Lecture 4: Visualization and Continuous Object Transformations

Radu Balan

University of Maryland

February 26, 2019

Problems for today

Today we study how to visualize a smooth transition between two clouds of points. Specifically we analyze:

- Unear interpolation of the geometric space
- 2 Linear interpolation pre-SVD
- Stinear Interpolation in the parametrization space for item 3, we shall study matrix logarithm.

Visualization

How to Continuously Transform One Set of Points into Another

Consider two sets of n points in \mathbb{R}^d , each given by columns of $d \times n$ matrices

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$$

Last time we learned how to find an orthogonal transformation ($d \times d$ matrix) \hat{Q} , a translation d-vector \hat{z} , and a scalar $\hat{a} > 0$ that minimize:

$$minimize_{Q \in O(d), z \in \mathbb{R}^d, a > 0} J(Q, z, a) \ , \ J(Q, z, a) = \|Y - aQ(X - z1^T)\|_F^2$$

Today we shall describe continuous (even smooth) transformations $Q(t) \in O(d)$, $z(t) \in \mathbb{R}^d$ and $a(t) \in \mathbb{R}^+$ so that $X(t) = a(t)Q(t)(X - z(t)1^T)$ represents a continuous transition from set X to set Y.

Continuous Transition - Method 1 Linear Interpolation

The simplest continuous interpolation method is to consider:

$$X(t) = (1-t)X + tY \quad , \quad 0 \le t \le 1$$

The problem with such interpolation is that it does not mentain a correct aspect ratio between points.

However it does provide a continuous and smooth transition between the two clouds of points.

Continuous Transition - Method 2 Linear interpolation pre-SVD

A better method is to use a continuous interpolation of the covariance matrix. Recall the algorithm:

- Compute centers $\bar{x} = \frac{1}{n}X \cdot 1$, $\bar{y} = \frac{1}{n}Y \cdot 1$ and recenter data $\tilde{X} = X \bar{x} \cdot 1^T$, $\tilde{Y} = Y \bar{y} \cdot 1^T$.
- ② Compute the $d \times d$ matrix $\hat{R} = \tilde{X}\tilde{Y}^T$;
- ② Compute the Singular Value Decomposition (SVD), $\hat{R} = U\Sigma V^T$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma = diag(\sigma_1, \cdots, \sigma_d)$ is the diagonal matrix with singular values $\sigma_1, \cdots, \sigma_d \geq 0$ on its diagonal;
- Compute $\hat{Q} = VU^T$, $\hat{z} = \bar{x} \hat{Q}^T \bar{y}$ and $\hat{a} = \frac{trace(\Sigma)}{\|\tilde{X}\|_E^2}$.

Idea: Repeat steps 3 and 4 with $R(t) = (1-t)I_d + t\hat{R}$.

Continuous Transition - Method 2

Linear interpolation pre-SVD

Algorithm (Pre-SVD Interpolation)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$; step $\in (0, 1)$.

- Compute centers $\bar{x} = \frac{1}{n}X \cdot 1$, $\bar{y} = \frac{1}{n}Y \cdot 1$ and recenter data $\tilde{X} = X \bar{x} \cdot 1^T$, $\tilde{Y} = Y \bar{y} \cdot 1^T$.
- 2 Compute the $d \times d$ matrix $\hat{R} = \tilde{X}\tilde{Y}^T$; SVD: $\hat{R} = U\Sigma V^T$; $\hat{Q} = VU^T$; $\hat{z} = \bar{x} \hat{Q}^T\bar{y}$; $\hat{a} = \frac{trace(\Sigma)}{\|\tilde{X}\|_E^2}$.
- **3** For t = (0 : step : 1) repeat
 - Compute $R = (1-t)I_d + t\hat{R}$;
 - **Q** Compute the Singular Value Decomposition (SVD), $R = U\Sigma V^T$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma = diag(\sigma_1, \dots, \sigma_d)$ is the diagonal matrix with singular values $\sigma_1, \dots, \sigma_d \geq 0$ on its diagonal;
 - **3** Compute $Q(t) = VU^T$, $z(t) = t\hat{z}$ and $a(t) = 1 t + t\hat{a}$.
 - Compute $X(t) = a(t)Q(t)(X z(t)1^T)$

Outputs: $\hat{Q} = Q(1)$, $\hat{z} = z(1)$, $\hat{a} = a(1)$, and movie $(X(t))_{0 \le t \le 1}$.

Continuous Transition - Method 3

Linear interpolation in the parametrization space

Recall the parametrization of O(d) using the linear space of antisymmetric matrices: For any $Q \in O(d)$ so that det(Q) = 1 there is a unique antisymmetric matrix $G \in \mathbb{R}^{d \times d}$, $G^T = -G$, so that Q = exp(G). Idea: Interpolate Q(t), z(t) and a(t) using a linear interpolation in the space (G, z, a):

$$Q(t) = exp(tG)$$
 , $z(t) = (1-t)0 + t\hat{z} = t\hat{z}$, $a(t) = (1-t) + t\hat{a}$

and then compute the sequence of interpolants:

$$X(t) = a(t)Q(t)(X - z(t)1^{T}).$$

In the case det(Q) = -1, premultiply Q with a fixed diagonal matrix J so that det(J) = -1. Thus $Q = J \exp(G)$ for some antisymmetric matrix G.

Matrix Logarithm Definition and Properties

Notation:

$$SO(d) = \{Q \in O(d) : det(Q) = +1\} = \{Q \in \mathbb{R}^{d \times d}, Q^{-1} = Q^{T}, det(Q)\}$$

Theorem

Given $Q \in SO(d)$, there exists a matrix $G \in \mathbb{R}^{d \times d}$ so that $G^T = -G$ and $\exp(G) = Q$. The matrix G is not unique. However, there exists an orthogonal matrix E so that any two antisymmetric matrices G and G so that $\exp(G) = \exp(G) = Q$ satisfy $\frac{1}{2\pi}E^T(G-G)E$ has a sparse structure with only integers in the non-zero entries. Furthermore, the non-zero entries may occur only on the (k,l) entries associated to eigenvalyes $\lambda_k = \bar{\lambda_l} \neq 1$.

There exists a unique antisymmetric matrix G with smallest Frobenius norm. That matrix is called the *matrix logarithm* of Q.

Construction of Matrix Logarithm

Matrix Logarithm Algorithm

Given $Q \in O(d)$ with det(Q) = 1, how to find $G \in \mathbb{R}^{d \times d}$, $G^T = -G$, so that Q = exp(G)? Let $\{\lambda_1, \cdots, \lambda_d\}$ denote the set of eigenvalues of Q. Since $QQ^T = I_d$, it follows that each $|\lambda_k| = 1$.

Algorithm (Matrix Logarithm)

Input: Matrix $Q \in SO(d)$.

- Determine the diagonal form $Q = VDV^*$, where V is a unitary matrix and D is the diagonal matrix of eigenvalues. Initialize $L = 0_{d \times d}$
- ② Repeat:
 - For each eigenvalue $\lambda_k = 1$ set:

$$E(:,k) = V(:,k)$$
, $L(k,k) = 0$

Matrix Logarithm

Algorithm-cont'ed

Algorithm

• For each group of eigenvalues $\lambda_k = \lambda_{k+1} = -1$ set E(:, k:k+1) = V(:, k:k+1) and

$$\left[\begin{array}{cc} L(k,k) & L(k,k+1) \\ L(k+1,k) & L(k+1,k+1) \end{array}\right] = \left[\begin{array}{cc} 0 & \pi \\ -\pi & 0 \end{array}\right]$$

• For each pair of eigenvalues $\lambda_k = \overline{\lambda_{k+1}} \in \mathbb{C}$ with $imag(\lambda_k) \neq 0$ determine $\varphi \in (0, 2\pi)$ so that $\lambda_k = e^{i\varphi}$ set $E(:, k) = \sqrt{2} real(V(:, k))$, $E(:, k+1) = \sqrt{2} imag(V(:, k))$ and

$$\begin{bmatrix} L(k,k) & L(k,k+1) \\ L(k+1,k) & L(k+1,k+1) \end{bmatrix} = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

3 Compute $G = ELE^T$.

Output: Matrix $G \in \mathbb{R}^{d \times d}$ so that $G^T = -G$ and $Q = \exp(G)$.

Interpolation in the parameter space

Algorithm (Parameters Space Interpolation)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$; step $\in (0, 1)$.

- Compute centers $\bar{x} = \frac{1}{n}X \cdot 1$, $\bar{y} = \frac{1}{n}Y \cdot 1$ and recenter data $\tilde{X} = X \bar{x} \cdot 1^T$, $\tilde{Y} = Y \bar{y} \cdot 1^T$.
- **2** Compute the $d \times d$ matrix $\hat{R} = \tilde{X}\tilde{Y}^T$;
- **3** Compute the Singular Value Decomposition (SVD), $\hat{R} = U \Sigma V^T$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma = diag(\sigma_1, \dots, \sigma_d)$ is the diagonal matrix with singular values $\sigma_1, \dots, \sigma_d \geq 0$ on its diagonal;
- **1** Compute $\hat{Q} = VU^T$, $\hat{z} = \bar{x} \hat{Q}^T \bar{y}$ and $\hat{a} = \frac{\operatorname{trace}(\Sigma)}{\|\tilde{X}\|_E^2}$.
- **3** Compute the diagonal matrix $J \in O(d)$ and antisymmetric matrix $G = -G^T$ so that $\hat{Q} = Jexp(G)$.

Interpolation in the parameter space - cont'ed

Algorithm

- **o** For t = (0 : step : 1) repeat
 - Compute $Q(t) = J \exp(tG)$; $z(t) = \hat{z}$ and $a(t) = 1 t + t \hat{a}$.
 - **2** Compute $X(t) = a(t)Q(t)(X z(t)1^{T})$

Outputs: $\hat{Q} = Q(1)$, $\hat{z} = z(1)$, $\hat{a} = a(1)$, and movie $(X(t))_{0 \le t \le 1}$.

Method 3: Interpolation in the Parameter Space Examples

See Matlab Code.

References