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Independent, Identically-Distributed Models for Assets

Investors have long followed the old adage “don’t put all your eggs in one
basket” by holding diversified portfolios. However, before MPT the value
of diversification had not been quantified. Key aspects of MPT are:

1. it uses the return mean as a proxy for reward;
2. it uses volatility as a proxy for risk;
3. it analyzes Markowitz portfolios;
4. it shows diversification can reduce volatility;
5. it identifies the efficient frontier as the place to be.
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Independent, Identically-Distributed Models for Assets

The orignial form of MPT did not give guidance to investors about where
to be on the efficient frontier. This question was addressed in the 1960’s,
most notably by William Sharpe, who shared the 1990 Nobel Prize in
Economics with Harry Markowitz. We will not present that work here.
Rather, we will build stochastic models that can be used in conjunction
with MPT to address this question. By doing so, we will learn that
maximizing the return mean is not the best strategy for maximizing reward.

We begin by building models of one risky asset with a share price history
{s(d)}Dd=0. Let {r(d)}Dd=1 be the associated return history. Because each
s(d) is positive, each r(d) lies in the interval (−1,∞).
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Independent, Identically-Distributed Models for Assets

An independent, identically-distributed (IID) model for this history simply
independently draws D random numbers {Rd}Dd=1 from (−1,∞) in accord
with a fixed probability density q(R) over (−1,∞). This means that q(R)
is a nonnegative integrable function such that∫ ∞

−1
q(R) dR = 1 , (1.1)

and that the probability that each Rd takes a value inside any sufficiently
nice A ⊂ (−1,∞) is given by

Pr
{

Rd ∈ A
}

=
∫

A
q(R) dR . (1.2)

Here capital letters Rd denote random numbers drawn from (−1,∞) in
accord with the probability density q(R) rather than real return data.
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Independent, Identically-Distributed Models for Assets

IID models are the simplest models consistent with the way any portfolio
selection theory is used. Such theories have three basic steps.

Calibrate a model for asset behavior from historical data.
Use the model to suggest how a set of ideal portfolios might behave.
Use these suggestions to select the portfolio that optimizes an
objective.

This strategy assumes that in the future the market will behave
statistically as it did in the past.
This assumption requires the market statistics to be stable relative to its
dynamics. But this requires future states to decorrelate from past states.
The simplest class of models with this property assumes that future states
are independent of past states, which maximizes this decorrelation. These
are called Markov models. IID models are the simplest Markov models.
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Independent, Identically-Distributed Models for Assets

It is easy to develop more complicated Markov models. For example, we
could use a different probability density for each day of the week rather
than treating all trading days the same. Because there are usually five
trading days per week, Monday through Friday, such a model would
require calibrating each of the five densities with one fifth as much data.
There would then be greater uncertainty associated with the calibration.
Moreover, we then have to figure out how to treat weeks that have less
than five trading days due to holidays. Perhaps just the first and last
trading days of each week should get their own probability density, no
matter on which day of the week they fall.
Before increasing the complexity of a model, we should investigate whether
the costs of doing so outweigh the benefits. Specifically, we should
investigate whether there is benefit in treating any one trading day of the
week differently than the others before building a more complicated model.
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Expected Values and Variances

Once we have decided to use an IID model for a particular asset, you
might think the next goal is to pick an appropriate probability density
q(R). One way to do this is to consider an explicit family of probability
densities q(R;β) parametrized by β. The values of the parameters β are
then calibrated so that a sample {Rd}Dd=1 drawn from q(R;β) mimics
certain statistics of observed daily return history {r(d)}Dd=1. Statisticians
call this approach parametric.
However, we will take another approach. We will identify statistical
information like the expected value and variance of functions ψ(R) that
shed light upon the market and that can be estimated from a sample
{Rd}Dd=1 drawn from q(R). Ideally this information should be insensitive
to details of q(R) within a large class of probability densities. Statisticians
call this approach nonparametric.
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Expected Values and Variances

For any function ψ : (−1,∞)→ R the expected value of Ψ = ψ(R) is
given by

Ex(Ψ) =
∫ ∞
−1

ψ(R) q(R) dR , (2.3)

provided that |ψ(R)| q(R) is integrable.
Remark. The term “expected value” can be misleading because for most
densities q(R) it is not a value that we would expect to see more than
other values. For example, if q(R) = exp(−1− R) then Ex(R) = 0, but it
is clear that values of R close to −1 are over twice as likely than values of
R close to 0. More dramatically, if q(R) concentrates around the values
R = −0.50 and R = 2.00 with equal propbability then Ex(R) = 0.75,
which is a value that is never seen. However, this terminology is standard,
so we have to live with it. Please keep in mind that an expected value may
not be near the values that we should expect to see.
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Expected Values and Variances

The variance of Ψ = ψ(R) is given by

Var(Ψ) = Ex
((
ψ(R)− Ex(Ψ)

)2)
=
∫ ∞
−1

(
ψ(R)− Ex(Ψ)

)2 q(R) dR ,
(2.4)

provided that |ψ(R)|2 q(R) is integrable.
Remark. This term “variance” is clearly better than that of “expected
value” because the variance is clearly a quantification of how ψ(R)
deviates from Ex(Ψ). Moreover, it is the most commonly used such
measure. However, there are others, so we must always question if its use
is appropriate in any situation.
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Expected Values and Variances

The most important expected value and variance are those of R itself.
These are the return mean µ and return variance ξ, which are obtained
from (2.3) and (2.4) by setting Ψ = ψ(R) = R, yielding

µ = Ex(R) =
∫ ∞
−1

R q(R) dR ,

ξ = Var(R) = Ex
(

(R − µ)2
)

=
∫ ∞
−1

(R − µ)2 q(R) dR .
(2.5)

For these to exist we need to require that q(R) satisfies∫ ∞
−1

R2q(R) dR <∞ .

More restrictive requirements are often imposed so that the expected
values and variances of other random variables exist.
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Expected Values and Variances

The standard deviation of Ψ = ψ(R) is given by

St(Ψ) =
√

Var(Ψ) , (2.6)

provided that Var(Ψ) exists.
The standard deviation is one measure of how far from Ex(Ψ) that we can
expect the value of any given ψ(R) to be. It arises naturally in the
Chebyshev inequality, which states that for every δ > 1 we have

Pr
{
|ψ(R)− Ex(Ψ)| ≥ δ St(Ψ)

}
≤ 1
δ2 . (2.7)

Notice that the left-hand side is always less than or equal to 1, so that the
condition δ > 1 is required for the bound (2.7) to be meaningful.
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Expected Values and Variances

The proof of the Chebyshev inequality (2.7) is simple. We have

Pr
{
|ψ(R)− Ex(Ψ)| ≥ δ St(Ψ)

}
=
∫
{R∈(−1,∞) : |ψ(R)−Ex(Ψ)|≥δ St(Ψ)}

q(R) dR

≤
∫ ∞
−1

|ψ(R)− Ex(Ψ)|2
δ2 St(Ψ)2 q(R) dR

= Var(Ψ)
δ2 St(Ψ)2 = 1

δ2 .

�
Remark. The Chebyshev inequality is not sharp, but is often useful.
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Expected Value Estimators

Because q(R) is unknown, the expected value of any Ψ = ψ(R) must be
estimated from data. Suppose that we draw a sample {Rd}Dd=1 from the
probability density q(R). We claim that for any choice of positive weights
{wd}Dd=1 such that

D∑
d=1

wd = 1 , (3.8)

we can approximate Ex(Ψ) by the weighted average

Êx(Ψ) =
D∑

d=1
wd Ψd , (3.9)

where Ψd = ψ(Rd ). The weighted average (3.9) is the sample mean of
{Ψd}Dd=1 for the weights {wd}Dd=1.
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Expected Value Estimators

We will present three facts that make precise the sense in which the
sample mean Êx(Ψ) approximates Ex(Ψ). They will show that Êx(Ψ) is
more likely to take values closer to Ex(Ψ) for larger samples {Rd}Dd=1.
Therefore we call Êx(Ψ) an estimator of Ex(Ψ).

The first fact is simply the computation of the expected value of the
sample mean Êx(Ψ) given by (3.9).
Fact 1.

Ex
(
Êx(Ψ)

)
= Ex(Ψ) . (3.10)

This says that Êx(Ψ) is a so-called unbiased estimator of Ex(Ψ).
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Expected Value Estimators
Proof. Because each draw is independent, probability density over
(−1,∞)D of the sample {Rd}Dd=1 is

q(R1) q(R2) · · · q(RD) .

Therefore we have

Ex
(
Êx(Ψ)

)
=
∫ ∞
−1
· · ·
∫ ∞
−1

D∑
d=1

wd ψ(Rd ) q(R1) · · · q(RD) dR1 · · · dRD

=
D∑

d=1
wd

∫ ∞
−1

ψ(Rd ) q(Rd ) dRd

=
D∑

d=1
wdEx(Ψ) = Ex(Ψ) .

�
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Expected Value Estimators

The second fact is simply the computation of the variance of the sample
mean Êx(Ψ) given by (3.9).
Fact 2.

Var
(
Êx(Ψ)

)
= w̄D Var(Ψ) , (3.11)

where w̄D is the weighted average of the weights {wd}Dd=1 given by

w̄D =
D∑

d=1
w 2

d . (3.12)

This fact says that the sample mean Êx(Ψ) converges to Ex(Ψ) like
√

w̄D
as D →∞. Because w̄D = 1/D for uniform weights, we see that this rate
of convergence is 1/

√
D as D →∞.
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Expected Value Estimators

Remark. The Cauchy inequality from multivariable calculus states that

D∑
d=1

ad bd ≤
( D∑

d=1
a 2

d

) 1
2
( D∑

d=1
b 2

d

) 1
2

.

By using fact (3.8) that the weights {wd}Dd=1 sum to 1 and applying the
Cauchy inequality to ad = 1 and bd = wd we see that

1 =
( D∑

d=1
1 wd

)2

≤
( D∑

d=1
12
)( D∑

d=1
w 2

d

)
= D w̄D .

Therefore 1/D ≤ w̄D for any choice of weights. Because w̄D = 1/D for
uniform weights, we see that the rate of convergence of Êx(Ψ) to Ex(Ψ)
is fastest for uniform weights.
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Expected Value Estimators
Proof. By Fact 1 we have

Ex
(
Êx(Ψ)

)
= Ex(Ψ) ,

whereby

Êx(Ψ)− Ex
(
Êx(Ψ)

)
=

D∑
d=1

wd
(

Ψd − Ex(Ψ)
)
.

By squaring both sides of this equality we obtain(
Êx(Ψ)− Ex

(
Êx(Ψ)

))2

=
D∑

d1=1

D∑
d2=1

wd1 wd2

(
Ψd1 − Ex(Ψ)

) (
Ψd2 − Ex(Ψ)

)
.

By taking the expected value of this relation we find that
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Expected Value Estimators

Var
(
Êx(Ψ)

)
= Ex

((
Êx(Ψ)− Ex

(
Êx(Ψ)

))2
)

= Ex

 D∑
d1=1

D∑
d2=1

wd1 wd2

(
Ψd1 − Ex(Ψ)

) (
Ψd2 − Ex(Ψ)

)
=

D∑
d1=1

D∑
d2=1

wd1 wd2 Ex
((

Ψd1 − Ex(Ψ)
) (

Ψd2 − Ex(Ψ)
))

=
D∑

d=1
w 2

d Ex
((

Ψd − Ex(Ψ)
)2)

=
D∑

d=1
w 2

d Var(Ψ) = w̄D Var(Ψ) .

�
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Expected Value Estimators
Remark. As in the proof of Fact 1, here we computed expected values by
using the probability density over (−1,∞)D given by

q(R1) q(R2) · · · q(RD) .

The off-diagonal terms in the foregoing double sum vanished because

Ex
((

Ψd1 − Ex(Ψ)
) (

Ψd2 − Ex(Ψ)
))

= 0 when d1 6= d2 ,

while the diagonal terms reduced to

Ex
((

Ψd1 − Ex(Ψ)
) (

Ψd2 − Ex(Ψ)
))

= Ex
((

Ψd − Ex(Ψ)
)2)

when d1 = d2 = d .
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Expected Value Estimators

The third fact is simply the Chebyshev inequality associated with the
sample mean Êx(Ψ) given by (3.9).
Fact 3. For every δ >

√
w̄D we have

Pr
{∣∣∣Êx(Ψ)− Ex(Ψ)

∣∣∣ ≥ δ St(Ψ)
}
≤ w̄D

δ2 . (3.13)

Remark. The proof of this fact is similar to that of the Chebyshev
inequality (2.7). The difference is that here we will integrate over
(−1,∞)D with probability density

q(R1) q(R2) · · · q(RD) ,

rather than (−1,∞) with probability density q(R).
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Expected Value Estimators

Proof. By Fact 2 we have

Pr
{∣∣∣Êx(Ψ)− Ex(Ψ)

∣∣∣ ≥ δ St(Ψ)
}

=
∫
· · ·
∫{∣∣Êx(Ψ)−Ex(Ψ)

∣∣≥δ St(Ψ)
} q(R1) · · · q(RD) dR1 · · · dRD

≤
∫ ∞
−1
· · ·
∫ ∞
−1

|Êx(Ψ)− Ex(Ψ)|2
δ2 St(Ψ)2 q(R1) · · · q(RD) dR1 · · · dRD

=
Var

(
Êx(Ψ)

)
δ2 St(Ψ)2 = w̄D Var(Ψ)

δ2 St(Ψ)2 = w̄D
δ2 .

�
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Expected Value Estimators

Remark. The Chebyshev inequality (3.13) with Ψ = ψ(R) = R implies

Pr
{∣∣∣Êx(R)− Ex(R)

∣∣∣ < δ St(R)
}
> 1− w̄D

δ2 .

This can be used to quantify the uncertainty in the estimator Êx(R) of the
return mean µ = Ex(R) of an asset with standard deviation σ = St(R).
For example, if we use uniform weights with D = 250 then w̄D = 1

250 and:

Êx(R) is within 1
2σ of µ with probability > 0.984;

Êx(R) is within 1
5σ of µ with probability > 0.900;

Êx(R) is within 1
7σ of µ with probability > 0.804;

Êx(R) is within 1
10σ of µ with probability > 0.600;

Êx(R) is within 1
15σ of µ with probability > 0.100.
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Expected Value Estimators

Remark. Fact 3 establishes the law of large numbers, which states that
the sample means Êx(Ψ) converge to Ex(Ψ):

lim
D→∞

Êx(Ψ) = Ex(Ψ) .

More precisely, it establishes the weak law of large numbers, which asserts
that the sample means converge in probability.
There is also the strong law of large numbers, which asserts that the
sample means converge almost surely.
These notions of convergence are covered in advanced probability courses.
In practice D is finite, so bounds like the one discussed on the last slide are
often more useful than these limits.
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Variance Estimators

Because q(R) is unknown, the variance of any Ψ = ψ(R) must also be
estimated from data. Suppose that we draw a sample {Rd}Dd=1 from the
probability density q(R). We claim that for any choice of positive weights
{wd}Dd=1 such that

D∑
d=1

wd = 1 , (4.14)

we can approximate Var(Ψ) by the weighted average

V̂ar(Ψ) = 1
1− w̄D

D∑
d=1

wd
(

Ψd − Êx(Ψ)
)2
, (4.15)

where Ψd = ψ(Rd ). This weighted average is the factor 1/(1− w̄D) times
the sample variance of {Ψd}Dd=1 for the weights {wd}Dd=1.
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Variance Estimators

The factor 1/(1− w̄D) multiplying the sample variance in (4.15) insures
that V̂ar(Ψ) is an unbiased estimator of Var(Ψ).
Fact 4.

Ex
(
V̂ar(Ψ)

)
= Var(Ψ) . (4.16)

Remark. This fact about V̂ar(Ψ) is the analog of Fact 1 about Êx(Ψ).
Remark. There are facts about V̂ar(Ψ) that are analogs of Fact 2 and
Fact 3 about Êx(Ψ). However, we will not state them here. Taken
together these facts show that V̂ar(Ψ) given by (4.15) is an unbiased
estimator of Var(Ψ).
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Variance Estimators

Proof. First, verify the identity

V̂ar(Ψ) = 1
1− w̄D

D∑
d=1

wd
(

Ψd − Êx(Ψ)
)2

= 1
1− w̄D

D∑
d=1

wd
(

Ψd − Ex(Ψ)
)2

− 1
1− w̄D

(
Êx(Ψ)− Ex(Ψ)

)2
.

(4.17)

By Fact 2 we have

Var
(
Êx(Ψ)

)
= w̄D Var(Ψ) .
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Variance Estimators

By taking the expected value of (4.17) we confirm that

Ex
(
V̂ar(Ψ)

)
=

D∑
d=1

wd
1− w̄D

Ex
((

Ψd − Ex(Ψ)
)2)

− 1
1− w̄D

Ex
((

Êx(Ψ)− Ex(Ψ)
)2)

=
D∑

d=1

wd
1− w̄D

Var(Ψ)− 1
1− w̄D

Var
(
Êx(Ψ)

)
= Var(Ψ)

1− w̄D
− w̄D Var(Ψ)

1− w̄D
= Var(Ψ) .

�
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Checking for Identically Distributed

In an IID model the random numbers {Rd}Dd=1 are each drawn from
(−1,∞) in accord with the same probability density q(R). Therefore if we
plot the points {(d ,Rd )}Dd=1 in the dr -plane they will usually be distributed
in a way that looks uniform in d . Therefore if the return history {r(d)}Dd=1
is mimiced by such a model then the points {(d , r(d))}Dd=1 plotted in the
dr-plane should appear to be distributed in a way that is unifrom in d.

This will be the case if every subsample of the return history {r(d)}Dd=1
behaves as if it was drawn from the same probability density. Therefore
the question that we must address is how to tell when two samples,
{r1(d)}D1

d=1 and {r2(d)}D2
d=1, might be drawn from the same probability

density.
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Checking for Identically Distributed

We start with a simpler question. How to compare two probability densities
over (−1,∞), say p1(R) and p2(R) where p1(R) ≥ 0, p2(R) ≥ 0, and∫ ∞

−1
p1(R) dR =

∫ ∞
−1

p2(R) dR = 1 .

One idea is to compare their distributions P1(R) and P2(R), which are

P1(R) =
∫ R

−1
p1(R ′) dR ′ , P2(R) =

∫ R

−1
p2(R ′) dR ′ .

These are nondecreasing functions of R over (−1,∞) such that

lim
R→−1

P1(R) = lim
R→−1

P1(R) = 0 , lim
R→∞

P1(R) = lim
R→∞

P1(R) = 1 .
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Checking for Identically Distributed

The Kolmogorov-Smirnov measure of the closeness of P1 and P2 is the sup
norm of their difference:

‖P2 − P1‖KS = sup
{
|P2(R)− P1(R)| : R ∈ (−1,∞)

}
.

The Kuiper measure of the closeness of P1 and P2 is

‖P2 − P1‖Ku = sup
{

P2(R)− P1(R) : R ∈ (−1,∞)
}

+ sup
{

P1(R)− P2(R) : R ∈ (−1,∞)
}
.

It can be shown that

‖P2 − P1‖KS ≤ ‖P2 − P1‖Ku ≤ 1 .
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Checking for Identically Distributed

The Cramer-von Mises measure of the closeness of P1 and P2 is the
L2-norm of their difference:

‖P2 − P1‖CvM =
(∫ ∞
−1

(
P2(R)− P1(R)

)2dR
) 1

2
.

This can clearly be generalized to any Lp-norm with respect to any
positive measure over (−1,∞).

For simplicity we will stick to the Kolmogorov-Smirnov and Kuiper
measures.
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Checking for Identically Distributed

Now we return to our original question. Given two samples, {r1(d)}D1
d=1

and {r2(d)}D2
d=1, we construct their so-called emperical distributions

P̂1(R) =
#
{

d : r1(d) ≤ R
}

D1
, P̂2(R) =

#
{

d : r2(d) ≤ R
}

D2
.

Here #S denotes the number of elements in a set S. These approximate
the unknown true distributions P1 and P2 because

P1(R) = Pr
{

r1(d) ≤ R
}
, P2(R) = Pr

{
r2(d) ≤ R

}
.

Then the Kolmogorov-Smirnov and Kuiper measures of the difference
P̂2 − P̂1 give us a way to quantify the likelihood that samples are drawn
from similar distributions.
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Checking for Identically Distributed

Because P̂1 and P̂2 are step functions, we see that

‖P̂2 − P̂1‖KS = max
{
|P̂2(R)− P̂1(R)| : R ∈ (−1,∞)

}
.

‖P̂2 − P̂1‖Ku = max
{

P̂2(R)− P̂1(R) : R ∈ (−1,∞)
}

+ max
{

P̂1(R)− P̂2(R) : R ∈ (−1,∞)
}
.

Fortunately statisticians have provided software that efficiently computes
these values given any two samples {r1(d)}D1

d=1 and {r2(d)}D2
d=1. These are

called respectively the two-sample KS test and the two-sample Kuiper test.
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Checking for Identically Distributed

Finally, given return histories over a year {r(d)}Dd=1, we can split the year
into quarters and compare the emperical distribution of each quarter with
that of another quarter or with that of the other three quarters combined.
The maximum of all such comparisons made is the score for the year. For
example, for each year we might define

ωKS = 1−max
{
‖P̂2 − P̂1‖KS : all comparisons made

}
,

ωKu = 1−max
{
‖P̂2 − P̂1‖Ku : all comparisons made

}
.

If we choose to compare quarters with each other then six comparisons are
made. If we choose to compare each quarter with the other three quarters
combined then four comparisons are made. Notice that ωKu ≤ ωKS ≤ 1,
and that the distributions are closer when ωKu is nearer 1.

C. David Levermore (UMD) IID Models for Assets April 27, 2019



IID Models Exp Val & Var Exp Val Est Var Est Ident Dist Autoregress Fitting Independ

Checking for Identically Distributed

Remark. These measures can be applied to any risky asset. We might see
a difference between the stock of a single company and a broad-based
index fund. Similarly, the asset could be a tangent portfolio for a class of
portfolios with a given leverage limit, for example, long portfolios. Reacall
that given a return history {r(d)}Dd=0 of N risky assests and a risk-free
rate model µrf the return of the Markowitz portfolio with allocation f on
day d is

r(d) = (1− 1Tf)µrf + r(d)Tf .
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Stationary Autoregression Models

One way to quantify how well a return history {r(d)}Dd=1 is mimicked by
an IID model is to fit it to a more complicated model and then measure
how far that fit is from an IID model. We illustrate this approach using the
family of stationary autoregression models. These models have the form

Rd = a + b Rd−1 + Zd for d = 1, · · · ,D , (6.18)

where a and b are real numbers, R0 is a random variable and {Zd}∞d=1 is a
sequence of IID random variable with mean zero.
The model is called stationary when for every d ∈ {1, · · · ,∞} the random
variable Rd has the same statistical behavior as R0. We will see that
stationarity implies that |b| < 1.
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Stationary Autoregression Models

Let µ and ξ be the mean and variance of the random variable R0. Then
stationarity implies that

Ex(Rd ) = µ , Var(Rd ) = ξ , for every d ∈ {0, · · · ,∞} . (6.19a)

Let ξd denote the covariance of Rd with R0, so that

ξd = Cov(R0,Rd ) = Ex((R0 − µ) (Rd − µ))
for every d ∈ {0, · · · ,∞} .

(6.19b)

(Notice that ξ0 = ξ.) Then stationarity implies that

Cov(Rd ,Rd ′) = Ex((Rd − µ) (Rd ′ − µ)) = ξ|d−d ′| ,

for every d , d ′ ∈ {0, · · · ,∞} .
(6.19c)
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Stationary Autoregression Models

Let η be the variance of the IID mean-zero variables Zd . Then

Ex(Zd ) = 0 , Var(Zd ) = η , for every d ∈ {1, · · · ,∞} . (6.20a)

Because the random variables {Zd}∞d=1 are IID, we have

Cov(Zd ,Zd ′) = Ex(Zd Zd ′) = 0 ,
for every d , d ′ ∈ {1, · · · ,∞} with d 6= d ′ .

(6.20b)

Because the random variable R0 is independent of each Zd , we have

Cov(R0,Zd ) = Ex((R0 − µ) Zd ) = 0 ,
for every d ∈ {1, · · · ,∞} .

(6.20c)
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Stationary Autoregression Models
Because each Zd has mean zero, by taking expected values in (6.18) while
using (6.20) we see that

µ = Ex(Rd ) = a + b Ex(Rd−1) + Ex(Zd ) = a + bµ .

Therefore a, b, and µ are related by

µ = a + bµ . (6.21)

By using this relation to eliminate a from the form (6.18), we obtain

Rd = µ+ b (Rd−1 − µ) + Zd for d = 1, · · · ,∞ ,

which can be recast as

Rd − µ = b (Rd−1 − µ) + Zd for d = 1, · · · ,∞ . (6.22)
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Stationary Autoregression Models

Multiplying (6.22) by Zd ′ and taking expected values we obtain

Ex((Rd − µ) Zd ′) = b Ex((Rd−1 − µ) Zd ′) + Ex(Zd Zd ′) ,
for every d , d ′ ∈ {1, · · · ,∞} .

(6.23)

By using (6.20b) we see from (6.23) that

Ex((Rd − µ) Zd ′) = b Ex((Rd−1 − µ) Zd ′) ,
for every d , d ′ ∈ {1, · · · ,∞} with d < d ′ .

Then by using (6.20c) we can prove by induction that

Cov(Rd ,Zd ′) = Ex((Rd − µ) Zd ′) = 0 ,
for every d , d ′ ∈ {0, · · · ,∞} with d < d ′ .

(6.24)
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Stationary Autoregression Models
By squaring (6.22) and taking expected values while using (6.19), (6.20),
and (6.24), we see that

ξ = Var(Rd ) = Ex
(

(Rd − µ)2
)

= Ex
((

b (Rd−1 − µ) + Zd
)2)

= b2Ex
(

(Rd−1 − µ)2
)

+ 2b Ex((Rd−1 − µ) Zd ) + Ex
(

Z 2
d

)
= b2Var(Rd−1) + Var(Zd ) = b2ξ + η .

Therefore b, ξ, and η are related by

(1− b2)ξ = η . (6.25)

Because the variances ξ and η are positive, we see that

b2 < 1 , η ≤ ξ .

Notice that if b = 0 then ξ = η and the stationary autoregression model
(6.22) reduces to an IID model.
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Stationary Autoregression Models

By multiplying (6.22) by (R0 − µ) and taking expected values while using
(6.19b) and (6.20c) we see that

ξd = Ex((R0 − µ) (Rd − µ))
= b Ex((R0 − µ) (Rd−1 − µ)) + Ex((R0 − µ) Zd )
= b ξd−1 .

Because ξ0 = ξ, by induction we can show that

ξd = ξ bd for every d ∈ {1, · · · ,∞} . (6.26)

Because |b| < 1, we see that ξd decays as d increases.
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By setting d ′ = d in (6.23) while using (6.19a) and (6.24) we obtain

Cov(Rd ,Zd ) = Var(Zd ) = η , for every d ∈ {1, · · · ,∞} . (6.27)

By using (6.20b) we see from (6.23) that

Ex((Rd − µ) Zd ′) = b Ex((Rd−1 − µ) Zd ′) ,
for every d , d ′ ∈ {1, · · · ,∞} with d ′ < d .

Then by using (6.27) we can prove by induction that

Cov(Rd ,Zd ′) = Ex((Rd − µ) Zd ′) = η bd−d ′
,

for every d , d ′ ∈ {1, · · · ,∞} with d ′ ≤ d .
(6.28)

Because |b| < 1, we see that Cov(Rd ,Zd ′) decays as d increases.
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Stationary Autoregression Models

The correlation time dc of the stationary autoregression model (6.18) is
defined by

1
dc

= log
( 1
|b|

)
, (6.29)

so that
|ξd | = ξ exp

(
− d

dc

)
, for every d ∈ {0, · · · ,∞} ,

and
|Cov(Rd ,Zd ′)| = η exp

(
− d

dc

)
,

for every d , d ′ ∈ {1, · · · ,∞} with d ′ ≤ d .

The smaller dc the closer the stationary autoregression model is to an IID
model.
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Stationary Autoregression Models

We have seen that a stationary autoregression model in the form (6.18) is
specified by three parameters. These can be a ∈ R, b ∈ (−1, 1), and
η > 0, in which case µ, ξ, and ξ1 are given by

µ = a
1− b , ξ = η

1− b2 , ξ1 = η b
1− b2 .

Alternatively, they can be µ ∈ R, ξ > 0, and ξ1 ∈ (−ξ, ξ), in which case a,
b, and η are given by

a =
(

1− ξ1
ξ

)
µ , b = ξ1

ξ
, η = ξ − ξ 2

1
ξ
.

In the next section we will show how to pick the parameters to best fit a
given data set.
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Fitting Stationary Autoregression Models
Given a return history {r(d)}Dd=0 and a choice of positive weights
{wd}Dd=1 that sum to 1 we can use least squares to fit a stationary
autoregression model of the form (6.18). Specifically, this approach
constructs estmators â and b̂ such

(
â, b̂

)
= arg min

{ D∑
d=1

wd |r(d)− a − b r(d − 1)|2
}
, (7.30)

and then construct the estmator η̂ by

η̂ = min
{ D∑

d=1
wd |r(d)− a − b r(d − 1)|2

}

=
D∑

d=1
wd |r(d)− â − b̂ r(d − 1)|2 .

(7.31)
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Fitting Stationary Autoregression Models
It is helpful to define the return mean estimators

m̂0 =
D∑

d=1
wd r(d) , m̂1 =

D∑
d=1

wd r(d − 1) , (7.32a)

the return variance estimators

v̂00 =
D∑

d=1
wd
(
r(d)− m̂0

)2
, v̂11 =

D∑
d=1

wd
(
r(d − 1)− m̂1

)2
, (7.32b)

and the return autocovariance estimator

v̂10 =
D∑

d=1
wd
(
r(d − 1)− m̂0

)(
r(d)− m̂1

)
. (7.32c)

It is also helpful to replace a with ã that is defined by

a = m̂0 − b m̂1 + ã . (7.33)
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Fitting Stationary Autoregression Models

Then
z(d) = r(d)− a − b r(d − 1)

=
(
r(d)− m̂0

)
− b

(
r(d − 1)− m̂1

)
+ ã

= r̃0(d)− br̃1(d) + ã ,

where we define

r̃0(d) = r(d)− m̂0 , r̃1(d) = r(d − 1)− m̂1 . (7.34)

Therefore

|z(d)|2 = |r̃0(d)|2 + b2|r̃1(d)|2 + ã2

− 2b r̃1(d) r̃0(d) + 2ã r̃0(d)− 2ãb r̃1(d) .
(7.35)
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Fitting Stationary Autoregression Models
It is evident from (7.32) and (7.34) that {r̃0(d)}Dd=1 and {r̃1(d)}Dd=1 satisfy

D∑
d=1

wd r̃0(d) = 0 ,
D∑

d=1
wd r̃1(d) = 0 ,

D∑
d=1

wd |r̃0(d)|2 = v̂00 ,
D∑

d=1
wd |r̃1(d)|2 = v̂11 ,

D∑
d=1

wd r̃1(d) r̃0(d) = v̂10 .

By using these facts we see from (7.35) that

D∑
d=1

wd |z(d)|2 = v̂00 + b2v̂11 + ã2 − 2b v̂10 .
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Fitting Stationary Autoregression Models

Because v̂11 > 0, the foregoing quantity is clearly minimized when

ã = 0 , b = v̂10
v̂11

,

and that

min
{ D∑

d=1
wd |z(d)|2

}
= v̂00 −

v̂ 2
10

v̂11
.

Recalling (7.30), (7.31), and (7.33), this suggests using the estimators

â = m̂0 −
v̂10
v̂11

m̂1 , b̂ = v̂10
v̂11

, η̂ = v̂00 −
v̂ 2

10
v̂11

. (7.36)
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Fitting Stationary Autoregression Models

However, the estimators (7.36) given by the least squares fit have a
problem. Specifically, the formula for b̂ can give values that lie outside of
the interval (−1, 1). So rather than use the estimators (7.36), we will use
the estimators

â = m̂0 −
v̂10
v̂11

m̂1 , b̂ = v̂10√
v̂00 v̂11

, η̂ = v̂00 −
v̂ 2

10
v̂11

. (7.37)

These estimators will satisfy b̂ ∈ (−1, 1) and η̂ > 0 if and only if the
autocovariance matrix V̂ is positive definite, where

V̂ =
(

v̂00 v̂10
v̂10 v̂11

)
. (7.38)

This condition is always met in practice.
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Fitting Stationary Autoregression Models

Notice that the last two estimators in (7.36) satisfy

η̂ = v̂00
(

1− b̂2
)
.

Because v̂00 is the sample variance of {r(d)}Dd=1 while η̂ is the sample
variance of {z(d)}Dd=1, we see that b̂2 is the fraction of the sample
variance of {r(d)}Dd=1 that is due to the autoregression. This suggests
that a natural measure of how well the history {r(d)}Dd=1 can be mimicked
by an IID model is

ωar = 1− b̂2 = 1− v̂ 2
10

v̂00 v̂11
. (7.39)

The closer ωar is to 1, the better the IID model.
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Fitting Stationary Autoregression Models

Remark. Given a return history {r(d)}Dd=0 of any market index, we can
use the autoregression estimator b̂ given by (7.37) to estimate a correlation
time for that index. Motivated by formula (6.29), we define d̂c by

1
d̂c

= log
(

1
|b̂|

)
. (7.40)

Because the history has length D, we would like d̂c � D in order to have
some confidence in our estimators of the return mean µ and the return
variance ξ.
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Checking for Independence

In an IID model the random numbers {Rd}Dd=1 are drawn from (−1,∞) in
accord with the probability density q(R) independent of each other, there
is no correlation of Rd with Rd ′ when d 6= d ′. We would like to check how
well a return history {r(d)}Dd=1 is mimiced by such a model.
Because there is no correlation of Rd with Rd ′ when d 6= d ′, if we plot the
points {(Rd ,Rd+c)}D−c

d=1 in the rr ′-plane for any c > 0 they will be
distributed in accord with the probability density q(R)q(R ′). Therefore if
the return history {r(d)}Dd=1 is mimiced by such a model then the points
{(r(d), r(d + c))}D−c

d=1 plotted in the rr ′-plane should appear to be
distributed in a way consistant with the probability density q(r)q(r ′). Such
plots are called scatter plots.
We expect that the strongest correlation should be seen when c = 1
because the behavior of an asset price on any given trading day often does
correlate with its behavior on the previous trading day.
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Given a return history {r(d)}Dd=0 and a choice of positive weights
{wd}Dd=1 that sum to 1, we define the return mean estimators

m̂0 =
D∑

d=1
wd r(d) , m̂1 =

D∑
d=1

wd r(d − 1) ,

the return variance estimators

v̂00 =
D∑

d=1
wd
(
r(d)− m̂0

)2
, v̂11 =

D∑
d=1

wd
(
r(d − 1)− m̂1

)2
,

and the return autocovariance estimator

v̂10 =
D∑

d=1
wd
(
r(d − 1)− m̂0

)(
r(d)− m̂1

)
.

This is often done with uniform weights wd = 1/D.
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Checking for Independence

Consider the 2× 2 autocovariance matrix

V̂ =
(

v̂00 v̂10
v̂10 v̂11

)
. (8.41)

This matrix is symmetric and is usually positive definite. If the data was
drawn from an IID process with mean µ and variance ξ then it can be
shown that

Ex
(

V̂
)

= ξW , where W =
(

1− w̄ −w̄1
−w̄1 1− w̄

)
, (8.42)

with

w̄ =
D∑

d=1
w 2

d , w̄1 =
D∑

d=2
wd wd−1 .
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Checking for Independence

The matrix W is known. For uniform weights wd = 1/D we have

w̄ = 1
D , w̄1 = D−1

D2 ,

whereby

W =

1− 1
D −D−1

D2

−D−1
D2 1− 1

D

 .

It can be shown for D > 1 that in general we have

0 < w̄1 < w̄ , w̄ + w̄1 < 1 , (8.43)

which implies that the symmetric matrix W given by (8.42) is always
diagonally dominant and thereby is always positive definite.
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Checking for Independence
The deviation of V̂ given by (8.41) from the form (8.42) measures of how
well an IID model mimics the data. For example, its size can be measured
with the Frobenius norm, which for any real matrix A is determined by

‖A‖ 2
F = tr

(
ATA

)
.

We first estimate ξ in the form (8.42) to give the best least squares fit
with respect to this norm. In other words, we set

ξ̂ = arg min
{

tr
(
(V̂ − ξW )2)}

Because

tr
(
(V̂ − ξW )2) = tr

(
V̂ 2)− 2ξ tr

(
W V̂

)
+ ξ2 tr

(
W 2) ,

we see that

ξ̂ =
tr
(
W V̂

)
tr
(
W 2) . (8.44)
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Checking for Independence
When the estimator ξ̂ is expressed in terms of the entries of the matrices
V̂ and W given by (8.41) and (8.42) we have

ξ̂ =
(1− w̄)

(
v̂00 + v̂11

)
− 2w̄1v̂10

2
(
(1− w̄)2 + w̄ 2

1
) .

The fact that ξ̂ > 0 whenever V̂ 6= 0 is can be seen directly from (8.44)
and the following general fact, the proof of which is left as an exercise.
Fact. If A and B are symmetric matrices of the same size such that A is
positive definite, B is nonnegative definite, and B 6= 0 then tr(AB) > 0.
Moreover, it is evident from (8.42) and (8.44) that

Ex(ξ̂) =
tr
(
W Ex(V̂ )

)
tr
(
W 2) =

tr
(
ξW 2)

tr
(
W 2) = ξ .

Therefore ξ̂ is an unbiased estimator of ξ.
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Checking for Independence

The size of the deviation of V̂ given by (8.41) from the form (8.42) is
thereby quantified by

‖V̂ − ξ̂W ‖2
F

‖V̂ ‖2
F

= 1−
tr
(
W V̂

)2

tr
(
V̂ 2) tr

(
W 2) .

Therfore we defined the measure

ωind =
tr
(
W V̂

)2

tr
(
V̂ 2) tr

(
W 2) . (8.45)

This is the square of the cosine of the angle between V̂ and W as
determined by the Frobenius scalar product. The closer ωind is to 1, the
better an IID model mimics the data.
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Checking for Independence

Remark. From (8.45) we can show by using (8.41) and (8.42) that

1− ωind = δ2 +
(

1− δ2
)

cos(φ)2 ,

where
δ2 = (v̂00 − v̂11)2

(v̂00 − v̂11)2 + (v̂00 + v̂11)2 + 4v̂ 2
10
,

cos(φ)2 = (2(1− w̄)v̂10 + ŵ1 (v̂00 + v̂11))2(
(1− w̄)2 + w̄ 2

1
) (

(v̂00 + v̂11)2 + 4v̂ 2
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) .
This shows that ωind is close to 1 if and only if δ and cos(φ) are small.
The first condition holds if and only if v̂00 and v̂11 are relatively close. The
second holds if and only if the vectors (1− w̄ , ŵ1) and (2v̂10, v̂00 + v̂11) are
nearly orthogonal.
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