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1. Introduction: The Problem

The basic problem we will examine is the following.

We run a manufacturing company that is equipped to make n different
products. How many of each product should you make over the coming
week in order to maximize our profit?

For each i = 1,2, · · · , n let qi be the number (quantity) of the ith product
that we plan to make over the coming week. Let q = (q1 q2 · · · qn)T .
Roughly speaking, we need to find an expression P (q) for expected profit
as a function of q and then find a point q∗ that maximizes P (q) over all
possible q we might choose. Mathematically, the problem takes the form
of solving

q∗ = argmax
{
P (q) : all possible q

}
.

Our company will be viable if and only if P (q∗) > 0.



1. Introduction: Profit, Revenue, Cost, and Constraints

If the expected revenue generated by selling the products is R(q) and the
expected cost of making and handling them is C(q) then the expected
profit is given by

P (q) = R(q)− C(q) .

Therefore we need to find expressions for R(q) and C(q).

We also need to identify the constraints that define the set of all possible q

that we will consider. For example, it is clear that for every i = 1,2, · · · , n
we must require that qi ≥ 0. Maybe each qi should be a natural number.
In addition q will be constrained by the labor and equipment resources the
company employs to do the manufacturing.



2. First Approach: Revenue and Cost

Suppose that we expect to sell the ith product for a price of pi each. Then
the expected revenue will be

R(q) = p · q , where p = (p1 p2 · · · pn)T .

Suppose that our fixed costs (salaries, rent, base utilities, etc.) are d while
the ith product has an expected marginal cost (materials with breakage
factored in, equipment maintainance, additional utilities, etc.) of ci each.
Then the expected cost will be

C(q) = c · q+ d , where c = (c1 c2 · · · cn)T .

Generally p > c, where the inequality is understood entrywise. This is
because we will only consider making goods from which we can profit.



2. First Approach: Resource Constraints

Labor is a resource. If you have N full-time equivalent (FTE) employees
then your workforce can deliver a maximum of 40N hours of work per
week without incurring overtime. If it takes hi hours of employee time to
produce each of the ith product, then we have the labor constraint

h · q ≤ 40N , where h = (h1 h2 · · · hn)T .

Equipment is another resource. If you have a piece of equipment that
can run at most H hours per week and if making each of the ith product
requires running that piece of equipment si seconds, then we have the
constraint

3600s · q ≤ H , where s = (s1 s2 · · · sn)T .

Each such constraint can be brought into the form

f · q ≤ 1 , for some f = (f1 f2 · · · fn)T .



2. First Approach: Constained Optimization

Upon collecting the facts from the previous slides, we want to maximize

P (q) = p · q− c · q− d = (p− c) · q− d ,

over q ∈ Nn subject to m constraints of the form

f(k) · q ≤ 1 , where k = 1,2, · · · ,m and f(k) ∈ Rn .

Let F be the m×n matrix whose kth row is f(k). Then we can express this
constained optimization problem as

q∗ = argmax
{
(p− c) · q− d : q ∈ Nn , Fq ≤ 1

}
,

where 1 ∈ Rm is the column vector with every entry equal to 1 and the
inequality Fq ≤ 1 is understood entrywise.



2. First Approach: Linear Programming

Rather than solve the previous optimization problem in which we imposed
the constraint q ∈ Nn, we allow the entries of q to take on any nonnegative
value. This leads to the classical linear programming problem

q∗ = argmax
{
(p− c) · q− d : q ≥ 0 , Fq ≤ 1

}
,

where 0 ∈ Rm is the column vector with every entry equal to 0. The idea
is that by rounding the entries of q∗ to the nearest integer we would have
a good approximation to the solution of the original problem.

The domain {q ∈ Rn : q ≥ 0 , Fq ≤ 1} is closed, bounded, and convex.
This insures the existence of a maximizer, which is generically unique.
All maximizers lie on the boundary of this domain because p − c > 0.
They can be found either by the classical simplex method or by primal-dual
interior point methods. We will not discuss these algorithms here.



3. Supply and Demand: Something Missing in Our Model

The model that we have developed above has many shortcomings. The
biggest one might be that it neglects the law of supply and demand.

The solution q∗ of our constrained optimization problem is a function of p,
c, d, and F that we denote q∗ = S(p, c, d,F). This is a so-called supply
relationship for our company, because it gives how much product we would
like to supply in a market described by (p, c, d,F).

Our model assumes that the prices p that we can get for the goods will not
be effected by the amount of goods our company supplies. If our company
has a tiny market share then this is not a bad assumption. However, the
law of supply and demand says that if we increase the supply of a good
then, in order to sell all of them, we will have to drop the price to match the
so-called demand relationship.



3. Supply and Demand: Demand Relationships

A relationship between the price p of a good, and the quantity q that can
be sold at that price is called a demand relationship. The law of demand
states that, all other things being equal, if the price of a good is raised
then generally fewer will be sold. However, this law is not quantitative, so it
does not yield an explicit demand relationship. Rather, we derive demand
relationships by fitting data. Suppliers collect such data by occasionally
offering discounts and seeing how the demand for their product responds.
(Offering discounts looks better to customers than raising the price.) The
idea is to find a function D such that q = D(p) fits the data. This is then
a model for the demand relationship.

If all other things were equal, demand relationships would be the same for
all suppliers of a good. However, suppliers can increase the demand for
their products through advertising or good publicity.



3. Supply and Demand: Two Demand Models

The simplest model for a demand relationship is decoupled and linear. In
that case for each i = 1,2, · · · , n you seek positive coefficients bi and ai
such that the data is best fit by the relationship

pi = bi − aiqi .

In many cases the decoupling assumption is a bad one. For example, if
one of your products is a fancier version of another then their demand rela-
tionship will couple. This will also happen if one product is an accessory for
another. The simplest model for a coupled demand relationship is linear.
In that case for each i = 1,2, · · · , n you seek coefficients bi and aij such
that the data is best fit by the relationship

pi = bi −
n∑

j=1

aijqj .

In each of these models bi is called the base price of the ith product.



3. Supply and Demand: Linear Demand Models

Both of the above demand models can be put into the linear form

p = b−Aq .

The vector b gives the base prices of each product while the matrix A
gives the linear reponse of their prices to supply. In the first model A is a
diagonal matrix with positive diagonal entries ai. The associated demand
model has 2n parameters to be fit. In the second model A is the matrix
with entries aij. The associated demand model has n(n+1) parameters
to be fit. Other linear demand models lie in between these. Such models
are not valid in regimes where any entry of p becomes negative.

Whenever A is invertible such linear demand models can be expressed as

q = D(p) = A−1(b− p) .

In practice, A is usually invertible. When A is diagonal, it always is.



4. Second Approach: Quadratic Revenue Models

For a linear demand model of the form p = b−Aq, the expected revenue
will become

R(q) = p · q = b · q− q ·Aq .

This is quadratic in q. Because

q ·Aq =
(
ATq

)
· q = q ·ATq ,

we see that R(q) only depends on the symmetric part of A — namely, on
1
2

(
A+AT

)
. Specifically, we see that

R(q) = b · q− 1
2 q ·

(
A+AT

)
q .



4. Second Approach: Constrained Optimization

By combining this quadratic revenue model with our linear cost model

C(q) = c · q+ d ,

we see that the associated expected profit is modeled by

P (q) = R(q)− C(q)

= b · q− 1
2 q ·

(
A+AT

)
q− c · q− d

= (b− c) · q− d− 1
2 q ·

(
A+AT

)
q .

If we maximize profit subject to the inequality constraints

Fq ≤ 1 ,

we are led to the constrained optimization problem

q∗ = argmax
{
(b− c) · q− d− 1

2 q ·
(
A+AT

)
q : q ∈ Nn , Fq ≤ 1

}
.



4. Second Approach: Quadratic Programming

We again remove the constraint q ∈ Nn and allow the entries of q to take
on any nonnegative value. This yields the quadratic programming problem

q∗ = argmax
{
(b− c) · q− d− 1

2 q ·
(
A+AT

)
q : q ≥ 0 , Fq ≤ 1

}
,

Once again the idea is to round the entries of this q∗ to the nearest integer
to get a good approximation to the solution of the original problem.

The above quadratic programming problem can be solved with the MatLab
command “quadprog” or by primal-dual interior point methods. We will not
discuss these algorithms here.



4. Second Approach: Strictly Concave Quadratic Case

If A+AT is positive definite then P (q) is strictly concave and has a unique
global maximizer without imposing any constraints. This global maximizer
is given by

q∗∗ =
(
A+AT

)−1
(b− c) .

Whenever q∗∗ satisfies the constraints it will also be the solution to the
constrained optimzation problem — i.e. q∗ = q∗∗.

Remark. The condition that A + AT is positive definite implies that A is
invertible. This condition will always be satisfied when A is diagonal.



4. Second Approach: Strictly Concave Quadratic Case

Remark. Even if the global maximizer q∗∗ does not satisfy the constraints,
because P (q∗∗) ≥ P (q∗), a necessary condition for our company to be
viable is

P (q∗∗) = 1
2 (b− c) ·

(
A+AT

)−1
(b− c)− d ≥ 0 .



5. Further Questions

We have seen that how different models of the demand relationship change
the constrained optimization problem associated with maximizing profit.
Some natural questions arise.

• How sensitive is q∗ to the choice of a demand model?

• Can more complicated demand models lead to poorer answers?

• Is there some way to find the best demand model?

• What do “poorer” and “best” mean in this context?



5. Further Questions: Uncertainty

There is considerable uncertainty in or demand model. Perhaps it is better
to introduce a shochastic demand model in the form

p = b−Aq+ z ,

where z is a random variable drawn from an unknown distribution with
mean zero and known variance matrix V. For example, the matrix V can
be computed from the residuals of the least squares fit that was used to
determine A and b.

This modification transforms our maximization problem into a stochastic
maximization problem. Building an objective can be done in a way similar
to the way in which cautious objectives were built for portfolio management.


