Lecture 8: The Cheeger Constant and the Spectral Gap

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 11, 2019

Today we discuss the spectral theory of graphs. Recall the Laplacian matrices:

$$\Delta = D - A$$
 , $\Delta_{ij} = \left\{ egin{array}{ll} d_i & \textit{if} & \textit{i} = \textit{j} \ -1 & \textit{if} & (\textit{i},\textit{j}) \in \mathcal{E} \ 0 & \textit{otherwise} \end{array}
ight.$

$$L = D^{-1}\Delta$$
 , $L_{i,j} = \left\{ egin{array}{ll} 1 & \mbox{if} & i=j \ {
m and} \ d_i > 0 \ -rac{1}{d(i)} & \mbox{if} & (i,j) \in \mathcal{E} \ 0 & \mbox{otherwise} \end{array}
ight.$

$$\tilde{\Delta} = D^{-1/2} \Delta D^{-1/2} \ , \quad \tilde{\Delta}_{i,j} = \left\{ \begin{array}{ccc} 1 & \text{if} & i = j \text{ and } d_i > 0 \\ -\frac{1}{\sqrt{d(i)d(j)}} & \text{if} & (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{array} \right.$$

Today we discuss the spectral theory of graphs. Recall the Laplacian matrices:

$$\Delta = D - A$$
 , $\Delta_{ij} = \left\{ egin{array}{ll} d_i & \emph{if} & \emph{i} = \emph{j} \ -1 & \emph{if} & (\emph{i},\emph{j}) \in \mathcal{E} \ 0 & \emph{otherwise} \end{array}
ight.$

$$L = D^{-1}\Delta$$
 , $L_{i,j} = \left\{ egin{array}{ll} 1 & \mbox{if} & i=j \ {
m and} \ d_i > 0 \ -rac{1}{d(i)} & \mbox{if} & (i,j) \in \mathcal{E} \ 0 & \mbox{otherwise} \end{array}
ight.$

$$\tilde{\Delta} = D^{-1/2} \Delta D^{-1/2} \ , \quad \tilde{\Delta}_{i,j} = \left\{ \begin{array}{ccc} 1 & \text{if} & i = j \text{ and } d_i > 0 \\ -\frac{1}{\sqrt{d(i)d(j)}} & \text{if} & (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{array} \right.$$

Remark: D^{-1} , $D^{-1/2}$ are the pseudoinverses.

コト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?

- $eigs(\tilde{\Delta}) = eigs(L) \subset [0,2].$
- 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

$$\dim \ker(\Delta) = \dim \ker(L) = \dim \ker(\tilde{\Delta}) = \# \text{connected components}.$$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?

- $eigs(\tilde{\Delta}) = eigs(L) \subset [0,2].$
- 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

$$\dim \ker(\Delta) = \dim \ker(L) = \dim \ker(\tilde{\Delta}) = \# \text{connected components}.$$

Let $0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1}$ be the eigenvalues of $\tilde{\Delta}$. Denote

$$\lambda(G) = \max_{1 \le i \le n-1} |1 - \lambda_i|.$$

Note $\sum_{i=1}^{n-1} \lambda_i = trace(\tilde{\Delta}) = n$. Hence the average eigenvalue is about 1. $\lambda(G)$ is called *the absolute gap* and measures the spread of eigenvalues

The main result in [8]) says that for connected graphs w/h.p.:

$$\lambda_1 \geq 1 - \frac{C}{\sqrt{\text{Average Degree}}} = 1 - \frac{C}{\sqrt{p(n-1)}} = 1 - C\sqrt{\frac{n}{2m}}.$$

Theorem (For class $\mathcal{G}_{n,p}$)

Fix $\delta > 0$ and let $p > (\frac{1}{2} + \delta)log(n)/n$. Let d = p(n-1) denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon > 0$, there is a constant $C = C(\delta, \varepsilon)$, so that

$$\max(|1-\lambda_1|,\lambda_{n-1}-1)=\lambda(\tilde{G})\leq rac{C}{\sqrt{d}}=C\sqrt{rac{n}{2m}}$$

with probability at least $1 - Cn \exp(-(2 - \varepsilon)d) - C \exp(-d^{1/4}log(n))$.

Connectivity threshold: $p \sim \frac{\log(n)}{n}$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ (

The absolute spectral gap $\lambda(G)$

The main result in [8] says that for connected graphs w/h.p.:

$$\lambda_1 \geq 1 - \frac{C}{\sqrt{\text{Average Degree}}} = 1 - \frac{C}{\sqrt{p(n-1)}} = 1 - C\sqrt{\frac{n}{2m}}.$$

Theorem (For class $\Gamma^{n,m}$)

Fix $\delta > 0$ and let $m > \frac{1}{2}(\frac{1}{2} + \delta) n \log(n)$. Let $d = \frac{2m}{n}$ denote the expected degree of a vertex. Let \widetilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon > 0$, there is a constant $C = C(\delta, \varepsilon)$, so that

$$\max(|1-\lambda_1|,\lambda_{n-1}-1)=\lambda(\tilde{G})\leq rac{C}{\sqrt{d}}=C\sqrt{rac{n}{2m}}$$

with probability at least $1 - Cn \exp(-(2 - \varepsilon)d) - C \exp(-d^{1/4}log(n))$.

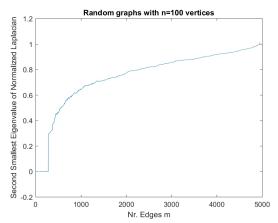
Connectivity threshold: $m \sim \frac{1}{2} n \log(n)$.

4 D > 4 A > 4 B > 4 B > B 90

Random graphs

 λ_1 for random graphs

Results for
$$n=100$$
 vertices: $\lambda_1(\tilde{G})\approx 1-\frac{c}{\sqrt{m}}$.

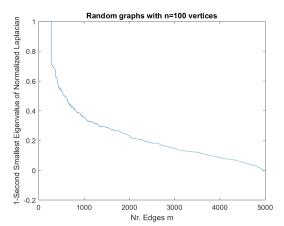


4 D > 4 B > 4 B > 4 B > 9 Q P

Random graphs

 $1-\lambda_1$ for random graphs

Results for
$$n=100$$
 vertices: $1-\lambda_1(\tilde{G})\approx \frac{c}{\sqrt{m}}$.



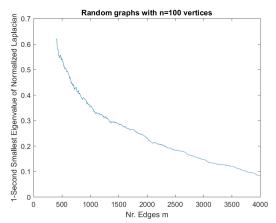
40 + 40 + 45 + 45 + 5 40 A

April 18, 2019

Random graphs $1 - \lambda_1$ for random graphs

1 At 101 faildoin graphs

Results for
$$n=100$$
 vertices: $1-\lambda_1(\tilde{G})\approx \frac{\mathcal{C}}{\sqrt{m}}$. Detail.



4日 → 4団 → 4 団 → 4 団 → 9 9 0 ○

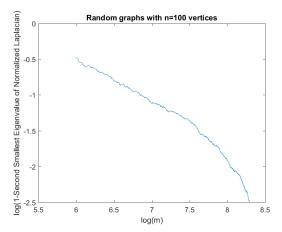
April 18, 2019

Radu Balan (UMD) Cheeger

Random graphs

 $log(1-\lambda_1)$ vs. log(m) for random graphs

Results for n=100 vertices: $log(1-\lambda_1(\tilde{G}))\approx b_0-\frac{1}{2}log(m)$.



Radu Balan (UMD)

The absolute spectral gap Proof

How to obtain such estimates? Following [4]:

First note: $\lambda_i = 1 - \lambda_i (D^{-1/2}AD^{-1/2})$. Thus

$$\lambda(G) = \max_{1 \le i \le n-1} |1 - \lambda_i| = \|D^{-1/2}AD^{-1/2}\| = \sqrt{\lambda_{max}((D^{-1/2}AD^{-1/2})^2)}$$

Ideas:

• For $X = D^{-1/2}AD^{-1/2}$, and any positive integer k > 0,

$$\lambda_{max}(X^2) = \left(\lambda_{max}(X^{2k})\right)^{1/k} \le \left(trace(X^{2k})\right)^{1/k}$$

(Markov's inequality)

$$Prob\{\lambda(G) > t\} = Prob\{\lambda(G)^{2k} > t^{2k}\} \leq \frac{1}{t^{2k}}\mathbb{E}[trace(X^{2k})].$$

The absolute spectral gap Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

$$\mathbb{E}[(X^{2k})] = \frac{1}{d^{2k}} \mathbb{E}[trace(A^{2k})].$$

The expectation turns into numbers of 2k-cycles and loops. Combinatorial kicks in ...

The absolute spectral gap Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

$$\mathbb{E}[(X^{2k})] = \frac{1}{d^{2k}} \mathbb{E}[trace(A^{2k})].$$

The expectation turns into numbers of 2k-cycles and loops. Combinatorial kicks in ...

Remark

Bernstein's "trick" (Chernoff bound) for $X \geq 0$,

$$Prob\{X \le t\} = Prob\{e^{-sX} \ge e^{-st}\} \le \min_{s \ge 0} \frac{\mathbb{E}[e^{-sX}]}{e^{-st}}$$
$$= \min_{s \ge 0} e^{st} \int_0^\infty e^{-sx} p_X(x) dx$$

The absolute spectral gap Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

$$\mathbb{E}[(X^{2k})] = \frac{1}{d^{2k}} \mathbb{E}[trace(A^{2k})].$$

The expectation turns into numbers of 2k-cycles and loops. Combinatorial kicks in ...

Remark

Bernstein's "trick" (Chernoff bound) for $X \geq 0$,

$$Prob\{X \le t\} = Prob\{e^{-sX} \ge e^{-st}\} \le \min_{s \ge 0} \frac{\mathbb{E}[e^{-sX}]}{e^{-st}}$$
$$= \min_{s \ge 0} e^{st} \int_0^\infty e^{-sx} p_X(x) dx$$

(the "Laplace" method). It gives exponential decay instead of $\frac{1}{t}$ or $\frac{1}{t^2}$.

The Cheeger constant Partitions

Fix a graph $G=(\mathcal{V},\mathcal{E})$ with n vertices and m edges. We try to find an optimal partition $\mathcal{V}=A\cup B$ that minimizes a certain quantity. Here are the concepts:

• For two disjoint sets of vertices A abd B, E(A,B) denotes the set of edges that connect vertices in A with vertices in B:

$$E(A, B) = \{(x, y) \in \mathcal{E} \ , \ x \in A , y \in B\}.$$

The volume of a set of vertices is the sum of its degrees:

$$vol(A) = \sum_{x \in A} d_x.$$

3 For a set of vertices A, denote $\bar{A} = \mathcal{V} \setminus A$ its complement.

4 □ ▶ 4 ⓓ ▶ 4 毫 ▶ 4 毫 ▶ 4 毫 ▶ 4 毫 ★ ○ ♀

The Cheeger constant h_G

The Cheeger constant h_G is defined as

$$h_G = \min_{S \subset \mathcal{V}} \frac{|E(S, \bar{S})|}{\min(vol(S), vol(\bar{S}))}.$$

Remark

It is a min edge-cut problem: This means, find the minimum number of edges that need to be cut so that the graph becomes disconnected, while the two connected components are not too small.

There is a similar min vertex-cut problem, where $E(S, \bar{S})$ is replaced by $\delta(S)$, the set of boundary points of S (the constant is denoted by g_G).

Remark

The graph is connected iff $h_G > 0$.

The Cheeger inequalities h_G and λ_1

See [2](ch.2):

Theorem

For a connected graph

$$2h_G \ge \lambda_1 > 1 - \sqrt{1 - h_G^2} > \frac{h_G^2}{2}.$$

Equivalently:

$$\sqrt{2\lambda_1} > \sqrt{1 - (1 - \lambda_1)^2} > h_G \ge \frac{\lambda_1}{2}.$$

Why is it interesting: finding the exact h_G is a NP-hard problem.

The Cheeger inequalities Proof of upper bound

Why the upper bound: $2h_G \ge \lambda_1$?

All starts from understanding what λ_1 is:

$$\Delta 1 = 0 \to \tilde{\Delta} \mathit{D}^{1/2} 1 = 0$$

Hence the eigenvector associated to $\lambda_0=0$ is

$$g^0 = (\sqrt{d_1}, \sqrt{d_2}, \cdots, \sqrt{d_n})^T.$$

The eigenpair (λ_1, g^1) is given by a solution of the following optimization problem:

$$\lambda_1 = \min_{h \perp g^0} \frac{\langle \tilde{\Delta}h, h \rangle}{\langle h, h \rangle}$$

In particular any h so that $\langle h, g^0 \rangle = \sum_{k=1}^n h_k \sqrt{d_k} = 0$ satisfies

$$\langle \tilde{\Delta}h, h \rangle \geq \lambda_1 ||h||^2.$$

4□ ト 4回 ト 4 豆 ト 4 豆 ト 9 Q ()

The Cheeger inequalities

Proof of upper bound (2)

Assume that we found the optimal partition $(A = S, B = \bar{S})$ of V that minimizes the edge-cut.

Define the following particular *n*-vector:

$$h_k = \begin{cases} \frac{\sqrt{d_k}}{\operatorname{vol}(A)} & \text{if} \quad k \in A = S \\ -\frac{\sqrt{d_k}}{\operatorname{vol}(B)} & \text{if} \quad k \in B = \mathcal{V} \setminus S \end{cases}$$

One checks that $\sum_{k=1}^{n} h_k \sqrt{d_k} = 1 - 1 = 0$, and $||h||^2 = \frac{1}{vol(A)} + \frac{1}{vol(B)}$. But:

$$\langle \tilde{\Delta}h, h \rangle = \sum_{(i,j):A_{i,i}=1} \left(\frac{h_i}{\sqrt{d_i}} - \frac{h_j}{\sqrt{d_j}}\right)^2 = |E(A,B)| \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right)^2.$$

Thus:

$$2h_G = \frac{2|E(A,B)|}{\min(vol(A),vol(B))} \ge |E(A,B)| \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right) \ge \lambda_1.$$

Min-cut Problems Initialization

The proof of the upper bound in Cheeger inequality reveals a "good" initial guess of the optimal partition:

- **①** Compute the eigenpair (λ_1, g^1) associated to the second smallest eigenvalue;
- 2 Form the partition:

$$S = \{k \in \mathcal{V} , g_k^1 \ge 0\} , \bar{S} = \{k \in \mathcal{V} , g_k^1 < 0\}$$

Min-cut Problems Weighted Graphs

The Cheeger inequality holds true for weighted graphs, $G = (\mathcal{V}, \mathcal{E}, W)$.

- $\Delta = D W$, $D = diag(w_i)_{1 \leq i \leq n}$, $w_i = \sum_{j \neq i} w_{i,j}$
- $\tilde{\Delta} = D^{-1/2} \Delta D^{-1/2} = I D^{-1/2} W D^{-1/2}$
- ullet eigs $(\tilde{\Delta})\subset [0,2]$
- $h_G = \min_S \frac{\sum_{x \in S, y \in \overline{S}} W_{x,y}}{\min(\sum_{x \in S} D_{x,x}, \sum_{y \in \overline{S}} D_{y,y})}; D = diag(W \cdot 1).$
- $2h_G \ge \lambda_1 \ge 1 \sqrt{1 h_G^2}$
- Good initial guess for optimal partition: Compute the eigenpair (λ_1, g^1) associated to the second smallest eigenvalue of $\tilde{\Delta}$; set:

$$S = \{k \in \mathcal{V} \ , \ g_k^1 \ge 0\} \ , \ \bar{S} = \{k \in \mathcal{V} \ , \ g_k^1 < 0\}$$

References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
- F. Chung, Spectral Graph Theory, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat.Acad.Sci. 2002.
- F. Chung, L. Lu, V. Vu, The spectra of random graphs with Given Expected Degrees, Internet Math. 1(3), 257–275 (2004).
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- P. Erdös, A. Rényi, On The Evolution of Random Graphs
- G. Grimmett, **Probability on Graphs. Random Processes on Graphs and Lattices**, Cambridge Press 2010.

Radu Balan (UMD)

C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.

J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, 1(1) 2007.