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Erdös - Rényi SBM Algorithms

The Erdös-Rényi class Gn,p
Definition

Today we discuss about random graphs. The Erdös-Rényi class Gn,p of
random graphs is defined as follows.

Let V denote the set of n vertices, V = {1, 2, · · · , n}, and let G denote the

set of all graphs with vertices V. There are exactly 2

(
n
2

)
such graphs.

The probability mass function on G, P : G → [0, 1], is obtained by
assuming that, as random variables, edges are independent from one
another, and each edge occurs with probability p ∈ [0, 1]. Thus a graph
G ∈ G with m edges will have probability P(G) given by

P(G) = pm(1− p)

(
n
2

)
−m

.

(explain why)
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The Erdös-Rényi class Gn,p
Probability space

Formally, Gn,p stands for the the probability space (G,P) composed of the
set G of all graphs with n vertices, and the probability mass function P
defined above.

A reformulation of P: Let G = (V, E) be a graph with n vertices and m
edges and let A be its adjacency matrix. Then:

P(G) =
∏

(i ,j)∈E
Prob((i , j) is an edge)

∏
(i ,j)6∈E

Prob((i , j) is not an edge) =

=
∏

1≤i<j≤n
pAi,j (1− p)1−Ai,j

where the product is over all ordered pairs (i , j) with 1 ≤ i < j ≤ n. Note:

|{(i , j) , 1 ≤ i < j ≤ n}| =
(

n
2

)
& |{(i , j) ∈ E}| = |E| = m =

∑
1≤i<j≤n

Ai ,j .

Radu Balan (UMD) Random Graphs 3/26 , 4/4
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Erdös - Rényi SBM Algorithms

The Erdös-Rényi class Gn,p
Computations in Gn,p

How to compute the expected number of edges of a graph in Gn,p?

Let X2 : Gn,p → {0, 1, · · · ,
(

n
2

)
} be the random variable of number of

edges of a graph G .

X2 =
∑

1≤i<j≤n
1(i ,j) , 1(i ,j)(G) =

{
1 if (i , j) is edge in G
0 if otherwise

Use linearity and the fact that E[1(i ,j)] = Prob((i , j) ∈ E) = p to obtain:

E[Number of Edges] =
(

n
2

)
p = n(n − 1)

2 p
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The Erdös-Rényi class Gn,p
MLE of p

Given a realization G of a graph with n vertices and m edges, how to
estimate the most likely p that explains the graph.
Concept: The Maximum Likelihood Estimator (MLE).
In statistics: The MLE of a parameter θ given an observation x of a
random variable X ∼ pX (x ; θ) is the value θ that maximizes the
probability PX (x ; θ):

θMLE = argmaxθPX (x ; θ).

In our case: our observation G has m edges. We know

P(G ; p) = pm(1− p)

(
n
2

)
−m

.
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Erdös - Rényi SBM Algorithms

The Erdös-Rényi class Gn,p
MLE of p

Lemma
Given a random graph with n vertices and m edges, the MLE estimator of
p is

pMLE = m(
n
2

) = 2m
n(n − 1) .

Why

Note log(P(G ; p)) = mlog(p) + (
(

n
2

)
−m)log(1− p) and solve for p:

dlog(P)
dp = m

p −

(
n
2

)
−m

1− p = 0.
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The Erdös-Rényi class Gn,p
Method of Moments Estimator for p

An alternative parameter estimation method is the moment matching
method. Given a likelihood function for observed data p(x ; θ) and a
sequence of observations (x1, x2, · · · , xN), the moment matching method
computes the parameters θ ∈ Rd by solving the system of equations:

E[X ] = 1
N

N∑
t=1

xt · · · E[X d ] = 1
N

N∑
t=1

xd
t

(or unbiased estimates of the moments). In particular, for the Erdös-Rényi
class, we match the first moment with the observation: n(n−1)

2 p = m.
Hence

pMM = 2m
n(n − 1) ,

same as the MLE estimator.
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Erdös - Rényi SBM Algorithms

Cliques
q-cliques

Definition
Given a graph G = (V, E), a subset of q vertices S ⊂ V is called a q-clique
if the subgraph (S, E|S) is complete.

In other words, S is a q-clique if for every i 6= j ∈ S, (i , j) ∈ E (or
(j , i) ∈ E), that is, (i , j) is an edge in G .

Each edge is a 2-clique.

{1, 2, 7} is a 3-clique. And so are
{2, 3, 7}, {3, 4, 7}, {4, 5, 7}, {5, 6, 7}, {1, 6, 7}
There is no k-clique, with k ≥ 4.
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The Erdös-Rényi class Gn,p
Computations in Gn,p : q-cliques

How to compute the expected number of q-cliques?

For k = 2 we computed earlier the number of edges, which is also the
number of 2-cliques.
We shall compute now the number of 3-cliques: triangles, or 3-cycles.
Let X3 : Gn,p → N be the random variable of number of 3-cliques. Note

the maximum number of 3-cliques is
(

n
3

)
.

Let S3 denote the set of all distinct 3-cliques of the complete graph with n
vertices, S3 = {(i , j , k) , 1 ≤ i < j < k ≤ n}.
Let

1(i ,j,k)(G) =
{

1 if (i , j , k) is a 3− clique in G
0 if otherwise
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The Erdös-Rényi class Gn,p
Expectation of the number of 3-cliques

Note: X3 =
∑

(i ,j,k)∈S3 1(i ,j,k). Thus

E[X3] =
∑

(i ,j,k)∈S3

E[1(i ,j,k)] =
∑

(i ,j,k)∈S3

Prob((i , j , k) is a clique).

Since Prob((i , j , k) is a clique) = p3 we obtain:

E[Number of 3− cliques] =
(

n
3

)
p3 = n(n − 1)(n − 2)

6 p3.
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The Erdös-Rényi class Gn,p
Number of 3 cliques

Assume we observe a graph G with n vertices and m edges. What would
be the expected number N3 of 3-cliques?

E[X3|X2 = m] = 1
L

L∑
k=1

X3(Gk)

where L denotes the numbe of graphs with m edges and n vertices, and
G1, · · · ,GL is an enumeration of these graphs.

We approximate:

E[X3|X2 = m] ≈ E[X3; p = pMLE (m)]

and obtain:
E [X3|X2 = m] ≈ 4(n − 2)

3n2(n − 1)2 m3.
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The Erdös-Rényi class Gn,p
Expectation of the number of q-cliques

Let Xq : Gn,p → N be the random variable of number of q-cliques. Note

the maximum number of q-cliques is
(

n
q

)
.

Let Sq denote the set of all distinct q-cliques of the complete graph with n
vertices, Sq = {(i1, i2, · · · , iq) , 1 ≤ i1 < i2 < · · · < iq ≤ n}. Note

|Sq| =
(

n
q

)
.

Let

1(i1,i2,···,iq)(G) =
{

1 if (i1, i2, · · · , iq) is a q − clique in G
0 if otherwise
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The Erdös-Rényi class Gn,p
Expectation of the number of q-cliques

Since Xq =
∑

(i1,···,iq)∈Sq 1i1,···,iq and

Prob((i1, · · · , iq) is a clique) = p

(
q
2

)
we obtain:

E[Number of q − cliques] =
(

n
q

)
pq(q−1)/2.

Using a similar argument as before, if G has m edges, then

E[Xq|X2 = m] ≈
(

n
q

)( 2m
n(n − 1)

)q(q−1)/2
.
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The Stochastic Block Model

The Stochastic Block Model (SBM) was introduced in mathematial
sociology by Holland, Laskey and Leinhardt in 1983 and by Wang and
Wong in 1987. Here we follow Abbe (2017).

Figure: Example of a SBM

A Stochastic Block Model with k =
2 classes (’red’ and ’blue’) over n =
15+22 = 37 nodes. Number of edges:
mrr = 21, mrb = 6, mbb = 35.
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The Stochastic Block Model
The general SBM

Data. Let n be a positive integer (the number of vertices), k be a positive
integer (the number of communities), p = (p1, p2, · · · , pk) be a probability
vector on [k] := {1, 2, · · · , k} (the prior on the k communities), and Q be
a k × k symmetric matrix with entries in [0, 1] (the connectivity
probabilities).

Definition
The pair (Z ,G) is drawn under SBM(n, p,Q) if Z is an n-dimensional
random vector with i.i.d. components distributed under p, and G is an
n-vertex graph where vertices i and j are connected with probability QZi ,Zj ,
independently of other pairs of vertices.

The community sets are defined by Ωi = Ωi (Z ) = {v ∈ [n] , Zv = i},
1 ≤ i ≤ k.
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The Stochastic Block Model
The Symmetric SBM (SSBM)

Definition
The pair (Z ,G) is drawn under SSBM(n, k, a, b) if Z is an n-dimensional
random vector with i.i.d. components uniformly distributed over
[k] = {1, 2, · · · , k}, and G is an n-vertex graph where vertices i and j are
connected with probability a if Zi = Zj and probability b if Zi 6= Zj ,
independently of other pairs of vertices.

Data:
• the number of vertices: n;
• the number of communities: k;
• prior on k communities: p =
( 1

k ,
1
k , · · · ,

1
k ) on [k] := {1, 2, · · · , k};

• connectivity probabilities: Q

Q =


a b · · · b
b a · · · b
...

... . . . ...
b b · · · a

 .
The Erdös-Rényi random graph is obtained when a = b = p.
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The Binary Symmetric Stochastic Block Model
Distributions (1)

Consider a realization (Z ,G) drawn randomly under SSBM(n, 2, a, b) that
models two communities. This means every node belongs with equal
probability to either community, 1 or 2: Z = (z1, z2, · · · , zn), where
zi ∈ {1, 2}, P(Zi = 1) = P(zi = 2) = 1

2 . The graph G of n nodes has
adjacency matrix A. The conditional probability of realization A given the
vector Z :

P(A|Z ) =
∏

1≤u<v≤n
QAu,v

zu ,zv (1− Qzu ,zv )1−Au,v =

= am11+m22bm12(1− a)mc
11+mc

22(1− b)mc
12

where m11,m22 are the number of edges inside community 1, respectively
2, m12 is the number of edges between the two communities, and mc

11,
mc

22, mc
12 are the number of missing edges inside each community/between

the two communities.
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The Binary Symmetric Stochastic Block Model
Distributions (2)

Explicitely these numbers are given by:

m11 = #Edges inside community 1 =
∑

i < j
i , j ∈ Ω1

Ai ,j

mc
11 =

(
n1
2

)
−m11 n1 = |Ω1|

m22 = #Edges inside community 2 =
∑

i < j
i , j ∈ Ω2

Ai ,j

mc
22 =

(
n2
2

)
−m22 n2 = |Ω2|
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The Binary Symmetric Stochastic Block Model
Distributions (3)

m12 = #Edges between community 1 and 2 =
∑

i < j
i ∈ Ω1
j ∈ Ω2

Ai ,j

mc
12 = n1n2 −m12

Example:
n = 9 , Ω1 = {1, 2, 3, 4, 5}, Ω2 =
{6, 7, 8, 9}.

m11 = 5 , mc
11 = 5

m22 = 4 , mc
22 = 2

m12 = 3 , mc
11 = 17
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The Stochastic Block Model
Community Detection

The main problem: Community Detection.
This means a partition of the set of vertices V = {1, 2, · · · , n} compatible
with the observed graph G for a given connectivity probability matrix W .
To formulate mathematically we need to define the agreement between
two community vectors.

Definition
The agreement between two community vectors x , y ∈ [k]n is obtained by
maximizing the number of common components of these two vectors over
all possible relabelling (i.e., permutations):

Agr(x , y) = max
π∈Sk

1
n

n∑
i=1

1(xi = π(yi ))

where Sk denotes the group of permutations.
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The Binary Symmetric Stochastic Block Model
Model Calibration: Supervised Learning

How to estimate parameters a, b in the 2-community symmetric stochastic
block model SSBM(n, 2, a, b). Use the Maximum Likelihood Estimator
(MLE):

(aMLE , bMLE ) = argmaxa,bProb(G |Z , a, b)
Setup: Assume we have access to a training (i.e., labelled) data set
(Z ,G). Then for parameters a, b maximize:

am11+m22(1− a)mc
11+mc

22bm12(1− b)mc
12

Take the logarithm and obtain:

aMLE = m11 + m22(
n1
2

)
+
(

n2
2

) = 2(m11 + m22)
n1(n1 − 1) + n2(n2 − 1)

bMLE = m12
n1n2
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The Binary Symmetric Stochastic Block Model
Model Calibration: Unsupervised Learning

Assume we have access to only one realization G = (V,A) of the random
graph drawn from a binary symmetric SBM SSBM(n, 2, a, b). The MLE is
hard to solve. Instead we use the Method of Moment Matching. Since
there are two parameters to estimate, a and b, we need to equations. We
choose to match the numbers of 2-cliques (edges) and the number of
3-cliques. The expectations are computed by conditioning first on
n1 = |Ω1| the size of partition, with n2 = n − n1:

E[X2|n1] =
(

n1
2

)
a + n1n2b +

(
n2
2

)
a

E[X3|n1] =
(

n1
3

)
a3 +

[(
n1
2

)
n2 + n1

(
n2
2

)]
ab2 +

(
n2
3

)
a3
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E[X2|n1] =
(

n1
2

)
a + n1n2b +

(
n2
2

)
a =

= n1(n1 − 1) + (n − n1)(n − n1 − 1)
2 a + n1(n − n1)b

= n2
1 − n1 + n2 − 2nn1 + n2

1 − n + n1
2 a + (nn1 − n2

1)b

=
(

n2
1 − nn1 + n(n − 1)

2

)
a + (nn1 − n2

1)b

Next compute the expectation of the number of edges by double
expectation. To do so we need

E[n1] = E
[ n∑

v=1
1Zv =1

]
= n

2

E[n2
1] = E

( n∑
v=1

1Zv =1

)2
 = n 1

2 + 2n(n − 1)
2

1
4 = n(n + 1)

4
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Thus

E[X2] = E[E[X2|n1]] = (n2 + n
4 − n2

2 + n2 − n
2 )a + (n2

2 −
n2 + n

4 )b =

= n2 − n
4 (a + b)

Similarly,

E[X3|n1] =
(

n1
3

)
a3 +

[(
n1
2

)
n2 + n1

(
n2
2

)]
ab2 +

(
n2
3

)
a3

= n1(n1 − 1)(n1 − 2) + n2(n2 − 1)(n2 − 2)
6 a3 + n1n2(n1 − 1 + n2 − 1)

2 ab2

= n3
1 + n3

2 − 3(n2
1 + n2

2) + 2(n1 + n2)
6 a3 + (nn1 − n2

1)(n − 2)
2 ab2

= (n1 + n2)(n2
1 − n1n2 + n2

2)− 3(n2
1 + n2

2) + 2n
6 a3 + (nn1 − n2

1)(n − 2)
2 ab2
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= (n − 3)(n2 − 2nn1 + 2n2
1)− nn1(n − n1) + 2n

6 a3+ (nn1 − n2
1)(n − 2)
2 ab2

= n3 − 3n2 + 2n + (3n − 6)n2
1 − (3n2 − 6n)n1

6 a3 + (nn1 − n2
1)(n − 2)
2 ab2

Substitute E[n1] = n
2 and E[n2

1] = n2+n
4 :

E[X3] = n(n − 2)
6 (n − 1 + 3

4(n + 1)− 3
2n)a3 +

n(n − 2)(n
2 −

n+1
4 )

2 ab2

= n(n − 1)(n − 2)
24 a3 + n(n − 1)(n − 2)

8 ab2 = n(n − 1)(n − 2)
24 (a3 + 3ab2)

Radu Balan (UMD) Random Graphs 3/26 , 4/4
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The Binary Symmetric Stochastic Block Model
Model Calibration: Unsupervised Learning (2)

Assuming the graph has m 2-cliques (=edges) and t 3-cliques (=triangles)
then by the moment matching method:

m = n(n − 1)
4 (a + b) , t = n(n − 1)(n − 2)

24 (a3 + 3ab2)

Note: the SSBM(n, 2, a, b) class reduces to the Erdös-Renyi class Gn,p if
a = b = p.
From where we solve for a and b in terms of n, m and t: Let c1 = 4m

n(n−1)
and c2 = 24t

n(n−1)(n−2) . Thus b = c1 − a and

4a3 − 6c1a2 + 3c2
1 a − c2 = 0⇒ (2a − c1)3 + c3

1 − 2c2 = 0

Thus:

aMM = 1
2

(
c1 + 3

√
2c2 − c3

1

)
, bMM = 1

2

(
c1 − 3

√
2c2 − c3

1

)
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The Stochastic Block Model
Community Detection -cont’ed

Types of algorithm:
Let (Z ,G) ∼ SBM(n, p,Q). Then the following recovery requirements are
solved if there exists an algorithm that takes G as input and outputs
Ẑ = Ẑ (G) such that:

Exact recovery: P{Agr(Z , Ẑ ) = 1} = 1− o(1)
Almost exact recovery: P{Agr(Z , Ẑ} = 1− o(1)) = 1− o(1)
Partial recovery: P{Agr(Z , Ẑ ) ≥ α} = 1− o(1), α ∈ (0, 1).

Note these definitions apply to an algorithm, where probabilities are
computed over all realizations of SBM(n, p,Q) model.
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The Symmetric Stochastic Block Model SSBM(n, 2, a, b)
Expectation of number of 4-cliques (1)

Under SSBM(n, 2, a, b) the conditional expectation of X4 given the size n1
of the first community, is given by the following formula:

E[X4|n1] =
(

n1
4

)
a6 +

(
n1
3

)
n2a3b3 +

(
n1
2

)(
n2
2

)
a2b4+

+n1

(
n2
3

)
a3b3 +

(
n2
4

)
a6

where the terms represent the cases when all four vertices are in
community 1, three vertices in community 1 and one vertex in community
2, two vertices in each community, one vertex in community 1 and three in
community 2, and finally, all four vertices are in community 2.
Next, the expectation of the number of 4-cliques given parameters a, b is
obtained by iterating the expectation operator over n1:

E[X4; a, b] = E[E[X4|n1]]
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The Symmetric Stochastic Block Model SSBM(n, 2, a, b)
Expectation of number of 4-cliques (2)

Since n1 follows the binomial distribution B(n, 1
2),

E[n1] = n
2 , E[n2

1] = n2 + n
4

E[n3
1] = n2(n + 3)

8 , E[n4
1] = n(n + 1)(n2 + 5n − 2)

16
These expressions come from the moment generating function of the

binomial distribution MX (t) = (1− p + pet)n which for p = 1
2 becomes

Mn1(t) = 1
2n (1 + et)n. Then the kth moment is given by

E[nk
1 ] = dk

dtk Mn1(t)|t=0

See: http://mathworld.wolfram.com/BinomialDistribution.html for details.
The expectation over n1 is obtained by substituting n2 = n− n1, expanding
the expression of E[X4|n1] and then using the moments of n1, n2

1, n3
1, n4

1.
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The Symmetric Stochastic Block Model SSBM(n, 2, a, b)
Expectation of number of 4-cliques (3)

Expanding, making the substitution n2 = n − n1 and combining the tems
we get:

E[X4|n1] = a6

24
(

2n4
1 − 4nn3

1 + (6n2 − 18n + 22)n2
1 + (−4n3 + 18n2 − 22n)n1

+n4 − 6n3 + 11n2 − 6n
)

+

+a3b3

6
(
−2n4

1 + 4nn3
1 + (−3n2 + 3n − 4)n2

1 + (n3 − 3n2 + 4n)n1
)

+a2b4

4
(

n4
1 − 2nn3

1 + (n2 + n − 1)n2
1 + (−n2 + n)n1

)
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The Symmetric Stochastic Block Model SSBM(n, 2, a, b)
Expectation of number of 4-cliques (4)

E[X4] = a6

24
(

2E[n4
1]− 4nE[n3

1] + (6n2 − 18n + 22)E[n2
1]

+(−4n3 + 18n2 − 22n)E[n1] + n4 − 6n3 + 11n2 − 6n
)

+

+a3b3

6
(
−2E[n4

1] + 4nE[n3
1] + (−3n2 + 3n − 4)E[n2

1] + (n3 − 3n2 + 4n)E[n1]
)

+a2b4

4
(
E[n4

1]− 2nE[n3
1] + (n2 + n − 1)E[n2

1] + (−n2 + n)E[n1]
)

where the expectations E[n1], E[n2
1], E[n3

1] and E[n4
1] have been

computed before.
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Numerical Computation of Number of Cliques
An Iterative Algorithm

We discuss two algorithms to compute Xq: iterative, and adjacency matrix
based algorithm.
Framework: we are given a sequence (Gt)t≥0 of graphs on n vertices,
where Gt+1 is obtained from Gt by adding one additional edge:
Gt = (V, Et), ∅ = E0 ⊂ E1 ⊂ · · · and |Et | = t.
Iterative Algorithm: Assume we know Xq(Gt), the number of q-cliques
of graph Gt . Then Xq(Gt+1) = Xq(Gt) + Dq(e; Gt) where Dq(e; Gt)
denotes the number of q-cliques in Gt+1 formed by the additional edge
e ∈ Et+1 \ Et .
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Computation of Number of Cliques
An Analytic Formula

Laplace Matrix ∆ = D − A contains all connectivity information.
Idea: Note the (i , j) element of A2 is

(A2)i ,j =
n∑

k=1
Ai ,kAk,j = |{k : i ∼ k ∼ j}|.

This means (A2)i ,j is the number of paths of length 2 that connect i to j .
Hence m = 1

2 trace(A2).
Remark: The diagonal elements of A(A2 − D) represent twice the number
of 3-cycles (= 3-cliques) that contain that particular vertex.
Conclusion:

X3 = 1
6 trace{A(A2 − D)} = 1

6 trace(A3).
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Numerical results
Graph of X3 for the BKOFF dataset

Recall the dataset Bernard & Killworth Office. Weighted graph: Ordered
m = 238 edges for n = 40 nodes. The plot of X3 the number of 3-cliques:
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Numerical results
Plot of X4 for the BKOFF dataset

Weighted graph: Ordered m = 238 edges for n = 40 nodes. The plot of
X4 the number of 4-cliques:
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