$); the file MeasuredPair_psb420.dist contains noisy measurements of these distances (hence no guarantee of symmetry or positivity).

Write a Matlab script that performs the following tasks, and apply separately on these two files

1. Read-in the file and create the matrix R of pairwise distances and S of squared-pairwise distances $\left(S_{k, j}=R_{k, j}^{2}\right)$;
2. Apply Algorithm 1 to compute the estimated Gramm matrix G;
3. Plot the eigenvalues of G; Print out the first 5 largest eigenvalues;
4. Apply Algorithm 2 to determine a 3-dimensional embedding of this geometric graph; call Y the $3 \times n$ matrix of coordinates; plot3D the point cloud and print out the figure;
5. Compute the pairwise distances between the 3-D points contained in Y : Let \hat{R} be the $n \times n$ matrix whose (k, j) entry is

$$
\hat{R}_{k, j}=\|Y(1: n, k)-Y(1: n, j)\|
$$

Detemine and print the norm $\|R-\hat{R}\|_{F}$;
6. Compute $\varepsilon=\left\|G-Y^{T} Y\right\|_{F}$, the approcimation error; print the result on screen;
7. Compute $\sigma=\sqrt{\sum_{k=4}^{n} \lambda_{k}^{2}}$ and print out the result; here, $\lambda_{4} \geq \lambda_{5} \geq \cdots \geq$ λ_{n} are the smallest $n-3$ eigenvalues of G;
8. Compare ε with σ.
2. (2pts) Denote by $Y_{\text {clean }}$ and $Y_{\text {noisy }}$ the two estimates matrices of ccordinates obtained by your code at part 1 when run respectively on Pair_psb420.dist and MeasuredPair_psb420.dist. Compute the Frobenious norm $\left\|Y_{\text {clean }}-Y_{\text {noisy }}\right\|_{F}$.

