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Geometric Graph Models

Isometric Embeddings with Full Data
Problem statement and Ambiguities

Main Problem
Isometric Embedding: Given the set of all squared-distances
{d2

i ,j ; 1 ≤ i , j ≤ n} find a dimension d and a set of n points
{y1, · · · , yn} ⊂ Rd so that ‖yi − yj‖2 = d2

i ,j , 1 ≤ i , j ≤ n .

Main Problem
Nearly Isometric Embedding: Given the set of all squared-distances
{d2

i ,j ; 1 ≤ i , j ≤ n} find a dimension d and a set of n points
{y1, · · · , yn} ⊂ Rd so that ‖yi − yj‖2 ≈ d2

i ,j , 1 ≤ i , j ≤ n .

Note the set of points is unique up to rigid transformations: translations,
rotations and reflections: Rd × O(d). This means two sets of n points in
Rd have the same pairwise distances if and only if one set is obtained from
the other set by a combination of rigid transformations.
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Geometric Graph Models

Isometric Embeddings with Full Data
Converting pairwise distances into the Gram matrix

Let S = (Si ,j)1≤i ,j≤n denote the n × n symmetric matrix of squared
pairwise distances:

Si ,j = d2
i ,j ,Si ,i = 0

Denote by 1 the n-vector of 1’s (the Matlab ones(n, 1)). Let
ν = (‖yi‖2)1≤i≤n denote the unknown n-vector of squared-norms. Finally,
let G = (〈yi , yj〉)1≤i ,j≤n denote the Gram matrix of scalar products
between yi and yj .
We can remove the translation ambiguity by fixing the center:

n∑
i=1

yi = 0
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Geometric Graph Models

Isometric Embeddings with Full Data
Converting pairwise distances into the Gram matrix

Expand the square:
d2

i ,j = ‖yi − yj‖2 = ‖yi‖2+‖yj‖2−2〈yi , yj〉 ⇒ 2〈yi , yj〉 = ‖yi‖2+‖yj‖2−d2
i ,j

Rewrite the system as:
2G = ν · 1T + 1 · νT − S (∗)

The center condition reads: G · 1 = 0, which implies:
0 = 2nνT · 1− 1T · S · 1

Let ρ := νT · 1 =
∑n

i=1 ‖yi‖2. We obtain:

ρ = 1
2n 1T · S · 1 = 1

2n

n∑
i=1

n∑
j=1

d2
i ,j

ν = 1
n (S · 1− ρ1) = 1

n (S − ρI) · 1

that you substitute back into (*).
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Geometric Graph Models

Isometric Embeddings with Full Data
Converting pairwise squared-distances into the Gram matrix: Algorithm

Algorithm
Input: Symmetric matrix of squared pairwise distances S = (d2

i ,j)1≤i ,j≤n.
1 Compute:

ρ = 1
2n 1T · S · 1 = 1

2n

n∑
i=1

n∑
j=1

d2
i ,j

2 Set:
ν = 1

n (S · 1− ρ1) = 1
n (S − ρI) · 1

3 Compute:

G = 1
2ν ·1

T + 1
21 ·νT− 1

2S = 1
2n (S−ρI)1 ·1T + 1

2n 1 ·1T (S−ρI)− 1
2S.

Output: Symmetric Gram matrix G
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Geometric Graph Models

Isometric Embeddings with Full Data
Factorization of the G matrix

In the absence of noise (i.e. if Si ,j are indeed the Euclidean distances), the
Gram matrix G should have rank d , the minimum dimension of the
isometric embedding.
If S is noisy, then G has approximate rank d .
To find d and Y , the matrix of coordinates, perform the
eigendecomposition:

G = QΛQT

where Λ is the diagonal matrix of eigenvalues, ordered monotonically
decreasing. Choose d as the number of significant positive eigenvalues
(i.e. truncate to zero the negative eigenvalues, as well as the smallest
positive eigenvalues). Note G has always at least one zero eigenvalue:
rank(G) ≤ n − 1.
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Geometric Graph Models

Isometric Embeddings with Full Data
Factorization of the G matrix

Then we obtain an approximate factorization of G (exact in the absence of
noise):

G ≈ Q1Λ1QT
1

where Q1 is the n × d submatrix of Q containing the first d columns.
Set Y = Λ1/2

1 QT
1 , so that G ≈ Y T Y .

The d × n matrix Y contains the embedding vectors y1, · · · , yn as columns:

Y = [y1|y2| · · · |yn] .

Radu Balan (UMD) Geometric Embeddings April 29, 2019



Geometric Graph Models

Isometric Embeddings with Full Data
Gram matrix factorization: Algorithm
Algorithm
Input: Symmetric n × n Gram matrix G.

1 Compute the eigendecomposition of G, G = QΛQT with diagonal of
Λ sorted in a descending order;

2 Determine the number d of significant positive eigevalues;
3 Partition

Q = [Q1 Q2] , and Λ =
[

Λ1 0
0 Λ2

]
where Q1 contains the first d columns of Q, and Λ1 is the d × d
diagonal matrix of significant positive eigenvalues of G.

4 Compute:
Y = Λ1/2

1 QT
1

Output: Dimension d and d × n matrix Y of vectors Y = [y1| · · · |yn]
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Geometric Graph Models

Isometric Embeddings with Partial Data
Dimension estimation

Consider now the case that only a subset of the pairwise squared-distances
are known, indexed by Θ. Assume that only m distances (out of
n(n− 1)/2 possible values) are known – this means the cardinal of Θ is m.

Remark
Minimum number of measurements: m ≥ nd − d(d+1)

2 , because: nd is the
number of degrees of freedom (coordinates) needed to describe n points in
Rd ; d(d + 1)/2 is the the dimension of the Lie group of Euclidean
transformations: translations in Rd of dimension d and orthogonal
transformations O(d) of dimension d(d − 1)/2 (the dimension of the Lie
algebra of anti-symmetric matrices).

In the absence of noise, for sufficiently large m but less than n(n − 1)/2,
exact (i.e. isometric) embedding is possible.
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Isometric Embeddings with Partial Data
Linear constraints

Given any set of vectors {y1, · · · , yn} and their associated matrix
Y = [y1| · · · |yn] their invariant to the action of the rigid transformations
(translations, rotations, and reflections) is the Gram matrix of the centered
system:

G = (I − 1
n 1 · 1T )Y T Y (I − 1

n 1 · 1T ) =: LY T YL , L = I − 1
n 1 · 1T .

On the other hand, the distance between points i and j can be computed
by:

d2
i ,j = ‖yi − yj‖2 = Gi ,i − Gi ,j + Gj,j − Gj,i = eT

ij Geij

where
eij = δi − δj = [0 · · · 0 1 · · · − 1 0 · · · 0]T

where 1 is on position i , −1 is on position j , and 0 everywhere else.
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Almost Isometric Embeddings with Partial Data
The SDP Problem

Reference [10] proposes to find the matrix G by solving the following
Semi-Definite Program:

min
G = GT ≥ 0

G1 = 0
|〈Geij , eij〉 − d̃2

i ,j | ≤ ε , (i , j) ∈ Θ

trace(G)

where d̃2
i ,j are noisy estimates di ,j and ε is the maximum noise level. The

trace promotes low rank in this optimization. However, this is basically a
feasibility problem: Decrease ε to the minimum value where a feasible
solution exists. With probability 1 that is unique.
How to do this: Use CVX with Matlab.
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Nearly Isometric Embeddings with Partial Data
Stability to Noise

[10] proves the following stability result in the case of partial
measurements. Here we denote Θr = {(i , j) , ‖yi − yj‖ ≤ r} the set of all
pairs of points at distance at most r .

Theorem
Let {y1, · · · , yn} be n nodes distributed uniformly at random in the
hypercube [−0.5, 0.5]d . Further, assume that we are given noisy
measurement of all distances in Θr for some r ≥ 10

√
d(log(n)/n)1/d and

the induced geometric graph of edges is connected. Let d̃2
i ,j = d2

i ,j + νi ,j
with |νi ,j | ≤ ε. Then with high probability, the error distance between the
estimated Ŷ = [ŷ1, | · · · |ŷn] returned by the SDP-based algorithm and the
correct coordinate matrix Y = [y1| · · · |yn] is upper bounded as

‖LŶ T Ŷ L− LY T YL‖1 ≤ C1(nrd )5 ε

r 4 .

Conversely, w.h.p., there exist adversarial measurement errors {zi ,j}(i ,j)∈Θr
such that

‖LŶ T Ŷ L− LY T YL‖1 ≥ C2min(1, εr 4 ).

Here, C1 and C2 denote universal constants that depend only on d.
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