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Model Selection

Problems for today

Model Selection based on statistical principles:
1 KL divergence as ”distance” between models
2 Akaike Information Criterion (AIC)
3 Other criteria: BIC and MDL

Radu Balan () AIC 3/4/19



Model Selection

Statistical Estimation of Model Parameters
Models and Likelihoods

Assume we perform a measurement x ∈ Rn of a random variable X . For X
we assume a family of models that explain the measurement via a
probability distribution function p(x ; θ) parametrized by θ ∈ Θ.
The goal of this lecture is to find the ”Most Likely” model that explains
the measurement.
Approach: Assume the ”true” distribution of data X is given by pX (x).
Then a statistically principled way of estimating the parameter θ is by
minimizing a ”distance” D(pX (x), p(x ; θ)) between the two distributions
over parameter θ:

θ̂ = argminθD(pX (x); p(x ; θ))

Radu Balan () AIC 3/4/19



Model Selection

Kullbeck-Leibler Divergence
How to measure how far apart are two probability distribution functions

One choice for ”distance” between probability distribution functions: the
Kullback-Leibler divergence.
Assume p, q : R→ R are two probability distributions functions, i.e.,
p(x), q(x) ≥ 0 and

∫∞
−∞ p(x)dx =

∫∞
−∞ q(x)dx = 1.

Definition. The Kullback-Leibler divergence (or KL ”distance”) between p
and q denoted by D(p||q) or KL(p||q) is given by

D(p||q) =
∫ ∞
−∞

p(x) log p(x)
q(x)dx =: EX∼p

[
log p(X )

q(X )

]
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Model Selection

Kullbeck-Leibler Divergence
Properties

While not a distance between two pdf’s (it is not symmetric, nor satisfy
triangle inequality), the KL divergence satisfies:

Proposition
Assume p, q are two probability distribution functions. Then:

1 D(p||q) ≥ 0
2 D(p||q) = 0 if and only if p = q.

Why:
1. Since the logarithm is concave
t log(r1) + (1− t) log(r2) ≤ log(tr1 + (1− t)r2). By a limiting argument:∫ ∞

−∞
p(x) log(r(x))dx ≤ log

(∫ ∞
−∞

p(x)r(x)dx
)

(known as Jensen’s inequality)
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Kullbeck-Leibler Divergence
Properties - cont’ed

For r(x) = q(x)
p(x) we obtain:

−D(p||q) =
∫ ∞
−∞

p(x) log q(x)
p(x)dx ≤ log

(∫ ∞
−∞

p(x)q(x)
p(x)dx

)
= log(1) = 0.

Hence D(p||q) ≥ 0.
2. The proof also shows when equality is achieved: D(p||q) = 0 only if
equality in Jansen’s inequality. Since log is a strictly concave function,
equality is achieved only when the argument of log() is constant on its
support. Hence p = q.
Note: Similar formula applies for vector-valued random variables:

D(p||q) =
∫
Rn

p(x) log p(x)
q(x)dnx
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Model Selection

Maximum Likelihood Estimation
MLE

The frequentist approach to estimating parameter (vector) θ ∈ Rd :

θ̂ = argminθD(pX ||p(·; θ))

Note:

D(pX ||p(·; θ)) =
∫

p(x)log(p(x))dx − E[log(p(X ; θ))]

Hence the minimizer above is the maximizer in:

θ̂ = argmaxθE[log(p(X ; θ))] =
∫
Rn

p(x) log(p(x ; θ))dx
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Model Selection

Maximum Likelihood Estimation
MLE - 2

Assume we are given a set of measurements {x1, · · · , xT} each an
independent realization of the same random (vector) variable X . Then we
approximate the expectation with respect to the ”true” unknown
distribution pX with the sample mean:

E[log(p(X ; θ))] ≈ 1
T

T∑
t=1

log(p(xt ; θ))

We obtain the ”most likely” explanation of the measurements is given by
the model whose parameter vector θ is:

θ̂MLE = argmaxθ
T∑

t=1
log(p(xt ; θ))

This estimator is called the Maximum Likelihood Estimator (MLE) of
parameter θ. The functions p(X ; θ) are called ”likelihoods”.
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Model Selection

LS Estimator as MLE for AWGN

Consider the case of data points:

Yt = A(Xt − z) + νt , νt ∼ N(0, σ2Id ) , 1 ≤ t ≤ n

where the parameters are θ = (A, z) and measurements (Y ,X ). The
likelihood is then:

p(Y ,X ; A, z) = 1
(
√

2πσ)dn exp
(
− 1

2σ2 ‖Y − AX + Az1T‖2F
)

It follows the MLE estimator for θ is the one that minimizes:

(Â, ẑ) = argminA,z‖Y − A(X − z1T )‖2F

Hence the MLE for Additive White Gaussian Noise (AWGN) model reduces
to the Least Squares Estimator (LSE).
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Why not estimating the number of parameters through
MLE?
You might be tempted to include the number of parameters as an
additional parameter (in θ) and estimate it accordingly.
Specifically, consider the following natural succession of models, each
defining the matrix A:

M1 ⊂ M2 ⊂ M3

where:
M1 = R+ · Id = {aId , a > 0} , M2 = R+ · SO(d) = {aQ , Q ∈ SO(d)}

M3 = GL(d ,R) = {A : det(A) 6= 0}

Due to nestedness of these models, the more complex models always
provide a better fit to data (i.e., smaller residual errors). However this
does not imply a better model!
Sometime this is referred to as the ”data overfitting”.
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How to fix the problem?
Akaike Principle

Akaike introduces a penality term to penalize model complexity.
Specifically, let p(Data; θ) denote the likelihood of a model parametrized
by a D-vector θ, Hence D represents the number of parameters. Let

J(θ̂; D) = minθ [−logp(Data; θ)]

denote the minimum negative log-likelihood (equal to the negative
maximum log-likelihood). Then Akaike adds a penality term equal to the
number of parameters:

minimizeD J(θ̂; D) + D

The rational for this choice is the fact that MLE of parameter θ produces
a random variable θ̂MLE which, according to the central limit theorem,
asymptotically is distributed like a normal random variable (i.e. Gaussian)
centered not at the true value θ but biased by D.
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Akaike Information Criterion

The Akaike Information Criterion (AIC) is used not only to estimate the
model parameters, but rather to select between models:

AIC = minimizeD [−maximizeθlogp(Data; θ) + D]

The first term reflects the fact that more complex models always provide a
better fit to Measured Data. However the second term represents a penalty
for using more ”complicated” models. It increases with model complexity.
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Other Information Theoretic Criteria
The Bayesian Information Criterion (BIC) and the Minimum Description Length (MDL)

Here is a summary of three Information Theoretic criteria for model
selection:

AIC = minimizeD [−maxθ log p(Data; θ) + D]

BIC = minimizeD

[
−maxθ log p(Data; θ) + D log(T )

2

]
MDL = minimizeD [−maxθ log p(Data; θ) + CodingLength(Model(θ,D))]
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