Lecture 9: Partitions using SDP Relaxations

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 18, 2019

Spectral Algorithm using the Symmetric Normalized Graph Laplacian

Algorithm (Spectral Algorithm with $\tilde{\Delta}$)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the symmetric normalized graph Laplacian $\tilde{\Delta} = I D^{-1/2}AD^{-1/2}$, with $D = Diag(A \cdot 1)$ the degree matrix.
- Compute the second smallest eigenpair: (e₁, λ₁), with Δ̃e₁ = λ₁e₁ and λ₁ > 0 = λ₀.
- **3** Define the partition $\Omega_1 = \{k : e_1(k) > 0\}, \omega_2 = \{k : e_1(k) \le 0\}$. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Radu Balan (UMD)

Integer Programs ○●○○○	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
Optimizati	on Problems			

The Algorithm is supposed to provide an approximate solution for the min-edge cut problem of the Cheeger constant

$$h_G = \min_{S \subset \mathcal{V}} \frac{|E(S, \bar{S})|}{\min(vol(S), vol(\bar{S}))}$$

The algorithm has been derived while proving the bound $2h_G \ge \lambda_1$. Implicitely, the second smallest eigenpair solves the optimization problem:

$$\begin{array}{l} \min \\ e \in \mathbb{R}^n \\ \|e\|_2 = 1 \\ e^T \cdot 1 = 0 \end{array}$$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
	an Duahlana			

Optimization Problems MAP and MLE for Balanced Communities

Consider now a slightly different optimization problem. Assume we know we have a symmetric stochastic block model SSBM(n, 2, a, b) with two communities of equal size: $|\Omega_1| = |\Omega_2|$. Then the Maximum A Posteriori (MAP) partition function $Z \in \{1, 2\}^n$ coincides with the Laximum Likelihood Estimator (MLE) and maximizes:

$$\max_{Z} a^{m_1 1 + m_2 2} (1-a)^{m_{11}^c + m_{22}^c} b^{m_{12}} (1-b)^{m_{12}^c}$$

But for equal size communities (== balanced communities),

$$m_{12} + m_{12}^c = \frac{n^2}{4}$$
 and $m_{11} + m_{22} + m_{11}^c + m_{22}^c = 2 \begin{pmatrix} n/2 \\ 2 \end{pmatrix} \approx \frac{n^2}{4}$.
Furthermore, $m_{11} + m_{12} + m_{22} = m$. Thus, the optimal estimator maximizes:

$$\max_{Z} \left(\frac{a(1-b)}{b(1-a)}\right)^{m_{11}+m_{12}}$$

Integer Programs ○○○●○	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
Optimizati	on Problems			

Assuming a > b, the optimal solution maximizes the number of intra-edges while have balanced communities. Equivalently, the solution minimizes the number of cross-edges m_{12} subject to balanced communities. Replace the partition vector $Z \in \{1,2\}^n$ with a sign vector $z \in \{-1,1\}^n$ so that $Z_k = 1$ iff $z_k = -1$ and $Z_k = 2$ iff $z_k = +1$. Then

$$z^{T}Az = \sum_{i,j=1}^{n} A_{i,j}z_{i}z_{j} = 2(m_{11} + m_{22}) - m_{12} = 2m - 3m_{12}$$

Then the number of cross-edges can be computed using using:

$$m_{12} = \frac{1}{3}(2m - z^T A z) = \frac{1}{3}(z^T D z - z^T A z) = \frac{1}{3}z^T \Delta z$$

because $z^T D z = 1^T D 1 = \sum_{i,j=1}^n A_{i,j} = 2m$.

MAP and MLE for Balanced Communities

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
00000				

The Quadratic Integer Programs

Balanced communities: $|\Omega_1| = |\Omega_2|$ is equivalent to requiring $z^T \cdot 1 = 0$. Thus we obtain the following optimization problems:

1 Graph Laplacian based Minimization:

$$\min_{\substack{z \in \{-1,+1\}^n \\ z^T \cdot 1 = 0}} z^T \Delta z$$

2 Adjacency Matrix based Maximization:

$$\max_{\substack{z \in \{-1, +1\}^n \\ z^T \cdot 1 = 0}} z^T A z$$

These are NP-hard problems, known as Quadratic Integer Programming. We study two relaxations: Euclidean relaxation, and SDP relaxation.

Radu Balan (UMD)

Integer Programs	Spectral Algorithms ●೦೦೦	SDP Relaxation	Weighted Graphs	Convex Optimizations
Euclidean	Relaxations			

The Euclidean relaxation of the QIP

$$\min / \max_{\substack{z \in \{-1,+1\}^n \ z^T \cdot 1 = 0}} z^T S z$$

is obtained by replacing $z \in \{-1, +1\}^n$ with $||z||_2 = \sqrt{n}$. Here $S = S^T$ stands for Δ or A. Since different norm values produce same solution up to scaling, we use instead the Euclidean relaxation:

$$\min / \max_{\substack{\|z\|_2 = 1 \\ z^T \cdot 1 = 0}} z^T Sz$$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
Spectral A	lgorithms			

Using the Courant-Fisher criterion, the Euclidean relaxation is solved using the second eigenvector of the corresponding symmetric matrix. Why the second eigenvector:

- In the case of Δ, 1 is the eigenvector corresponding to the smallest eigenvalue (λ₀ = 0), hence z^T1 = 0 is satisfied automatically by the second eigenvector.
- In the case of A, 1 is approximately the leading eigenvector asuming each node has the same valence. This happens when the adjacency matrix approximates well its Expected value matrix E[A].

Convex Optimizations

Spectral Algorithm using the Graph Laplacian

Algorithm (Spectral Algorithm with Δ)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the graph Laplacian $\Delta = D A$, with $D = Diag(A \cdot 1)$, the degree matrix.
- Compute the second smallest eigenpair: (e₁, λ₁), with Δe₁ = λ₁e₁ and λ₁ > 0 = λ₀.
- Define the partition $\Omega_1 = \{k : e_1(k) > 0\}, \omega_2 = \{k : e_1(k) \le 0\}$. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Convex Optimizations

Spectral Algorithm using the Adjacency Matrix

Algorithm (Spectral Algorithm with *A*)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the second largest eigenpair of A: (f_2, μ_2) , with $Af_2 = \mu_2 f_1$.
- Observe the partition Ω₁ = {k : f₂(k) > 0}, ω₂ = {k : f₂(k) ≤ 0}. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

< ロ > < 同 > < 回 > < 回 > .

Integer Programs	Spectral Algorithms	SDP Relaxation ●0000000	Weighted Graphs	Convex Optimizations
The SDP	Relayation			

The Semi-Definite Program (SDP) relaxation of the QIP

$$\begin{array}{ccc} \min/&\max & z^TSz\\ &z\in\{-1,+1\}^n\\ &z^T\cdot 1=0 \end{array}$$

is obtained in the following way: First one replaces the variable vector z by the matrix $Y \in \mathbb{R}^{n \times n}$, $Y = zz^T$. Note:

$$z^T S z = trace(z^T S Z) = trace(S z z^T) = trace(S Y)$$

The constraints $z \in \{-1, +1\}^n$ is equivalent to $Y_{ii} = 1$. The constraint $z^T \cdot 1 = 0$ is equivalent to $Y \cdot 1 = 0$. Both equivalence hold under the assumptions: $Y \ge 0$ and rank(Y) = 1.

Integer Programs	Spectral Algorithms	SDP Relaxation ○●○○○○○○	Weighted Graphs	Convex Optimizations

The SDP Relaxation - 2

Putting together all conditions, we obtain the following program:

$$\begin{array}{ll} \min/ & \max & trace(SY) \\ Y = Y^T \ge 0 \\ rank(Y) = 1 \\ Y_{ii} = 1 \ , \ 1 \le i \le n \\ Y \cdot 1 = 0 \end{array}$$

→ < ∃→

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations

The SDP Relaxation - 2

Putting together all conditions, we obtain the following program:

$$\begin{array}{ll} \min/ & \max & trace(SY) \\ Y = Y^T \ge 0 \\ rank(Y) = 1 \\ Y_{ii} = 1 \ , \ 1 \le i \le n \\ Y \cdot 1 = 0 \end{array}$$

However this problem is not convex, due to the rank constraint. The convex relaxation, known as the SDP relaxation, simply removes the rank constraint: $\min / \max_{Y = Y^T} \max_{Y = 0} trace(SY)$

$$Y_{ii} = 1 \ , \ 1 \leq i \leq n$$

 $Y \cdot 1 = 0$

In general the result Y is not rank 1, so one approximates it by the leading eigenvector.

Radu Balan (UMD)

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations

The Graph Laplacian SDP

Algorithm (SDP with Δ)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the graph Laplacian $\Delta = D A$, with $D = Diag(A \cdot 1)$, the degree matrix.
- **2** Solve the Semi-Definite Program:

$$\begin{array}{ll} \min & trace(\Delta Y) \\ Y = Y^T \ge 0 \\ Y_{ii} = 1 \ , \ 1 \le i \le n \\ Y \cdot 1 = 0 \end{array}$$

Integer	Programs

Convex Optimizations

The Graph Laplacian SDP

Algorithm (SDP with Δ - continued)

So Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.

Define the partition Ω₁ = {k : e_{max}(k) > 0}, ω₂ = {k : e_{max}(k) ≤ 0}.
 Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
		00000000		

The Adjacency Matrix SDP

Algorithm (SDP with *A*)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

1 Solve the Semi-Definite Program:

$$\begin{array}{c} \max \\ Y = Y^T \ge 0 \\ Y_{ii} = 1 \ , \ 1 \le i \le n \\ Y \cdot 1 = 0 \end{array} trace(AY)$$

2 Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.

Radu Balan (UMD)

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Con
		00000000		

The Adjacency Matrix SDP

Algorithm (SDP with *A* - continued)

Define the partition Ω₁ = {k : e_{max}(k) > 0}, ω₂ = {k : e_{max}(k) ≤ 0}.
 Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

nvex Optimizations

Convex Optimizations

The Normalized Graph Laplacian SDP

Algorithm (SDP with $\tilde{\Delta}$)

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

• Compute the symmetric normalized graph Laplacian $\tilde{\Delta} = I - D^{-1/2}AD^{-1/2}$, with $D = Diag(A \cdot 1)$, the degree matrix.

2 Solve the Semi-Definite Program:

$$egin{aligned} & \min & trace(ilde{\Delta}Y) \ & Y &= Y^T \geq 0 \ & Y_{ii} &= 1 \ , \ 1 \leq i \leq n \ & Y \cdot 1 = 0 \end{aligned}$$

Convex Optimizations

The Normalized Graph Laplacian SDP

Algorithm (SDP with $\tilde{\Delta}$ - continued)

- Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.
- Define the partition Ω₁ = {k : e_{max}(k) > 0}, ω₂ = {k : e_{max}(k) ≤ 0}.
 Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

This is the SDP counterpart of the spectral algorithm we studied last time.

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations

Partitions of Weighted Graphs

In this section we rewrite all the previous algorithms in the case of weighted graphs.

The idea: The Cheeger constant is simply replaced by total cross-weight between partitions:

$$h_{G} = \min_{S} \frac{\sum_{x \in S, y \in \overline{S}} W_{x,y}}{\min(\sum_{x \in S} D_{x,x}, \sum_{y \in \overline{S}} D_{y,y})} \quad , \quad D_{i,i} = \sum_{j} W_{i,j}$$

Solution: replace the adjacency matrix A by the weight matrix W. Thus we obtain a total of six algorithms: 3 spectral algorithms, and 3 SDP relaxations; each class using either $I - D^{-1/2}WD^{-1/2}$, D - W, or W.

Integer Programs

SDP Relaxation

Weighted Graphs

Convex Optimizations

Spectral Algorithm using the symmetric normalized Weighted Graph Laplacian

Algorithm (Spectral Algorithm with symmetric normalized weighted Δ)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the symmetric normalized weighted graph Laplacian $\tilde{\Delta} = I D^{-1/2} W D^{-1/2}$, with $D = Diag(W \cdot 1)$.
- Compute the second smallest eigenpair: (e₁, λ₁), with Δe₁ = λ₁e₁ and λ₁ > 0 = λ₀.
- **3** Define the partition $\Omega_1 = \{k : e_1(k) > 0\}, \omega_2 = \{k : e_1(k) \le 0\}$. Set d = 2.

Output: The disjoint partition ($\Omega_1, \Omega_2, \Omega_3$) of the set of nodes Radu Balan (UMD) MATH 420: SDP Relaxation May 2, 2019

Spectral Algorithm using the Weighted Graph Laplacian

Algorithm (Spectral Algorithm with weighted Δ)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the weighted graph Laplacian $\Delta = D W$, with $D = Diag(W \cdot 1)$.
- 2 Compute the second smallest eigenpair: (e₁, λ_1), with $\Delta e_1 = \lambda_1 e_1$ and $\lambda_1 > 0 = \lambda_0$.
- Obstitution Ω₁ = {k : e₁(k) > 0}, ω₂ = {k : e₁(k) ≤ 0}. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Convex Optimizations

Spectral Algorithm using the Weight Matrix

Algorithm (Spectral Algorithm with W)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the second largest eigenpair of W: (f_2, μ_2) , with $Wf_2 = \mu_2 f_1$.
- Observe the partition Ω₁ = {k : f₂(k) > 0}, ω₂ = {k : f₂(k) ≤ 0}. Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

くロ と く 同 と く ヨ と 一

Convex Optimizations

The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted $\tilde{\Delta}$)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

• Compute the symmetric normalized weighted graph Laplacian $\tilde{\Delta} = I - D^{-1/2} W D^{-1/2}$, with $D = Diag(W \cdot 1)$.

2 Solve the Semi-Definite Program:

$$egin{aligned} & \min & trace(ilde{\Delta}Y) \ & Y &= Y^T \geq 0 \ & Y_{ii} &= 1 \ , \ 1 \leq i \leq n \ & Y \cdot 1 = 0 \end{aligned}$$

Convex Optimizations

The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted $\tilde{\Delta}$ - continued)

 Find the leading eigenvector of Y, (e_{max}, σ_{max}), i.e., Ye_{max} = σ_{max}e_{max}.

Define the partition Ω₁ = {k : e_{max}(k) > 0}, ω₂ = {k : e_{max}(k) ≤ 0}.
 Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Integer	Programs

Convex Optimizations

The weighted Graph Laplacian SDP

Algorithm (SDP with weighted Δ)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

- Compute the weighted graph Laplacian $\Delta = D W$, with $D = Diag(W \cdot 1)$.
- **2** Solve the Semi-Definite Program:

$$\begin{array}{ll} \min & trace(\Delta Y) \\ Y = Y^T \ge 0 \\ Y_{ii} = 1 \ , \ 1 \le i \le n \\ Y \cdot 1 = 0 \end{array}$$

Convex Optimizations

The weighted Graph Laplacian SDP

Algorithm (SDP with weighted Δ - continued)

- Find the leading eigenvector of Y, (e_{max}, σ_{max}), i.e., Ye_{max} = σ_{max}e_{max}.
- Define the partition Ω₁ = {k : e_{max}(k) > 0}, ω₂ = {k : e_{max}(k) ≤ 0}.
 Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs ○○○○○○○●○○○	Convex Optimizations

The Weight Matrix SDP

Algorithm (SDP with W)

Input: Weight matrix $W \in \mathbb{R}^{n \times n}$. If the graph is not connected then produce a disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ into connected components. Else:

1 Solve the Semi-Definite Program:

$$\begin{array}{l} \max \\ Y = Y^T \geq 0 \\ Y_{ii} = 1 \ , \ 1 \leq i \leq n \\ Y \cdot 1 = 0 \end{array} trace(WY)$$

2 Find the leading eigenvector of Y, (e_{max}, σ_{max}) , i.e., $Ye_{max} = \sigma_{max}e_{max}$.

Radu Balan (UMD)

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs ○○○○○○○○●○○	Convex Optimizations

The Weight Matrix SDP

Algorithm (SDP with W - continued)

Define the partition Ω₁ = {k : e_{max}(k) > 0}, ω₂ = {k : e_{max}(k) ≤ 0}.
 Set d = 2.

Output: The disjoint partition $(\Omega_1, \Omega_2, ..., \Omega_d)$ of the set of nodes $[n] = \{1, 2, \dots, n\}.$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs ○○○○○○○○○●○	Convex Optimizations

Measures of Partition Accuracy

Problem: How to measure the quality of a given partition? We previously studied:

Definition

The agreement between two community vectors $x, y \in [k]^n$ is obtained by maximizing the number of common components of these two vectors over all possible relabelling (i.e., permutations):

$$Agr(x,y) = \max_{\pi \in S_k} \frac{1}{n} \sum_{i=1}^n \mathbf{1}(x_i = \pi(y_i))$$

where S_k denotes the group of permutations.

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs ○○○○○○○○○○●	Convex Optimizations

Measures of Partition Accuracy (2)

In the case of 2-community detection, the above formula reduces to:

$$Agr(x,y) = \max\left(\sum_{i=1}^{n} \mathbf{1}(x_i = y_i), \sum_{i=1}^{n} \mathbf{1}(x_i \neq y_i)\right) = max(\alpha, n - \alpha)$$

where

$$\alpha = \sum_{i=1}^n \mathbf{1}(x_i = y_i).$$

measures the overlap. Typically it is more appropriate to report the percentage agreement:

$$Agr[\%] = rac{1}{n}Agr = max(rac{lpha}{n}, 1 - rac{lpha}{n}).$$

Note the agreement is always larger than 50%. In the case of k communities, the previous formula involves taking maximum over k! possible label assignments.

Radu Balan (UMD)

May 2, 2019

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations •0000

Convex Sets. Convex Functions

A set $S \subset \mathbb{R}^n$ is called a *convex set* if for any points $x, y \in S$ the line segment $[x, y] := \{tx + (1-t)y, 0 \le t \le 1\}$ is included in $S, [x, y] \subset S$.

A function $f: S \to \mathbb{R}$ is called *convex* if for any $x, y \in S$ and $0 \le t \le 1$, $f(tx + (1-t)y) \le t f(x) + (1-t)f(y)$. Here S is supposed to be a convex set in \mathbb{R}^n . Equivalently, f is convex if its epigraph is a convex set in \mathbb{R}^{n+1} . Epigraph: $\{(x, u) ; x \in S, u \ge f(x)\}$.

A function $f : S \to \mathbb{R}$ is called *strictly convex* if for any $x \neq y \in S$ and 0 < t < 1, f(tx + (1 - t)y) < tf(x) + (1 - t)f(y).

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations

Convex Optimization Problems

The general form of a convex optimization problem:

 $\min_{x\in S}f(x)$

where S is a closed convex set, and f is a convex function on S. Properties:

- Any local minimum is a global minimum. The set of minimizers is a convex subset of *S*.
- If f is strictly convex, then the minimizer is unique: there is only one local minimizer.

In general S is defined by equality and inequality constraints: $S = \{g_i(x) \le 0, 1 \le i \le p\} \cap \{h_j(x) = 0, 1 \le j \le m\}$. Typically h_j are required to be affine: $h_j(x) = a^T x + b$.

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
Convex Pr	ograms			

The hiarchy of convex optimization problems:

- **1** Linear Programs: Linear criterion with linear constraints
- Quadratic Programs: Quadratic Criterion with Linear Constraints; Quadratically Constrained Quadratic Problems (QCQP); Second-Order Cone Program (SOCP)
- Semi-Definite Programs(SDP)

Typical SDP:

$$\begin{array}{cc} \min & trace(XA) \\ X = X^T \ge 0 \\ trace(XB_k) = y_k \ , \ 1 \le k \le p \\ trace(XC_j) \le z_j \ , \ 1 \le j \le m \end{array}$$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations
CVX Matlab package	9			

Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined" Convex Programming – à la Boyd [2].

 $\begin{array}{ll} \texttt{m} = 20; \ \texttt{n} = 10; \ \texttt{p} = 4; \\ \texttt{A} = \texttt{randn}(\texttt{m},\texttt{n}); \ \texttt{b} = \texttt{randn}(\texttt{m},\texttt{1}); \\ \texttt{C} = \texttt{randn}(\texttt{p},\texttt{n}); \ \texttt{d} = \texttt{randn}(\texttt{p},\texttt{1}); \ \texttt{e} = \texttt{rand}; \\ \texttt{cvx_begin} \\ \texttt{variable } \texttt{x}(\texttt{n}) \\ \texttt{minimize(norm(A * \texttt{x} - \texttt{b}, 2)) \\ \texttt{subject to} \\ \texttt{C} * \texttt{x} = \texttt{d} \\ \texttt{norm(x, Inf)} <= \texttt{e} \\ \texttt{cvx end} \end{array}$

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations ○○○○●
CVX SDP Example				

```
cvx_begin sdp
```

```
 \begin{array}{ll} \text{variable } X(n,n) \text{ semidefinite;} \\ \text{minimize trace(X);} \\ \text{subject to} \\ X*\text{ones}(n,1) == \text{zeros}(n,1); \\ \text{abs}(\text{trace}(E1*X)-d1) <= \text{epsx;} \\ \text{abs}(\text{trace}(E2*X)-d2) <= \text{epsx;} \\ \end{array} \begin{array}{ll} \text{minimize trace}(X) \\ \text{subject to } \\ X = X^T \ge 0 \\ X \cdot 1^T = 0 \\ |\text{trace}(E_1X) - d_1| \le \varepsilon \\ |\text{trace}(E_2X) - d_2| < \varepsilon \end{array}
```

cvx_end

Integer Programs	Spectral Algorithms	SDP Relaxation	Weighted Graphs	Convex Optimizations

References

- E. Abbe, Community detection and stochastic block models: recent developments, arXiv:1703.10146 [math.PR] 29 Mar. 2017.
- S. Boyd, L. Vandenberghe, Convex Optimization, available online at: http://stanford.edu/ boyd/cvxbook/