Portfolios that Contain Risky Assets 9: Limited Portfolios with Risk-Free Assets

C. David Levermore

University of Maryland, College Park, MD

Math 420: Mathematical Modeling February 21, 2019 version

© 2019 Charles David Levermore

Portfolios that Contain Risky Assets Part I: Portfolio Models

- 1. Risk and Reward
- 2. Covariance Matrices
- 3. Markowitz Portfolios
- 6. Markowitz Frontiers
- 5. Portfolios with Risk-Free Assets
- 6. Long Portfolios and Their Frontiers
- 7. Long Portfolios with a Safe Investment
- 8. Limited Portfolios and Their Frontiers
- 9. Limited Portfolios with Risk-Free Assets
- 10. Bounded Portfolios and Leverage Limits

Limited Portfolios with Risk-Free Assets

- 1 Limited-Leverage Constraints
- 2 Limited-Leverage Frontiers
- Quadratic Programming
- 4 Computing Limited-Leverage Frontiers
- 5 General Portfolio with Two Risky Assets
- 6 General Portfolio with Three Risky Assets

Limited-Leverage Constraints

Limited-Leverage

•0000000

Recall that Π_{ℓ} is the set of all limited-leverage portfolio allocations with leverage limit $\ell > 0$ and that $\Pi_{\ell}(\mu)$ is the set of all such allocations with return mean μ . These sets are given by

$$\Pi_{\ell} = \left\{ \mathbf{f} \in \mathbb{R}^{N} : \|\mathbf{f}\|_{1} \leq 1 + 2\ell, \ \mathbf{1}^{T}\mathbf{f} = 1 \right\},$$

$$\Pi_{\ell}(\mu) = \left\{ \mathbf{f} \in \Pi_{\ell} : \mathbf{m}^{T}\mathbf{f} = \mu \right\}.$$

Clearly $\Pi_{\ell}(\mu) \subset \Pi_{\ell}$ for every $\mu \in \mathbb{R}$.

The set Π_{ℓ} is a convex polytope of dimension N-1 that is contained in the hyperplane $\{\mathbf{f} \in \mathbb{R}^N : \mathbf{1}^T \mathbf{f} = 1\}$. The set $\Pi_{\ell}(\mu)$ is the intersection of Π_{ℓ} with the hyperplane $\{\mathbf{f} \in \mathbb{R}^N : \mathbf{m}^T \mathbf{f} = \mu\}$. Because we have assumed that \mathbf{m} and $\mathbf{1}$ are not proportional, the intersection of these hyperplanes is a set of dimension N-2. Therefore the set $\Pi_{\ell}(\mu)$ is a convex polytope of dimension at most N-2, but it might be empty.

0000000

We start by charactering those μ for which $\Pi_\ell(\mu)$ is nonempty. Recall that

$$\mu_{\min} = \min\{m_i : i = 1, \cdots, N\}, \quad \mu_{\max} = \max\{m_i : i = 1, \cdots, N\}.$$

We expect that the $\ell\text{-limited}$ leverage portfolio with the highest mean return would have a long allocation of $1+\ell$ in an asset with mean return μ_{mx} and short allocation of $-\ell$ in an asset with mean return $\mu_{mn}.$ The mean return of such a portfolio is

$$\mu_{\rm mx}^{\ell} = (1 + \ell)\mu_{\rm mx} - \ell\mu_{\rm mn} = \mu_{\rm mx} + \ell(\mu_{\rm mx} - \mu_{\rm mn}).$$

Similarly, we expect that the $\ell\text{-limited}$ leverage portfolio with the lowest mean return would have a long allocation of $1+\ell$ in an asset with mean return μ_{mn} and short allocation of $-\ell$ in an asset with mean return $\mu_{mx}.$ The mean return of such a portfolio is

$$\mu_{
m mn}^\ell = (1+\ell)\mu_{
m mn} - \ell\mu_{
m mx} = \mu_{
m mn} - \ell(\mu_{
m mx} - \mu_{
m mn})\,.$$

0000000

Limited-Leverage Constraints

Indeed, we will prove the following.

Fact. For every $\ell \geq 0$ the set $\Pi_{\ell}(\mu)$ is nonempty if and only if $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$, where

$$\mu_{\rm mn}^\ell = \mu_{\rm mn} - \ell(\mu_{\rm mx} - \mu_{\rm mn}), \qquad \mu_{\rm mx}^\ell = \mu_{\rm mx} + \ell(\mu_{\rm mx} - \mu_{\rm mn}).$$

Remark. Because we have assumed that \mathbf{m} and $\mathbf{1}$ are not proportional, the mean returns $\{m_i\}_{i=1}^N$ are not identical. This implies that $\mu_{\mathrm{mn}} < \mu_{\mathrm{mx}}$, which implies that the interval $[\mu_{\mathrm{mn}}^\ell, \mu_{\mathrm{mx}}^\ell]$ does not reduce to a point. Indeed, when $\ell_2 > \ell_1 \geq 0$ we have

$$\mu_{\rm mn}^{\ell_2} < \mu_{\rm mn}^{\ell_1} < \mu_{\rm mx}^{\ell_1} < \mu_{\rm mx}^{\ell_2}$$
.

Limited-Leverage Constraints

Proof. Let $\Pi_{\ell}(\mu)$ be nonempty for some $\mu \in \mathbb{R}$. Let $\mathbf{f} \in \Pi_{\ell}(\mu)$ and let $\mathbf{f} = \mathbf{f}_+ - \mathbf{f}_-$ be the long-short decomposistion of \mathbf{f} . Because $\mu_{\mathrm{mn}} \mathbf{1} \leq \mathbf{m} \leq \mu_{\mathrm{mx}} \mathbf{1}$, and because $\mathbf{f}_{\pm} \geq \mathbf{0}$, we have

$$\mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{\pm} \leq \mathbf{m}^{\mathrm{T}} \mathbf{f}_{\pm} \leq \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{\pm}$$
 .

Because $\mathbf{1}^{\mathrm{T}}\mathbf{f}=1$ we have

Limited-Leverage

00000000

$$\mathbf{1}^{\mathrm{T}}\mathbf{f}_{+} = \mathbf{1}^{\mathrm{T}}(\mathbf{f} + \mathbf{f}_{-}) = \mathbf{1}^{\mathrm{T}}\mathbf{f} + \mathbf{1}^{\mathrm{T}}\mathbf{f}_{-} = 1 + \mathbf{1}^{\mathrm{T}}\mathbf{f}_{-}.$$

Because $\mathbf{f} \in \Pi_{\ell}$ we have $\mathbf{1}^{T}\mathbf{f}_{-} \leq \ell$. These facts combine to give

$$\begin{split} \boldsymbol{\mu} &= \mathbf{m}^{\!\mathrm{T}} \mathbf{f} = \mathbf{m}^{\!\mathrm{T}} \mathbf{f}_{+} - \mathbf{m}^{\!\mathrm{T}} \mathbf{f}_{-} \leq \boldsymbol{\mu}_{\mathrm{mx}} \mathbf{1}^{\!\mathrm{T}} \mathbf{f}_{+} - \boldsymbol{\mu}_{\mathrm{mn}} \mathbf{1}^{\!\mathrm{T}} \mathbf{f}_{-} \\ &= \boldsymbol{\mu}_{\mathrm{mx}} + (\boldsymbol{\mu}_{\mathrm{mx}} - \boldsymbol{\mu}_{\mathrm{mn}}) \mathbf{1}^{\!\mathrm{T}} \mathbf{f}_{-} \\ &\leq \boldsymbol{\mu}_{\mathrm{mx}} + \ell(\boldsymbol{\mu}_{\mathrm{mx}} - \boldsymbol{\mu}_{\mathrm{mn}}) = \boldsymbol{\mu}_{\mathrm{mx}}^{\ell} \,. \end{split}$$

Limited-Leverage Constraints

Similarly,

Limited-Leverage

00000000

$$\begin{split} \mu &= \mathbf{m}^{\mathrm{T}} \mathbf{f} = \mathbf{m}^{\mathrm{T}} \mathbf{f}_{+} - \mathbf{m}^{\mathrm{T}} \mathbf{f}_{-} \geq \mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{+}^{-} \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \\ &= \mu_{\mathrm{mn}} - (\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}) \mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \\ &\geq \mu_{\mathrm{mn}} - \ell(\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}) = \mu_{\mathrm{mn}}^{\ell} \,. \end{split}$$

Therefore $\mu \in [\mu_{mn}^{\ell}, \mu_{mv}^{\ell}]$. Because $\mathbf{f} \in \Pi_{\ell}(\mu)$ was arbitrary, we conclude that if $\Pi_{\ell}(\mu)$ is nonempty then $\mu \in [\mu_{mn}^{\ell}, \mu_{mv}^{\ell}]$.

Conversely, first choose \mathbf{e}_{mn} and \mathbf{e}_{mv} so that

$$\mathbf{e}_{\mathrm{mn}} = \mathbf{e}_{i}$$
 for any i that satisfies $m_{i} = \mu_{\mathrm{mn}}$, $\mathbf{e}_{\mathrm{mx}} = \mathbf{e}_{i}$ for any j that satisfies $m_{j} = \mu_{\mathrm{mx}}$.



00000000

Limited-Leverage Constraints

Now let $\mu \in [\mu_{mn}^\ell, \mu_{mx}^\ell]$ and set

$$\mathbf{f} = \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mathbf{e}_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mathbf{e}_{\mathrm{mx}} \,. \label{eq:force_fit}$$

Because ${f 1}^T{f e}_{mn}={f 1}^T{f e}_{mx}=1$, ${f m}^T{f e}_{mn}=\mu_{mn}$, and ${f m}^T{f e}_{mx}=\mu_{mx}$, we see

$$\begin{split} \mathbf{1}^{\mathrm{T}}\mathbf{f} &= \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mathbf{1}^{\mathrm{T}}\mathbf{e}_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mathbf{1}^{\mathrm{T}}\mathbf{e}_{\mathrm{mx}} \\ &= \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} = 1 \,, \\ \mathbf{m}^{\mathrm{T}}\mathbf{f} &= \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mathbf{m}^{\mathrm{T}}\mathbf{e}_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mathbf{m}^{\mathrm{T}}\mathbf{e}_{\mathrm{mx}} \\ &= \frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mu_{\mathrm{mn}} + \frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \, \mu_{\mathrm{mx}} = \mu \,. \end{split}$$

Hence, $\mathbf{f} \in \Pi_{\infty}(\mu)$. We still need to show that $\mathbf{f} \in \Pi_{\ell}(\mu)$.

00000000

Limited-Leverage Constraints

Because $\mu \in [\mu_{mn}^\ell, \mu_{mx}^\ell]$ the allocations of ${\bf f}$ are bounded by

$$\begin{split} -\ell &= \frac{\mu_{\rm mx} - \mu_{\rm mx}^\ell}{\mu_{\rm mx} - \mu_{\rm mn}} \leq \frac{\mu_{\rm mx} - \mu}{\mu_{\rm mx} - \mu_{\rm mn}} \leq \frac{\mu_{\rm mx} - \mu_{\rm mn}^\ell}{\mu_{\rm mx} - \mu_{\rm mn}} = 1 + \ell \,, \\ -\ell &= \frac{\mu_{\rm mn}^\ell - \mu_{\rm mn}}{\mu_{\rm mx} - \mu_{\rm mn}} \leq \frac{\mu - \mu_{\rm mn}}{\mu_{\rm mx} - \mu_{\rm mn}} \leq \frac{\mu_{\rm mx}^\ell - \mu_{\rm mn}}{\mu_{\rm mx} - \mu_{\rm mn}} = 1 + \ell \,. \end{split}$$

Because they sum to 1, at most one of them is negative. Hence,

$$\mathbf{1}^{\mathrm{T}}\mathbf{f}_{-} \leq \max \left\{ -\frac{\mu_{\mathrm{mx}} - \mu}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \,,\, -\frac{\mu - \mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}} - \mu_{\mathrm{mn}}} \right\} \leq \ell \,.$$

Hence, $\mathbf{f} \in \Pi_{\ell}(\mu)$. Therefore if $\mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}]$ then $\Pi_{\ell}(\mu)$ is nonempty. \square

Limited-Leverage Constraints

Remark. For every $\mu \in [\mu_{\min}^{\ell}, \mu_{\max}^{\ell}]$ the set $\Pi_{\ell}(\mu)$ is a nonempty, closed, bounded, convex polytope of dimension at most N-2.

- When N=2 it is a point.
- When N=3 it is either a point or a line segment.
- When N=4 it is either a point, a line segment, or a convex polygon.

Limited-Leverage

The set Π_ℓ in \mathbb{R}^N of all portfolio allocations with leverage limit ℓ is associated with the set $\Sigma(\Pi_\ell)$ in the $\sigma\mu$ -plane of volatilities and return means given by

$$\Sigma(\Pi_{\ell}) = \left\{ \ (\sigma, \mu) \in \mathbb{R}^2 \ : \ \sigma = \sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}} \ , \ \mu = \mathbf{m}^{\mathrm{T}} \mathbf{f} \ , \ \mathbf{f} \in \Pi_{\ell} \ \right\} \ .$$

The set $\Sigma(\Pi_\ell)$ is the image in \mathbb{R}^2 of the polytope Π_ℓ in \mathbb{R}^N under the mapping $\mathbf{f} \mapsto (\sigma, \mu)$. Because the set Π_ℓ is compact (closed and bounded) and the mapping $\mathbf{f} \mapsto (\sigma, \mu)$ is continuous, the set $\Sigma(\Pi_\ell)$ is compact.

Limited-Leverage

We have seen that the set $\Pi_\ell(\mu)$ of all ℓ -limited portfolio allocations with return mean μ is nonempty if and only if $\mu \in [\mu_{\rm mn}^\ell, \mu_{\rm mx}^\ell]$. Hence, $\Sigma(\Pi_\ell)$ can be expressed as

$$\Sigma(\Pi_{\ell}) = \left\{ \left(\sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}}, \, \mu \right) : \, \mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}], \, \mathbf{f} \in \Pi_{\ell}(\mu) \, \right\}.$$

The points on the boundary of $\Sigma(\Pi_\ell)$ that correspond to those ℓ -limited portfolios that have less volatility than every other ℓ -limited portfolio with the same return mean is called the ℓ -limited frontier.

Limited-Leverage

The ℓ -limited frontier is the curve in the $\sigma\mu$ -plane given by the equation

$$\sigma = \sigma_{\mathrm{f}}^{\ell}(\mu) \quad \mathsf{over} \quad \mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}] \,,$$

where the value of $\sigma_f^\ell(\mu)$ is obtained for each $\mu \in [\mu_{mn}^\ell, \mu_{mx}^\ell]$ by solving the constrained minimization problem

$$\sigma_{\mathrm{f}}^{\ell}(\mu)^2 = \min \left\{ \; \sigma^2 \; : \; (\sigma,\mu) \in \Sigma(\Pi_{\ell}) \; \right\} = \min \left\{ \; \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} \; : \; \mathbf{f} \in \Pi_{\ell}(\mu) \; \right\} \; .$$

Because the function $\mathbf{f} \mapsto \mathbf{f}^T \mathbf{V} \mathbf{f}$ is continuous over the compact set $\Pi_{\ell}(\mu)$, a minimizer exists.

Because V is positive definite, the function $f \mapsto f^T V f$ is strictly convex over the convex set $\Pi_{\ell}(\mu)$, whereby the minimizer is unique.

If we denote this unique minimizer by $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ then for every $\mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mn}}^{\ell}]$ the function $\sigma_{\rm f}^{\ell}(\mu)$ is given by

$$\sigma_{\mathrm{f}}^{\ell}(\mu) = \sqrt{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)^{\mathrm{T}}\mathbf{V}\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)},$$

where $\mathbf{f}_{\mathbf{f}}^{\ell}(\mu)$ is

Limited-Leverage

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu) = \arg\min\left\{ \; \frac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f} \; : \; \mathbf{f} \in \Pi_{\ell}(\mu) \; \right\} \, .$$

Here $\arg\min$ is read "the argument that minimizes". It means that $\mathbf{f}_{\mathbf{f}}^{\ell}(\mu)$ is the minimizer of the function $\mathbf{f} \mapsto \frac{1}{2} \mathbf{f}^T \mathbf{V} \mathbf{f}$ subject to the given constraints. Remark. This problem cannot be solved by Lagrange multipliers because the set $\Pi_{\ell}(\mu)$ is defined by inequality constraints. It is harder to solve analytically than the analogous minimization problem for portfolios with unlimited leverage. Therefore we will first present a numerical approach that can generally be applied.

Limited-Leverage

Because the function being minimized is quadratic in **f** while the constraints are linear in f, this is called a quadratic programming problem. It can be solved for a particular V, m, and μ by using either the Matlab command "quadprog" or an equivalent command in some other language.

The Matlab command quadprog($A, b, C, d, C_{eq}, d_{eq}$) returns the solution of a quadratic programming problem in the standard form

$$\arg\min\Bigl\{\ \tfrac{1}{2}\textbf{x}^{\mathrm{T}}\textbf{A}\textbf{x}+\textbf{b}^{\mathrm{T}}\textbf{x}\ :\ \textbf{x}\in\mathbb{R}^{\textit{M}}\ ,\ \textbf{C}\textbf{x}\leq\textbf{d}\ ,\ \textbf{C}_{\mathrm{eq}}\textbf{x}=\textbf{d}_{\mathrm{eq}}\ \Bigr\}\ ,$$

where $\mathbf{A} \in \mathbb{R}^{M \times M}$ is nonnegative definite, $\mathbf{b} \in \mathbb{R}^{M}$, $\mathbf{C} \in \mathbb{R}^{K \times M}$, $\mathbf{d} \in \mathbb{R}^{K}$. $\mathbf{C}_{eq} \in \mathbb{R}^{K_{eq} \times M}$, and $\mathbf{d}_{eq} \in \mathbb{R}^{K_{eq}}$. Here K and K_{eq} are the number of inequality and equality constraints respectively.

Limited-Leverage

Given **V**, **m**, and $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$, the problem that we want to solve to obtain $\mathbf{f}_{\mathbf{f}}^{\ell}(\mu)$ is

$$\arg\min\Bigl\{\ \tfrac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f}\ :\ \mathbf{f}\in\mathbb{R}^{N}\,,\ \|\mathbf{f}\|_{1}\leq1+2\ell\,,\ \mathbf{1}^{\mathrm{T}}\mathbf{f}=1\,,\ \mathbf{m}^{\mathrm{T}}\mathbf{f}=\mu\ \Bigr\}\ .$$

By comparing this with the standard quadratic programming problem on the previous slide we see that if we set $\mathbf{x} = \mathbf{f}$ then M = N, $K_{\text{eq}} = 2$, and

$$\mathbf{A} = \mathbf{V}\,,\quad \mathbf{b} = \mathbf{0}\,,\quad \mathbf{C}_{\mathrm{eq}} = egin{pmatrix} \mathbf{1}^{\mathrm{T}} \\ \mathbf{m}^{\mathrm{T}} \end{pmatrix},\quad \mathbf{d}_{\mathrm{eq}} = egin{pmatrix} 1 \\ \mu \end{pmatrix}.$$

However, it is not as clear how to express the inequality constraint $\|\mathbf{f}\|_1 \leq 1 + 2\ell$ in the standard form $\mathbf{Cf} \leq \mathbf{d}$.

Limited-Leverage

The inequality $\|\mathbf{f}\|_1 \leq 1 + 2\ell$ can be expressed as the inequality constraints

$$\pm f_1 \pm f_2 \pm \cdots \pm f_{N-1} \pm f_N \leq 1 + 2\ell,$$

where there are 2^N choices of \pm signs. When the \pm are chosen to be the same sign then the inequality constraint is always satisfied because of the the equality constraint $\mathbf{1}^{\mathrm{T}}\mathbf{f}=1$. That leaves 2^N-2 inequality constraints that still need to be imposed.

The number $2^N - 2$ grows too fast with N for this approach to be useful for all but small values of N. For example, when N=9 we have $2^{N}-2=510$. With this many inequality constraints quadprog could suffer numerical difficulties. This raises the following question.

Are all of these $2^N - 2$ inequality constraints needed?

Limited-Leverage

The answer is yes if we insist on setting $\mathbf{x} = \mathbf{f}$. However, the answer is no if we enlarge the dimension of \mathbf{x} .

To understand why the answer is yes if we insist on setting ${\bf x}={\bf f}$, consider any of these inequality constraints written along with the equality constraint ${\bf 1}^T{\bf f}=1$ as

$$\pm f_1 \pm f_2 \pm \cdots \pm f_{N-1} \pm f_N \le 1 + 2\ell$$
,
 $f_1 + f_2 + \cdots + f_{N-1} + f_N = 1$.

By adding these and dividing by 2 we obtain

$$\sum_{i\in S}f_i\leq 1+\ell\,,$$

where S is the subset of indices i with a plus in the inequality constraint.

Limited-Leverage

For every $S \subset \{1,2,\cdots,N\}$ define the i^{th} entry of $\mathbf{1}_S \in \mathbb{R}^N$ by

$$\operatorname{ent}_i(\mathbf{1}_S) = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$$

Then the $2^N - 2$ inequality conatraints can be expressed as

$$\mathbf{1}_{S}^{T}\mathbf{f}\leq 1+\ell\quad\text{for every nonempty, proper }S\subset\left\{ 1,2,\cdots,\textit{N}\right\} .$$

The equality constraint ${\bf 1}^{\rm T}{\bf f}=1$ can be used to show that these 2^N-2 inequality conatraints can also be expressed as

$$-\ell \leq \mathbf{1}_S^{\mathrm{T}}\mathbf{f}$$
 for every nonempty, proper $S \subset \{1,2,\cdots,N\}$.

Limited-Leverage

To understand why the answer is no if we enlarge the dimension of x, consider the following equivalences.

$$\begin{split} & \Pi_{\ell} = \left\{\mathbf{f} \in \mathbb{R}^{\mathcal{N}} \ : \ \mathbf{1}^{\mathrm{T}}\mathbf{f} = 1 \,, \ \mathbf{s} \in \mathbb{R}^{\mathcal{N}} \,, \ \mathbf{s} \geq \mathbf{0} \,, \ (\mathbf{f} + \mathbf{s}) \geq \mathbf{0} \,, \ \mathbf{1}^{\mathrm{T}}\mathbf{s} \leq \ell \,\right\} \\ & = \left\{\mathbf{f} \in \mathbb{R}^{\mathcal{N}} \ : \ \mathbf{1}^{\mathrm{T}}\mathbf{f} = 1 \,, \ \mathbf{g} \in \mathbb{R}^{\mathcal{N}} \,, \ (\mathbf{g} \pm \mathbf{f}) \geq \mathbf{0} \,, \ \mathbf{1}^{\mathrm{T}}\mathbf{g} \leq 1 + 2\ell \,\right\} \,. \end{split}$$

The two sets on the right-hand side above are equal by the relations

$$s = \frac{1}{2}(g - f),$$
 $g = f + 2s.$

We must show that they are also equal to Π_{ℓ} . This is left as an exercise.

Quadratic Programming

If we use the first equivalence then the problem that we want to solve to obtain $\mathbf{f}_{\mathbf{f}}^{\ell}(\mu)$ is

$$\arg\min\Bigl\{\ \tfrac{1}{2}\mathbf{f}^T\mathbf{V}\mathbf{f}\ :\ \mathbf{s}\geq\mathbf{0}\,,\ (\mathbf{f}+\mathbf{s})\geq\mathbf{0}\,,\ \mathbf{1}^T\mathbf{s}\leq\ell\,,\ \mathbf{1}^T\mathbf{f}=1\,,\ \mathbf{m}^T\mathbf{f}=\mu\ \Bigr\}\ .$$

By comparing this with the standard quadratic programming problem we see that if we set $\mathbf{x} = (\mathbf{f} \ \mathbf{s})^{\mathrm{T}}$ then M = 2N, K = 2N + 1, $K_{\mathrm{eq}} = 2$, and

$$\begin{split} \mathbf{A} &= \begin{pmatrix} \mathbf{V} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \\ \mathbf{C} &= \begin{pmatrix} -\mathbf{I} & -\mathbf{I} \\ \mathbf{O} & -\mathbf{I} \\ \mathbf{0}^\mathrm{T} & \mathbf{1}^\mathrm{T} \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \ell \end{pmatrix}, \quad \mathbf{C}_\mathrm{eq} = \begin{pmatrix} \mathbf{1}^\mathrm{T} & \mathbf{0}^\mathrm{T} \\ \mathbf{m}^\mathrm{T} & \mathbf{0}^\mathrm{T} \end{pmatrix}, \quad \mathbf{d}_\mathrm{eq} = \begin{pmatrix} \mathbf{1} \\ \mu \end{pmatrix} \,, \end{split}$$

where **O** and **I** are the $N \times N$ zero and identity matrices.

Quadratic Programming

If we use the second equivalence then the problem that we want to solve to obtain $\mathbf{f}_{\mathfrak{s}}^{\ell}(\mu)$ is

00000000

$$\arg\min\Bigl\{\ \tfrac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{V}\mathbf{f}\ :\ (\mathbf{g}\pm\mathbf{f})\geq\mathbf{0}\ ,\ \mathbf{1}^{\mathrm{T}}\mathbf{g}\leq1+2\ell\ ,\ \mathbf{1}^{\mathrm{T}}\mathbf{f}=1\ ,\ \mathbf{m}^{\mathrm{T}}\mathbf{f}=\mu\ \Bigr\}\ .$$

By comparing this with the standard quadratic programming problem we see that if we set $\mathbf{x} = (\mathbf{f} \ \mathbf{g})^{\mathrm{T}}$ then M = 2N, K = 2N + 1, $K_{\mathrm{eq}} = 2$, and

$$\begin{split} \mathbf{A} &= \begin{pmatrix} \mathbf{V} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \\ \mathbf{C} &= \begin{pmatrix} -\mathbf{I} & -\mathbf{I} \\ \mathbf{I} & -\mathbf{I} \\ \mathbf{0}^\mathrm{T} & \mathbf{1}^\mathrm{T} \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ 1+2\ell \end{pmatrix}, \quad \mathbf{C}_\mathrm{eq} = \begin{pmatrix} \mathbf{1}^\mathrm{T} & \mathbf{0}^\mathrm{T} \\ \mathbf{m}^\mathrm{T} & \mathbf{0}^\mathrm{T} \end{pmatrix}, \quad \mathbf{d}_\mathrm{eq} = \begin{pmatrix} \mathbf{1} \\ \mu \end{pmatrix}, \end{split}$$

where **O** and **I** are the $N \times N$ zero and identity matrices.

Quadratic Programming

In either case $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ can be obtained as the first N entries of the output x of a quadprog command that is formated as

$$x = \mathsf{quadprog}(A, b, C, d, Ceq, deq),$$

where the matrices A, C, and Ceq, and the vectors b, d, and deq are given on the previous slides.

Remark. By doubling the dimension of the vector \mathbf{x} from N to 2N we have reduced the number of inequality constraints from $2^N - 2$ to 2N + 1. When N = 9 this is a reduction from 510 to 19!

Remark. There are other ways to use quadprog to obtain $\mathbf{f}_{\mathfrak{s}}^{\ell}(\mu)$. Documentation for this command is easy to find on the web.

When computing an ℓ -limited frontier, it helps to know some general properties of the function $\sigma_f^{\ell}(\mu)$. These include:

- ullet $\sigma_{
 m f}^\ell(\mu)$ is ${\it continuous}$ over $[\mu_{
 m mn}^\ell,\mu_{
 m mx}^\ell]$;
- $\sigma_{\rm f}^\ell(\mu)$ is *strictly convex* over $[\mu_{\rm mn}^\ell, \mu_{\rm mx}^\ell]$;
- $\sigma_{\rm f}^\ell(\mu)$ is *piecewise hyperbolic* over $[\mu_{\rm mn}^\ell, \mu_{\rm mx}^\ell]$.

This means that $\sigma_{\rm f}^\ell(\mu)$ is built up from segments of hyperbolas that are connected at a finite number of *nodes* that correspond to points in the interval $(\mu_{\rm mn}^\ell, \mu_{\rm mx}^\ell)$ where $\sigma_{\rm f}^\ell(\mu)$ has either a jump discontinuity in its first derivative or a jump discontinuity in its second derivative.

Guided by these facts we now show how an ℓ -limited frontier can be approximated numerically with the Matlab command quadprog.

Limited-Leverage

Computing Limited-Leverage Frontiers

First, partition the interval $[\mu_{mn}^\ell,\mu_{mx}^\ell]$ as

$$\mu_{\rm mn}^{\ell} = \mu_0 < \mu_1 < \dots < \mu_{n-1} < \mu_n = \mu_{\rm mx}^{\ell}$$
.

For example, set $\mu_k = \mu_{\rm mn}^\ell + k(\mu_{\rm mx}^\ell - \mu_{\rm mn}^\ell)/n$ for a uniform partition. Pick n large enough to resolve all the features of the ℓ -limited frontier. There should be at most one node in each subinterval $[\mu_{k-1}, \mu_k]$.

Second, for every $k=0, \dots, n$ use quadprog to compute $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k)$. (This computation will not be exact, but we will speak as if it is.) The allocations $\{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_k)\}_{k=0}^n$ should be saved.

Third, for every $k = 0, \dots, n$ compute σ_k by

$$\sigma_{\mathbf{k}} = \sigma_{\mathrm{f}}^{\ell}(\mu_{\mathbf{k}}) = \sqrt{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{\mathbf{k}})^{\mathrm{T}}\mathbf{V}\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{\mathbf{k}})} \,.$$

00000

Computing Limited-Leverage Frontiers

Remark. There is typically a unique m_i such that $\mu_{mn}^{\ell} = m_i$, in which case we have

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_0) = \mathbf{e}_i \,, \qquad \sigma_0 = \sqrt{\mathbf{v}_{ii}} \,.$$

Similarly, there is typically a unique m_i such that $\mu_{\rm mx}^\ell = m_i$, in which case we have

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu_{n}) = \mathbf{e}_{j}, \qquad \sigma_{n} = \sqrt{\mathsf{v}_{jj}}.$$

Finally, we "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ to build an approximation to the ℓ -limited frontier in the $\sigma\mu$ -plane. This can be done by linear interpolation. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$\tilde{\sigma}_{\rm f}^{\ell}(\mu) = \frac{\mu_{k} - \mu}{\mu_{k} - \mu_{k-1}} \, \sigma_{k-1} + \frac{\mu - \mu_{k-1}}{\mu_{k} - \mu_{k-1}} \, \sigma_{k} \, .$$

Limited-Leverage

Computing Limited-Leverage Frontiers

A better way to "connect the dots" between the points $\{(\sigma_k, \mu_k)\}_{k=0}^n$ is motivated by the two-fund property. Specifically, for every $\mu \in (\mu_{k-1}, \mu_k)$ we set

$$\tilde{\mathbf{f}}_{f}^{\ell}(\mu) = \frac{\mu_{k} - \mu}{\mu_{k} - \mu_{k-1}} \, \mathbf{f}_{f}^{\ell}(\mu_{k-1}) + \frac{\mu - \mu_{k-1}}{\mu_{k} - \mu_{k-1}} \, \mathbf{f}_{f}^{\ell}(\mu_{k}) \,,$$

and then set

Limited-Leverage

$$ilde{\sigma}_{\mathrm{f}}^{\ell}(\mu) = \sqrt{\mathbf{\tilde{f}}_{\mathrm{f}}^{\ell}(\mu)^{\mathrm{T}}\mathbf{V}\mathbf{\tilde{f}}_{\mathrm{f}}^{\ell}(\mu)}$$
 .

Remark. This will be a very good approximation if n is large enough. Over each interval (μ_{k-1}, μ_k) it approximates $\sigma_f^{\ell}(\mu)$ with a hyperbola rather than with a line.

Computing Limited-Leverage Frontiers

Remark. Because $\mathbf{f}_{\mathfrak{f}}^{\ell}(\mu_k) \in \Pi_{\ell}(\mu_k)$ and $\mathbf{f}_{\mathfrak{f}}^{\ell}(\mu_{k-1}) \in \Pi_{\ell}(\mu_{k-1})$, we can show that

$$\mathbf{\tilde{f}}_{\mathrm{f}}^{\ell}(\mu) \in \Pi_{\ell}(\mu) \quad \text{for every } \mu \in \left(\mu_{k-1}, \mu_{k}\right).$$

Therefore $\tilde{\sigma}_{\ell}^{\ell}(\mu)$ gives an approximation to the ℓ -limited frontier that lies on or to the right of the ℓ -limited frontier in the $\sigma\mu$ -plane.

Remark. When there are no nodes in the interval (μ_{k-1}, μ_k) then we can use the two-fund property to show that $\tilde{\sigma}_{\mathfrak{s}}^{\ell}(\mu) = \sigma_{\mathfrak{s}}^{\ell}(\mu)$.

Limited-Leverage

General Portfolio with Two Risky Assets

Recall the portfolio of two risky assets with mean vector ${\bf m}$ and covarience matrix ${\bf V}$ given by

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$$
, $\mathbf{V} = \begin{pmatrix} v_{11} & v_{12} \\ v_{12} & v_{22} \end{pmatrix}$.

Without loss of generality we can assume that $m_1 < m_2$. Then $\mu_{\rm mn} = m_1$, $\mu_{\rm mx} = m_2$ and

$$\mu_{
m mn}^\ell = m_1 - \ell(m_2 - m_1) \,, \qquad \mu_{
m mn}^\ell = m_2 + \ell(m_2 - m_1) \,.$$

Recall that for every $\mu \in \mathbb{R}$ the unique portfolio allocation that satisfies the constraints $\mathbf{1}^T\mathbf{f}=1$ and $\mathbf{m}^T\mathbf{f}=\mu$ is

$$\mathbf{f} = \mathbf{f}(\mu) = \frac{1}{m_2 - m_1} \begin{pmatrix} m_2 - \mu \\ \mu - m_1 \end{pmatrix}.$$

Clearly $\mathbf{f}(\mu) \in \Pi_{\ell}$ if and only if $\mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}]$.

Two Assets

Therefore the set $\Pi_{\ell}(\mu)$ is given by

Limited-Leverage

$$\Pi_{\ell} = \{ \mathbf{f}(\mu) : \mu \in [\mu_{\min}^{\ell}, \mu_{\max}^{\ell}] \}.$$

In other words, the set Π_{ℓ} is the line segment in \mathbb{R}^2 that is the image of the interval $[\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ under the affine mapping $\mu \mapsto \mathbf{f}(\mu)$.

Because for every $\mu \in [\mu_{mn}^{\ell}, \mu_{mx}^{\ell}]$ the set $\Pi_{\ell}(\mu)$ consists of the single portfolio $\mathbf{f}(\mu)$, the minimizer of $\mathbf{f}^T\mathbf{V}\mathbf{f}$ over $\Pi_{\ell}(\mu)$ is $\mathbf{f}(\mu)$. Therefore the ℓ -limited frontier portfolios are

$$\mathbf{f}_{\mathrm{f}}^{\ell}(\mu) = \mathbf{f}(\mu) \qquad ext{for } \mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}] \,,$$

and the ℓ -limited frontier is given by

$$\sigma = \sigma_{\mathrm{f}}^{\ell}(\mu) = \sqrt{\mathbf{f}(\mu)^{\!\mathrm{T}}\mathbf{V}\,\mathbf{f}(\mu)} \qquad \text{for } \mu \in [\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}] \,.$$

Hence, the ℓ -limited frontier is simply a segment of the frontier hyperbola. It has no nodes.

Recall the portfolio of three risky assets with mean vector **m** and covarience matrix **V** given by

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$$
, $\mathbf{V} = \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{12} & v_{22} & v_{23} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$.

Without loss of generality we can assume that

$$m_1 \leq m_2 \leq m_3$$
, $m_1 < m_3$.

Then $\mu_{\rm mn}=m_1$, $\mu_{\rm mx}=m_3$ and

$$\mu_{\mathrm{mn}}^{\ell} = m_1 - \ell(m_3 - m_1), \qquad \mu_{\mathrm{mn}}^{\ell} = m_3 + \ell(m_3 - m_1).$$

Limited-Leverage

Recall that for every $\mu \in \mathbb{R}$ the portfolios that satisfies the constraints $\mathbf{1}^{\mathrm{T}}\mathbf{f}=\mathbf{1}$ and $\mathbf{m}^{\mathrm{T}}\mathbf{f}=\mu$ are

$$\mathbf{f} = \mathbf{f}(\mu, \phi) = \mathbf{f}_{13}(\mu) + \phi \mathbf{n}$$
, for some $\phi \in \mathbb{R}$,

where

Limited-Leverage

$$\mathbf{f}_{13}(\mu) = \frac{1}{m_3 - m_1} \begin{pmatrix} m_3 - \mu \\ 0 \\ \mu - m_1 \end{pmatrix}, \qquad \mathbf{n} = \frac{1}{m_3 - m_1} \begin{pmatrix} m_2 - m_3 \\ m_3 - m_1 \\ m_1 - m_2 \end{pmatrix}.$$

It can be shown that $\mathbf{f}(\mu, \phi) \in \Pi_{\ell}$ if and only if $\mu \in [\mu_{mn}^{\ell}, \mu_{mv}^{\ell}]$, $\phi \in [-\ell, 1+\ell]$, and

$$-\ell \le \frac{m_3 - \mu}{m_3 - m_1} - \phi \frac{m_3 - m_2}{m_3 - m_1} \le 1 + \ell,$$

$$-\ell \le \frac{\mu - m_1}{m_3 - m_1} - \phi \frac{m_2 - m_1}{m_3 - m_1} \le 1 + \ell.$$

This region can be expressed as

$$\phi_{\mathrm{mn}}^{\ell}(\mu) \le \phi \le \phi_{\mathrm{mx}}^{\ell}(\mu)$$
,

where

Limited-Leverage

$$\phi_{\mathrm{mn}}^{\ell}(\mu) = -\min\left\{rac{\mu - \mu_{\mathrm{mn}}^{\ell}}{m_{3} - m_{2}}, \; \ell \; , \; rac{\mu_{\mathrm{mx}}^{\ell} - \mu}{m_{2} - m_{1}}
ight\} \; , \ \phi_{\mathrm{mx}}^{\ell}(\mu) = \min\left\{rac{\mu - \mu_{\mathrm{mn}}^{\ell}}{m_{2} - m_{1}} \; , \; 1 + \ell \; , \; rac{\mu_{\mathrm{mx}}^{\ell} - \mu}{m_{3} - m_{2}}
ight\} \; .$$

When $\ell > 0$ it is the hexagon \mathcal{H}_{ℓ} in the $\mu\phi$ -plane whose vertices are the six distinct points

$$egin{aligned} \left(\mu_{\mathrm{mn}}^{\ell},0
ight), & \left(m_{1}-\ell(m_{2}-m_{1}),-\ell
ight), & \left(m_{2}-\ell(m_{3}-m_{2}),1+\ell
ight), \ \left(\mu_{\mathrm{mx}}^{\ell},0
ight), & \left(m_{3}+\ell(m_{3}-m_{2}),-\ell
ight), & \left(m_{2}+\ell(m_{2}-m_{1}),1+\ell
ight). \end{aligned}$$

Therefore the set Π_{ℓ} is given by

Limited-Leverage

$$\Pi_{\ell} = \{ \mathbf{f}(\mu, \phi) : (\mu, \phi) \in \mathcal{H}_{\ell} \}.$$

In other words, the set Π_{ℓ} is the hexagon in \mathbb{R}^3 that is the image of the hexagon \mathcal{H}_{ℓ} under the affine mapping $(\mu, \phi) \mapsto \mathbf{f}(\mu, \phi)$.

Because for every $\mu \in [\mu_{mn}^{\ell}, \mu_{mn}^{\ell}]$ the set $\Pi_{\ell}(\mu)$ is the intersection of the hexagon Π_{ℓ} with the plane $\{\mathbf{f} \in \mathbb{R}^3 : \mathbf{m}^T \mathbf{f} = \mu\}$. This is a line segment that might be a single point. It is given by

$$\Pi_{\ell}(\mu) = \left\{ \mathbf{f}(\mu, \phi) : \phi_{\mathrm{mn}}^{\ell}(\mu) \le \phi \le \phi_{\mathrm{mx}}^{\ell}(\mu) \right\}.$$

In other words, the line segment $\Pi_{\ell}(\mu)$ in \mathbb{R}^3 is the image of the interval $[\phi_{mn}^{\ell}(\mu), \phi_{mv}^{\ell}(\mu)]$ under the affine mapping $\phi \mapsto \mathbf{f}(\mu, \phi)$.

Hence, the point on the ℓ -limited frontier associated with $\mu \in [\mu_{mn}^{\ell}, \mu_{mn}^{\ell}]$ is $(\sigma_f^{\ell}(\mu), \mu)$ where $\sigma_f^{\ell}(\mu)$ solves the constrained minimization problem

$$\begin{split} \sigma_{\mathrm{f}}^{\ell}(\mu)^2 &= \min \left\{ \; \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f} \; : \; \mathbf{f} \in \Pi_{\ell}(\mu) \; \right\} \\ &= \min \left\{ \; \mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi) \; : \; \phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi \leq \phi_{\mathrm{mx}}^{\ell}(\mu) \; \right\} \; . \end{split}$$

Because the objective function

Limited-Leverage

$$\mathbf{f}(\mu,\phi)^{\mathrm{T}}\mathbf{V}\mathbf{f}(\mu,\phi) = \mathbf{f}_{13}(\mu)^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + 2\phi\,\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu) + \phi^{2}\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{n}$$

is a quadratic in ϕ , we see that it has a unique global minimizer at

$$\phi = \phi_{\mathrm{f}}(\mu) = -rac{\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{f}_{13}(\mu)}{\mathbf{n}^{\mathrm{T}}\mathbf{V}\mathbf{n}}$$
 .

This global minimizer corresponds to the frontier. It will be the minimizer of our constrained minimization problem for the ℓ -limited frontier if and only if $\phi_{mn}^{\ell} \leq \phi_f(\mu) \leq \phi_{mx}^{\ell}(\mu)$.

General Portfolio with Three Risky Assets

If $\phi_{\rm f}(\mu) < \phi_{\rm mn}^\ell(\mu)$ then the objective function is increasing over $[\phi_{\rm mn}^\ell(\mu), \phi_{\rm mx}^\ell(\mu)]$, whereby its minimizer is $\phi = \phi_{\rm mn}^\ell(\mu)$.

If $\phi_{mx}^{\ell}(\mu) < \phi_f(\mu)$ then the objective function is decreasing over $[\phi_{mn}^{\ell}(\mu), \phi_{mx}^{\ell}(\mu)]$, whereby its minimizer is $\phi = \phi_{mx}^{\ell}(\mu)$.

Hence, the minimizer $\phi_{\mathrm{f}}^{\ell}(\mu)$ of our constrained minimization problem is

$$\begin{split} \phi_f^\ell(\mu) &= \begin{cases} \phi_{mn}^\ell(\mu) & \text{if } \phi_f(\mu) < \phi_{mn}^\ell(\mu) \\ \phi_f(\mu) & \text{if } \phi_{mn}^\ell(\mu) \leq \phi_f(\mu) \leq \phi_{mx}^\ell(\mu) \\ \phi_{mx}^\ell(\mu) & \text{if } \phi_{mx}^\ell(\mu) < \phi_f(\mu) \end{cases} \\ &= \max \Bigl\{ \phi_{mn}^\ell(\mu) \,, \, \min \Bigl\{ \phi_f(\mu) \,, \, \phi_{mx}^\ell(\mu) \Bigr\} \Bigr\} \\ &= \min \Bigl\{ \max \Bigl\{ \phi_{mn}^\ell(\mu) \,, \, \phi_f(\mu) \Bigr\} \,, \, \phi_{mx}^\ell(\mu) \Bigr\} \;. \end{split}$$

Therefore $\sigma_f^{\ell}(\mu)^2 = \mathbf{f}(\mu, \phi_f^{\ell}(\mu))^T \mathbf{V} \mathbf{f}(\mu, \phi_f^{\ell}(\mu)).$