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Introduction

Suppose that we are considering return histories {ri (d)}Dd=1 for assets
i = 1, · · · , N over a period of D trading days and assign day d a weight
w(d) > 0 such that the weights {w(d)}Dd=1 satisfy

D∑
d=1

w(d) = 1 .

Then the return means, variances, and covariances are given by

mi =
D∑

d=1
w(d) ri (d) ,

vij =
D∑

d=1
w(d)

(
ri (d)−mi

)(
rj(d)−mj

)
.

(1.1)
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Introduction
The return history can be expressed as {r(d)}Dd=1 where

r(d) =

 r1(d)
...

rN(d)

 .

The N-vector of return means m and the N×N-matrix of return variances
and covariances V then can be expressed as

m =

m1
...

mN

 =
D∑

d=1
w(d) r(d) ,

V =

v11 · · · v1N
... . . . ...

vN1 · · · vNN

 =
D∑

d=1
w(d)

(
r(d)−m

) (
r(d)−m

)T
.
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Introduction

We call V the covariance matrix. It also is called the variance/covariance
matrix or the variance matrix.

The most important properties of V:

it is always symmetric,
it is almost always positive definite.

These properties are taught in elementary linear algebra courses, but are so
important that we review them in the next section. In subsequent sections
these properties will then be used to extract statistical information from V.
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Symmetry and Definiteness

Here we review the notions of symmetric and definite matrices.

Definition 1. A real N×N-matrix A is said to be symmetric if AT = A,
where AT is the transpose of A. It is said to be nonnegative definite if

xTAx ≥ 0 for every x ∈ RN .

It is said to be positive definite if

xTAx > 0 for every nonzero x ∈ RN .

Remarks. Clearly, every positive definite matrix is nonnegative definite. A
nonnegative matrix is positive definite if and only if

xTAx = 0 =⇒ x = 0 . (2.2)
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Symmetry and Definiteness

Fact 1. The covariance matrix V is symmetric.
Proof. It is clear from (1.1) that vij = vji , whereby V = VT. �

Fact 2. The covariance matrix V is nonegative definite.
Proof. Let x ∈ RN be arbitrary. Then

xTVx = xT
( D∑

d=1
w(d)

(
r(d)−m

) (
r(d)−m

)T) x

=
D∑

d=1
w(d) xT(r(d)−m

) (
r(d)−m

)Tx

=
D∑

d=1
w(d)

((
r(d)−m

)Tx
)2
≥ 0 .

�
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Symmetry and Definiteness
Fact 3. The covariance matrix V is positive definite if and only if the
vectors {r(d)−m}Dd=1 span RN .
Proof. Because w(d) > 0, the calculation in the previous proof shows
that xTVx = 0 if and only if(

r(d)−m
)Tx = 0 for every d = 1, · · · , D . (2.3)

First, suppose that V is not positive definite. Then by (2.2) there exists an
x ∈ RN such that xTVx = 0 and x 6= 0. This implies by (2.3) that the
vectors {r(d)−m}Dd=1 lie in the hyperplane orthogonal (normal) to x.
Therefore the vectors {r(d)−m}Dd=1 do not span RN .

Conversely, suppose that the vectors {r(d)−m}Dd=1 do not span RN .
Then there must be a nonzero vector x that is orthogonal to their span.
This implies that x satisfies (2.3), whereby xTVx = 0. Therefore V is not
positive definite by (2.2). �
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Symmetry and Definiteness
Remark. The set of vectors {r(d)−m}Dd=1 can span RN only if D ≥ N.
Therefore we require that D ≥ N.
Remark. In practice D will be much larger than N. In the homework and
projects for this course usually N ≤ 10 while D ≥ 42 (often D = 252).
When D is so much greater than N the covariance matrix V will almost
always be positive definite.
Remark. If {r(d)−m}Dd=1 spans RN then {r(d)}Dd=1 also spans RN .
However, the converse need not hold. A counterexample for N = 2 and
any D ≥ 2 can be constructed as follows. Let {m,n} span R2. Let
r(d) = m + h(d)n where h(d) 6= 0 and

D∑
d=1

w(d)h(d) = 0 .

Then {r(d)}Dd=1 spans R2 while {r(d)−m}Dd=1 does not span R2.
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Eigenpairs and Diagonalization
Recall from linear algebra that an eigenpair (λ,q) of a real N×N matrix A
is a scalar λ (possibly complex) and a nonzero vector q (possibly with
complex entries) such that

Aq = λq . (3.4)

An eigenpair is called a real eigenpair when λ and every entry of q is real.

Recall too that if A is real and symmetric then it has N real eigenpairs

(λ1,q1) , (λ2,q2) , · · · (λN ,qN) , (3.5)

such that the eigenvectors {qi}Ni=1 are an orthonormal set. This means
that they satisfy the orthonormality conditions

qT
i qj = δij ≡

{
1 if i = j ,
0 if i 6= j .

(3.6)
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Eigenpairs and Diagonalization

Because the {qi}Ni=1 satisfy the orthonormality conditions (3.6), they form
an orthonormal basis of RN . Every x ∈ RN can be expanded as

x = q1 qT
1x + q2 qT

2x + · · ·+ qN qT
Nx . (3.7)

The numbers {qT
i x}Ni=1 are called the coordinates of x for the orthonormal

basis {qi}Ni=1. The square of the Euclidean norm of x is given by

‖x‖2 = xTx =
(
qT

1x
)2 +

(
qT

2x
)2 + · · ·+

(
qT

Nx
)2
. (3.8)
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Eigenpairs and Diagonalization

Because the {qi}Ni=1 are eigenvectors of A, we see from (3.7) that

Ax = Aq1 qT
1x + Aq2 qT

2x + · · ·+ AqN qT
Nx

= λ1q1 qT
1x + λ2q2 qT

2x + · · ·+ λNqN qT
Nx .

(3.9)

Hence, the {λiqT
i x}Ni=1 are the coordinates of Ax for the orthonormal basis

{qi}Ni=1. Therefore by (3.8) we have

‖Ax‖2 = λ 2
1
(
qT

1x
)2 + λ 2

2
(
qT

2x
)2 + · · ·+ λ 2

N
(
qT

Nx
)2
. (3.10)
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Eigenpairs and Diagonalization
Moreover, A can be expressed in the factored form A = QDQT where D
and Q are the real N×N matrices constructed from the eigenpairs (3.5) as

D =


λ1 0 · · · 0
0 λ2

. . . ...
... . . . . . . 0
0 · · · 0 λN

 , Q =
(

q1 q2 · · · qN
)
. (3.11)

Because the matrix D is a diagonal matrix, this factorization of A is called
a diagonalization of A.

The orthonormality conditions (3.6) satisfied by the vectors {qi}Ni=1 imply
that Q is an orthogonal matrix. This means that Q satisfies

QTQ = I = QQT .
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Eigenpairs and Diagonalization

Remark. The relation QTQ = I is a recasting of the orthonormality
conditions (3.6). The relation I = QQT is equivalent to x = QQTx, which
is a recasting of expansion (3.7). These relations show that Q and QT are
inverses of each other — i.e. that Q−1 = QT and that Q−T = Q.

Other important facts are that if A is a real symmetric matrix then:
• it is nonnegative definite if and only if all its eigenvalues are nonnegative;
• it is positive definite if and only if all its eigenvalues are positive.
Proof. The (=⇒) directions of these characterizations follow from the fact
that if (λ,q) is an eigenpair of A that is normalized so that qTq = 1 then

λ = λqTq = qT(λq) = qT(Aq) = qTAq .
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Eigenpairs and Diagonalization

The (⇐=) directions of these characterizations use the full power of the
orthonormality conditions (3.6) as embodied by expansion (3.9),

Ax = λ1q1 qT
1x + λ2q2 qT

2x + · · ·+ λNqN qT
Nx .

By taking the scalar product of this expansion with x we obtain

xTAx = λ1
(
qT

1x
)2 + λ2

(
qT

2x
)2 + · · ·+ λN

(
qT

Nx
)2
.

It is thereby clear that:
• if λi ≥ 0 for every i = 1, · · · , N then A is nonnegative definite;
• if λi > 0 for every i = 1, · · · , N then A is positive definite.
This proves the (⇐=) directions of the characterizations. �
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Statistical Interpretation

Let us consider the case N = 2 and D = 21. Given the return history
{(r1(d), r2(d))}21

d=1, the return mean vector m and return covariance
matrix V computed with uniform weights are

m =
(

m1
m2

)
= 1

21

21∑
d=1

(
r1(d)
r2(d)

)
,

V =
(

v11 v12
v21 v22

)
= 1

21

21∑
d=1

(
r̃1(d)2 r̃1(d)r̃2(d)

r̃2(d)r̃1(d) r̃2(d)2

)
,

where r̃1(d) = r1(d)−m1 and r̃2(d) = r2(d)−m2.

Suppose that when the return history {(r1(d), r2(d))}21
d=1 is plotted as

points in the r1r2-plane we obtain the plot on the next slide.
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Statistical Interpretation

r2

∗
∗

∗
∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗

∗
∗

∗ ∗

r1
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Statistical Interpretation

This so-called scatter plot shows a distribution of points clustered about
the origin in a way that favors the first and third quadrants.

The vector m gives the center of the cluster. It lies in the third
quadrant close to the origin.
The matrix V will have eigenvectors that are roughly parallel to ↗
and to ↖. The eigenvalue associated with ↗ will be greater than the
one associated with ↖.

This is how m and V tell us that the points are clustered about the origin
in a way that favors the first and third quadrants.

Suppose on the other hand that when the return history
{(r1(d), r2(d))}21

d=1 is plotted as points in the r1r2-plane we obtain the
scatter plot on the next slide.
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Statistical Interpretation

r2
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Statistical Interpretation

In this scatter plot r1 and r2 are more highly correlated than in the first.

The vector m is almost the same as it was for the first scatter plot. It
lies in the third quadrant close to the origin.
The matrix V again has eigenvectors that are roughly parallel to ↗
and to ↖. However now the eigenvalue associated with ↗ is very
much greater than the one associated with ↖.

Both the scatter plot and the analysis of m and V suggest that the points
{(r1(d), r2(d))}21

d=1 cluster along a line.
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Statistical Interpretation

Let q designate the eigenvector associated with the largest eigenvalue of
V. If q is proportional to (1, s) then the line in the r1r2-plane that the
points cluster along is

r2 −m2 = s(r1 −m1) .

This suggests r2(d) could be modeled as

r2(d)−m2 = s
(
r1(d)−m1

)
+ z(d) ,

where z(d) are small random numbers that on average sum to zero.

Remark. Scatter plots become harder to visualize as N grows beyond 3.
However the eigenpair analysis of V can be carried out easily for much
larger N.
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Principle Component Analysis

In statistics the eigenpair analysis of the covariance matrix V is called
Principle Component Analysis (PCA).

A principle component analysis of V yields N eigenpairs

(λ1,q1) , (λ2,q2) , · · · , (λN ,qN) . (5.12)

The eigenvalues will almost always be distinct, in which case we will order
them as

λ1 > λ2 > · · · > λN > 0 . (5.13)

In this case the eigenvectors will be unique up to a nonzero factor. If they
are normalized so that ‖qi‖ = 1 then they are unique up to a factor of ±1
and {qi}Ni=1 will be an orthonormal basis of RN .

C. David Levermore (UMD) Covariance Matrices February 27, 2019



Intro Sym and Def Eigen and Diag Stat Interp PCA

Principle Component Analysis

Let D and Q be the diagonal and orthogonal matrices constructed from
the eigenpairs (5.12) as in (3.11). Then V = QDQT and QTQ = QQT = I.

Then the underlying return history {r(d)}Dd=1 can be transformed into the
history {p(d)}Dd=1 where p(d) = QTr(d). The entries of p(d) are called
the principle components of r(d). Their mean vector is given by

D∑
d=1

w(d)p(d) =
D∑

d=1
w(d)QTr(d) = QT

( D∑
d=1

w(d)r(d)
)

= QTm .
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Principle Component Analysis

Similarly, their covariance matrix is given by

D∑
d=1

w(d)
(
p(d)−QTm

)(
p(d)−QTm

)T
= QT

( D∑
d=1

w(d)
(
r(d)−m

)(
r(d)−m

)T)Q

= QTVQ = QT(QDQT)Q =
(
QTQ

)
D
(
QTQ

)
= D .

Because D is a diagonal matrix, the covariance of distinct entries of p(d)
vanishes. Because the i th entry of p(d) is qT

i r(d), its variance is λi .
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Principle Component Analysis

Therefore PCA can be viewed as an orthogonal coordinate transformation
that maps the data into new coordinates (the principle components) that
are uncorrelated and such that the first entry has the largest variance, the
second entry has the second largest variance, and so on.

Remark. The vectors qi are called the principle component coefficients
because they are the vectors whose scalar product with the data r(d) gives
the principle components. They are also called loadings.

C. David Levermore (UMD) Covariance Matrices February 27, 2019



Intro Sym and Def Eigen and Diag Stat Interp PCA

Principle Component Analysis

One application of PCA is to identify possible lower dimensional models
that capture the bulk of the variation in the data. The dimension of such
a model is read off by selecting a subset of the largest eigenvalues of V.

For example, suppose that a plot of λi versus i looks like the figure on the
next slide.
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Principle Component Analysis

λi

5 -

4 -
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1 -
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∗

∗

∗ ∗
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1 2 3 4 5 6 7 8 9 · · · N i
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Principle Component Analysis

This figure shows that the underlying data has four major dimensions and
that eigenvalues are negligible for i ≥ 8. It suggests that the data might
be captured well with a 4, 5, or 7 dimensional model.

Remark. The dimension obtained in this way gives an upper bound on the
actual dimension of the data, which can be lower when it satisfies an
approximate nonlinear relationship. Such a relationship is illustrated on the
next slide for two dimensional data.
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Principle Component Analysis

r2

∗ ∗
∗ ∗
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∗ ∗
∗ ∗
∗ ∗
∗ ∗
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Principle Component Analysis

This figure shows that the underlying data lies along a parabola-like curve,
whereby it is one dimensional. However, principle component analysis does
not see this because the 2× 2 matrix V has two comparable eigenvalues.
Remark. Principle component analysis gives a singular value
decomposition of the N × D matrix

R =
(

r(1)−m r(2)−m · · · r(D)−m
)
.

This is because V = RWRT where W is the D × D diagonal matrix with
the weights w(d) on the diagonal.
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