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Growth Rate Probability Densities

Given D samples {Rd}Dd=1 that are drawn from the return probability
density q(R), the associated simulated share prices satisfy

Sd = (1 + Rd ) Sd−1 , for d = 1, · · · , D . (1.1)

If we set S0 = s(0) then you can easily see that

Sd =
d∏

d ′=1
(1 + Rd ′) s(0) . (1.2)
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Growth Rate Probability Densities

The growth rate Xd is related to the return Rd by

eXd = 1 + Rd . (1.3)

In other words, Xd is the growth rate that yeilds a return Rd on trading
day d . The formula for Sd then takes the form

Sd = exp
( d∑

d ′=1
Xd ′

)
s(0) . (1.4)
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Growth Rate Probability Densities

If the samples {Rd}Dd=1 are drawn from a density q(R) over (−1,∞) then
the {Xd}Dd=1 are drawn from a density p(X ) over (−∞,∞) where

p(X ) dX = q(R) dR ,

with X and R related by

X = log(1 + R) , R = eX − 1 .

More explicitly, the densities p(X ) and q(R) are related by

p(X ) = q
(

eX − 1
)

eX , q(R) = p(log(1 + R))
1 + R .
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Growth Rate Probability Densities

Because our models will involve means and variances, we will require that∫ ∞
−∞

X 2p(X ) dX =
∫ ∞
−1

log(1 + R)2 q(R) dR <∞ ,∫ ∞
−∞

(
eX − 1

)2
p(X ) dX =

∫ ∞
−1

R2q(R) dR <∞ .

Then the mean γ and variance θ of X are

γ = Ex(X ) =
∫ ∞
−∞

X p(X ) dX ,

θ = Var(X ) = Ex
(

(X − γ)2
)

=
∫ ∞
−∞

(X − γ)2 p(X ) dX .
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Growth Rate Probability Densities

The big advantage of working with p(X ) rather than q(R) is the fact that

log
( Sd

s(0)

)
=

d∑
d ′=1

Xd ′ .

In other words, log(Sd/s(0)) is a sum of an IID process. It is easy to
compute the mean and variance of this quantity in terms of those of X .

For the mean of log(Sd/s(0)) we find that

Ex
(

log
( Sd

s(0)

))
=

d∑
d ′=1

Ex(Xd ′) = d γ ,
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Growth Rate Probability Densities

For the variance of log(Sd/s(0)) we find that

Var
(

log
( Sd

s(0)

))
= Ex

( d∑
d ′=1

Xd ′ − d γ
)2

= Ex

( d∑
d ′=1

(Xd ′ − γ)
)2

= Ex
( d∑

d ′=1

d∑
d ′′=1

(Xd ′ − γ) (Xd ′′ − γ)
)

=
d∑

d ′=1
Ex
(

(Xd ′ − γ)2
)

= d θ .
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Growth Rate Probability Densities

Remark. The off-diagonal terms in the foregoing double sum vanish
because

Ex
(

(Xd ′ − γ) (Xd ′′ − γ)
)

= 0 when d ′′ 6= d ′ .

Hence, the growth mean and variance of the IID model asset at day d is

Ex
(

log
( Sd

s(0)

))
= γ d , Var

(
log
( Sd

s(0)

))
= θ d .
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Growth Rate Probability Densities

Remark. The IID model suggests that the growth rate mean γ is a good
proxy for the reward of an asset and that

√
θ is a good proxy for its risk.

However, these are not the proxies chosen by MPT when it is applied to a
portfolio consisting of one risky asset.

The proxies γ and
√
θ can be approximated by γ̂ and

√
θ̂ where γ̂ and θ̂

are the unbiased estimators of γ and θ given by

γ̂ =
D∑

d=1
wd Xd , θ̂ =

D∑
d=1

wd
1− w̄

(
Xd − γ̂

)2
.
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Normal Growth Rate Model

We can illustrate what is going on with the simple IID model where p(X )
is the normal or Gaussian density with mean γ and variance θ, which is
given by

p(X ) = 1√
2πθ

exp
(
−(X − γ)2

2θ

)
.

Let {X (d)}∞d=1 be a sequence of IID random variables drawn from p(X ).
Let {Yd}∞d=1 be the sequence of random variables defined by

Yd = 1
d

d∑
d ′=1

Xd ′ for every d = 1, · · · , ∞ .
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Normal Growth Rate Model
We can easily check that

Ex(Yd ) = γ , Var(Yd ) = θ

d .

We can also check that

Ex(Yd |Yd−1) = d − 1
d Yd−1 + 1

d γ .

So the variables Yd are neither independent nor identically distributed.

It can be shown (the details are not given here) that Yd is drawn from the
normal density with mean γ and variance θ/d , which is given by

pd (Y ) =

√
d

2πθ exp
(
−(Y − γ)2d

2θ

)
.
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Normal Growth Rate Model
Because Sd/s(0) = ed Yd , the mean return at day d is

Ex
(

ed Yd
)

=

√
d

2πθ

∫
exp
(
−(Y − γ)2d

2θ + d Y
)

dY

=

√
d

2πθ

∫
exp
(
−(Y − γ − θ)2d

2θ + d(γ + 1
2θ)
)

dY

= exp
(

d(γ + 1
2θ)
)
.

Because pd (Y ) becomes sharply peaked around Y = γ as d increases,
most investors will see the lower growth rate γ rather than γ + 1

2θ.
By setting d = 1 in the above formula, we see that the return mean is

µ = Ex(R) = Ex
(

eX − 1
)

= exp
(
γ + 1

2θ
)
− 1 .

Hence, µ > γ + 1
2θ, with µ ≈ γ + 1

2θ when (γ + 1
2θ) << 1.
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Normal Growth Rate Model

Therefore most investors will see a return that is below the return mean µ
— far below in volatile markets. This is because eX amplifies the tail of
the normal density. For a more realistic IID model with a density p(X )
that decays more slowly than a normal density as X →∞, this difference
can be more striking. Said another way, most investors will not see the
same return as Warren Buffett, but his return will boost the mean.

The normal growth rate model confirms that γ is a better proxy for how
well a risky asset might perform than µ because pd (Y ) becomes more
peaked around Y = γ as d increases. We will extend this result to a
general class of IID models that are more realistic.
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Moment and Cumulant Generating Functions
Estimators for γ and θ will be constructed from the positive function

M(τ) = Ex
(

eτX
)

=
∫

eτX pf(X ) dX .

We will assume M(τ) is defined for every τ in an open interval (τmn, τmx)
that contains the interval [0, 2]. It can then be shown that M(τ) is
infinitely differentiable over (τmn, τmx) with

M(m)(τ) = Ex
(

X m eτX
)

=
∫

X m eτX pf(X ) dX .

We call M(τ) the moment generating function for X because, by setting
τ = 0 in the above expression, we see that the moments {Ex(X m)}∞m=1
are generated from M(τ) by the formula

Ex
(
X m) =

∫
X mpf(X ) dX = M(m)(0) .
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Moment and Cumulant Generating Functions
A related inifinitely differentiable function over (τmn, τmx) is

K (τ) = log(M(τ)) = log
(
Ex
(

eτX
))

.

We call K (τ) the cumulant generating function because the cumulants
{κm}∞m=1 of X are generated by the formula κm = K (m)(0). We see that

K ′(τ) =
Ex
(
X eτX )

Ex
(
eτX ) ,

K ′′(τ) =
Ex
(
(X − K ′(τ))2eτX )

Ex
(
eτX ) ,

K ′′′(τ) =
Ex
(
(X − K ′(τ))3eτX )

Ex
(
eτX ) ,

K ′′′′(τ) =
Ex
(
(X − K ′(τ))4eτX )

Ex
(
eτX ) − 3K ′′(τ)2 .
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Moment and Cumulant Generating Functions
By evaluating these at τ = 0 we see that the first four cumulants of X are

κ1 = K ′(0) = Ex(X ) = γ ,

κ2 = K ′′(0) = Ex
(
(X − γ)2) = θ ,

κ3 = K ′′′(0) = Ex
(
(X − γ)3) ,

κ4 = K ′′′′(0) = Ex
(
(X − γ)4)− 3θ2 .

These are respectively the mean, variance, skewness, and kurtosis.

Skewness measures an asymmetry in the tails of the distribution. It is
positive or negative depending on whether the fatter tail is to the right or
to the left respectively.

Kurtosis measures a balance between the tails and the center of the
distribution. It is larger for distributions with greater weight in the tails
than in the center.
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Moment and Cumulant Generating Functions

Remark. The formulas

K ′(τ) =
Ex
(
X eτX )

Ex
(
eτX ) ,

K ′′(τ) =
Ex
(
(X − K ′(τ))2eτX )

Ex
(
eτX ) ,

K ′′′(τ) =
Ex
(
(X − K ′(τ))3eτX )

Ex
(
eτX ) ,

K ′′′′(τ) =
Ex
(
(X − K ′(τ))4eτX )

Ex
(
eτX ) − 3K ′′(τ)2 ,

show that K ′(τ), K ′′(τ), K ′′′(τ), and K ′′′′(τ) are the mean, variance,
skewness, and kurtosis for the probability density eτX pf(X )/Ex(eτX ).
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Moment and Cumulant Generating Functions
Remark. If X is normally distributed with mean γ and variance θ then

pf(X ) = 1√
2πθ

exp
(
−(X − γ)2

2θ

)
.

A direct calculation then shows that

Ex
(

eτX
)

= 1√
2πθ

∫
exp
(
−(X − γ)2

2θ + τX
)

dX

= 1√
2πθ

∫
exp
(
−(X − γ − τθ)2

2θ + τγ + 1
2τ

2θ

)
dX

= exp
(
τγ + 1

2τ
2θ
)
,

whereby K (τ) = log(Ex(eτX )) = τγ + 1
2τ

2θ. Hence, when X is normally
distributed the skewness, kurtosis, and all higher-order cumulants vanish.
Conversely, if all of these cumulants vanish then X is normally distributed.
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Moment and Cumulant Generating Functions
Remark. The cumulant generating function K (τ) is strictly convex over
the interval (τmn, τmx) because K ′′(τ) > 0.
Remark. We can also see that K (τ) is convex over (τmn, τmx) as follows.
Let τ0, τ1 ∈ (τmn, τmx). By applying the Hölder inequality with p = 1

1−s
and p∗ = 1

s , we see that for every s ∈ (0, 1) we have

M
(
(1− s)τ0 + sτ1)

)
=
∫

e(1−s)τ0X esτ1X pf(X ) dX

≤
(∫

eτ0X pf(X ) dX
)1−s (∫

eτ1X pf(X ) dX
)s

= M(τ0)1−sM(τ1)s .

By taking the logarithm of this inequality we obtain
K ((1− s)τ0 + sτ1) ≤ (1− s)K (τ0) + sK (τ1) for every s ∈ (0, 1) .

Therefore K (τ) is a convex function over (τmn, τmx).
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Estimators from Moment Generating Functions
We will now construct estimators for γ and θ by using the moment
generating function

M(τ) = Ex
(

eτX
)
.

Because R = eX − 1 and Ex(eX ) = M(1), we have

µ = Ex(R) = M(1)− 1 .

Because R − µ = eX −M(1) and Ex(e2X ) = M(2), we have

ξ = Ex
(

(R − µ)2
)

= M(2)−M(1)2 .

These equations can be solved for M(1) and M(2) as

M(1) = 1 + µ , M(2) = (1 + µ)2 + ξ .

Therefore knowing µ and ξ is equivalent to knowing M(1) and M(2).
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Estimators from Moment Generating Functions
Because Ex(X ) = M ′(0) and Ex(X 2) = M ′′(0), we see that

γ = Ex(X ) = M ′(0) ,
θ = Ex

(
(X − γ)2)

= Ex
(
X 2)− γ2 = M ′′(0)−M ′(0)2 .

Because M(0) = 1, we construct an estimator of M(τ) by interpolating
the values M(0), M(1), and M(2) with a quadratic polynomial as

M̂(τ) = 1 + τ
(
M(1)− 1

)
+ τ(τ − 1)1

2
(
M(2)− 2M(1) + 1

)
= 1 + τµ+ 1

2τ(τ − 1)
(
µ2 + ξ

)
.

By direct calculation we see that

M̂ ′(0) = µ− 1
2(µ2 + ξ) , M̂ ′′(0) = µ2 + ξ .
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Estimators from Moment Generating Functions

The idea is to now construct estimators for γ and θ by using

M̂ ′(0) = µ− 1
2(µ2 + ξ) , M̂ ′′(0) = µ2 + ξ , (4.5)

as estimators for M ′(0) and M ′′(0) in the formulas

γ = M ′(0) , θ = M ′′(0)−M ′(0)2 .

We thereby construct estimators γ̂ and θ̂ as functions of µ and ξ by

γ̂ = M̂ ′(0) = µ− 1
2(µ2 + ξ) ,

θ̂ = M̂ ′′(0)− M̂ ′(0)2 = µ2 + ξ −
(
µ− 1

2(µ2 + ξ)
)2
.
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Estimators from Moment Generating Functions

By replacing the µ and ξ that appear in the foregoing estimators with the
estimators

µ̂ = µrf(1− 1Tf) + mTf , ξ̂ = 1
1− w̄ fTVf . (4.6a)

we obtain the estimators

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
,

θ̂ = µ̂2 + ξ̂ −
(
µ̂− 1

2

(
µ̂2 + ξ̂

))2
,

(4.6b)

The variance θ is generally positive, but the estimator θ̂ given above is not
intrinsically positive.
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Estimators from Moment Generating Functions
Expanding the above expression for θ̂ in powers of µ̂ and ξ̂ yields

θ̂ = ξ̂ + µ̂
(
µ̂2 + ξ̂

)
− 1

4

(
µ̂2 + ξ̂

)2
.

The only term in this expansion that is intrinsically positive is the first one.
Therefore we make the smallness assumptions

|µ̂| � 1 , ξ̂ � 1 , |µ̂|3 � ξ ,

and keep only through quadratic statistics — i.e. through quadratic in µ̂
and linear in ξ̂. We thereby arrive at the quadratic estimators

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
, θ̂ = ξ̂ , (4.7)

where µ̂ and ξ̂ are given by (4.6a).
Remark. These smallness assumptions are very easy to check.

C. David Levermore (UMD) Growth Rates April 27, 2019



Growth Rate Densities Normal Model Generating Functions Moment GFs Cumulant GFs Interpolation Errors

Estimators from Moment Generating Functions

Remark. The quadratic estimators γ̂ and θ̂ given by (4.7) have at least
three potential sources of error:

the estimators M̂ ′(0) and M̂ ′′(0) used in (4.5) to approximate γ and θ
as functions of µ and ξ,
the estimators µ̂ and ξ̂ used in (4.6a) to approximate µ and ξ,
the smallness assumptions that lead to (4.7).

The derivation of the first estimators assumes that the returns for each
Markowitz portfolio are described by a density qf(R) that is narrow enough
for some moment beyond the second to exist. All of these approximations
should be examined carefully, especially when markets are highly volatile.
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Estimators from Cumulant Generating Functions
We will now give an alternative derivation of quadratic estimators (4.7)
that uses the cumulent generating function K (τ) = log(M(τ)) and is based
on the fact that γ = K ′(0) and θ = K ′′(0). It begins by observing that

K (1) = log
(
M(1)

)
= log(1 + µ) ,

K (2) = log
(
M(2)

)
= log

(
(1 + µ)2 + ξ

)
.

Therefore knowing µ and ξ is equivalent to knowing K (1) and K (2).

Because K (0) = 0, we construct an estimator of K (τ) by interpolating the
values K (0), K (1), and K (2) with a quadratic polynomial as

K̂ (τ) = τK (1) + τ(τ − 1)1
2
(
K (2)− 2K (1)

)
= τ log(1 + µ) + τ(τ − 1)1

2 log
(

1 + ξ

(1 + µ)2

)
.
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Estimators from Cumulant Generating Functions
This yields the estimators

γ̂ = K̂ ′(0) = log(1 + µ)− 1
2 log

(
1 + ξ

(1 + µ)2

)
,

θ̂ = K̂ ′′(0) = log
(

1 + ξ

(1 + µ)2

)
.

By replacing the µ and ξ that appear above with the estimators µ̂ and ξ̂
given by (4.6a), we obtain the new estimators

γ̂ = log(1 + µ̂)− 1
2 log

(
1 + ξ̂

(1 + µ̂)2

)
,

θ̂ = log
(

1 + ξ̂

(1 + µ̂)2

)
.

So long as 1 + µ̂ > 0 these estimators are well defined and θ̂ is positive.
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Estimators from Cumulant Generating Functions
If 1 + µ̂ > 0 and we make the smallness assumption

ξ̂

(1 + µ̂)2 � 1 ,

then we obtain the estimators

γ̂ = log(1 + µ̂)− 1
2

ξ̂

(1 + µ̂)2 , θ̂ = ξ̂

(1 + µ̂)2 . (5.8)

Finally, if we make the additional smallness assumptions

|µ̂| � 1 , |µ̂|3 � ξ̂ ,

use the fact
log(1 + µ̂) = µ̂− 1

2 µ̂
2 + 1

3 µ̂
3 + · · · ,

and keep only through quadratic statistics then we obtain the quadratic
estimators (4.7) derived earlier.
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Estimators from Cumulant Generating Functions

Remark. The fact that both derivations lead to the same estimators gives
us greater confidence in the validity the quadratic estimators.

Remark. If the Markowitz portfolio specified by f has growth rates X that
are normally distributed with mean γ and variance θ then we have seen
that K (τ) = τγ + 1

2τ
2θ. In this case we have K̂ (τ) = K (τ), so the

estimators γ̂ = K̂ ′(0) and θ̂ = K̂ ′′(0) are exact.

Remark. The biggest uncertainty associated with these estimators for γ̂
and θ̂ is usually the uncertainty inherited from the estimators for µ̂ and ξ̂.
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Estimators from Cumulant Generating Functions
Exercise. When the quadratic estimators γ̂ and θ̂ are applied to a single
risky asset, they reduce to

γ̂ = µ̂− 1
2
(
µ̂2 + ξ̂

)
, θ̂ = ξ̂ .

Use these to estimate γ and θ for each of the following assets given the
share price history {s(d)}Dd=0. How do these γ̂ and θ̂ compare with the
unbiased estimators for γ and θ that you obtained in the previous problem?

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;
(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;
(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;
(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.

Exercise. Compute γ̂ and θ̂ based on daily data for the Markowitz
portfolio with value equally distributed among the assets in each of the
groups given in the previous exercise.
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Interpolation Errors
Here we examine the errors of the interpolation-based estimators given by

M̂ ′(0) = 2
(
M(1)− 1

)
− 1

2
(
M(2)− 1

)
,

M̂ ′′(0) = M(2)− 2M(1) + 1 .

Let M(τ) be any thrice continuously differentiable function over [0, 2] that
satisfies M(0) = 1. The Cauchy form of the Taylor remainder then yields

M(1) = 1 + M ′(0) + 1
2M ′′(0) + 1

2

∫ 1

0
(1− s)2M ′′′(s) ds ,

M(2) = 1 + 2M ′(0) + 2M ′′(0) + 1
2

∫ 2

0
(2− s)2M ′′′(s) ds .

By placing these into the above formulas for M̂ ′(0) and M̂ ′′(0) we obtain

M̂ ′(0) = M ′(0) + E1 , M̂ ′′(0) = M ′′(0) + E2 ,
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Interpolation Errors
where the errors E1 and E2 are given by

E1 =
[ ∫ 1

0
(1− s)2M ′′′(s) ds − 1

4

∫ 2

0
(2− s)2M ′′′(s) ds

]
= −

[ ∫ 1

0

(
s − 3

4s2)M ′′′(s) ds + 1
4

∫ 2

1
(2− s)2M ′′′(s) ds

]
,

E2 =
[

1
2

∫ 2

0
(2− s)2M ′′′(s) ds −

∫ 1

0
(1− s)2M ′′′(s) ds

]
=
[

1
2

∫ 2

1
(2− s)2M ′′′(s) ds +

∫ 1

0

(
1− 1

2s2)M ′′′(s) ds
]
.

Here the integrals seen in the second expression for each error are written
so that the factor multiplying M ′′′(s) inside each integral is nonnegative.
This shows that if M ′′′(s) ≥ 0 over [0, 2] then E1 < 0 and E2 > 0, while if
M ′′′(s) ≤ 0 over [0, 2] then E1 > 0 and E2 < 0.
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Interpolation Errors

The errors E1 and E2 may be bounded in terms of

‖M ′′′‖∞ = max
{
|M ′′′(τ)| : τ ∈ [0, 2]

}
.

Specifically, because∫ 1

0

(
s − 3

4s2) ds = 1
4 ,

∫ 2

1
(2− s)2 ds = 1

3 ,∫ 1

0

(
1− 1

2s2) ds = 5
6 ,

we obtain the bounds

|E1| ≤ 1
3‖M

′′′‖∞ , |E2| ≤ ‖M ′′′‖∞ .
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Interpolation Errors

If we want to use these error bounds then we must find either a bound of
or an approximation to ‖M ′′′‖∞. From the definition of M(τ) we see that

M ′′′(τ) = Ex
(
X 3eτX ) =

∫
X 3eτX pf(X ) dX .

Because

M ′′′′(τ) = Ex
(
X 4eτX ) =

∫
X 4eτX pf(X ) dX > 0 ,

we see that M ′′′(τ) is a strictly increasing function of τ .
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Interpolation Errors

Because M ′′′(τ) is a strictly increasing function of τ we have

‖M ′′′‖∞ = max
{
−M ′′′(0) , M ′′′(2)

}
,

where the quantities M ′′′(0) and M ′′′(2) can be expressed in terms of the
return density as

M ′′′(0) =
∫ ∞
−1

(
log(1 + R)

)3 qf(R) dR ,

M ′′′(2) =
∫ ∞
−1

(
log(1 + R)

)3(1 + R)2qf(R) dR .
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Interpolation Errors
These quantities can be approximated by the sample means

M̃ ′′′(0) =
D∑

d=1
w(d)

(
log
(
1 + r(d)

))3
,

M̃ ′′′(2) =
D∑

d=1
w(d)

(
log
(
1 + r(d)

))3 (1 + r(d)
)2
,

where {r(d)}Dd=1 is the portfolio return history given by

r(d) =
(
1− 1Tf

)
µrf + fTr(d) .

By arguing as we did for M ′′′(τ), we can show that M̃ ′′′(0) < M̃ ′′′(2).
Therefore we can approximate ‖M ′′′‖∞ by

‖M ′′′‖∞ ≈ max
{
− M̃ ′′′(0) , M̃ ′′′(2)

}
.

C. David Levermore (UMD) Growth Rates April 27, 2019


	Growth Rate Probability Densities
	

	Normal Growth Rate Model
	

	Moment and Cumulant Generating Functions
	

	Estimators from Moment Generating Functions
	

	Estimators from Cumulant Generating Functions
	

	Interpolation Errors
	


